Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = glow electric discharge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3462 KB  
Article
Multiphysics Simulation for Efficient and Reliable Systems for Low-Temperature Plasma Treatment of Metals
by Nina Yankova Penkova, Boncho Edward Varhoshkov, Valery Todorov, Hristo Antchev, Kalin Krumov and Vesselin Iliev
Materials 2026, 19(2), 382; https://doi.org/10.3390/ma19020382 (registering DOI) - 17 Jan 2026
Abstract
Plasma nitriding is an advanced method to increase the hardness and wear resistance of different metal parts with complex shapes and geometries. The modelling is an appropriate approach for better understanding and improving such technologies based on multi-physical processes. Mathematical models of the [...] Read more.
Plasma nitriding is an advanced method to increase the hardness and wear resistance of different metal parts with complex shapes and geometries. The modelling is an appropriate approach for better understanding and improving such technologies based on multi-physical processes. Mathematical models of the coupled electromagnetic, fluid flow, and thermal processes in vacuum chambers for the low-temperature plasma treatment of metal parts have been developed. They were solved numerically via ANSYS/CFX software for a discretized solid and gas space of a plasma nitriding chamber. The specific electrical conductivity of the gas mixture, containing plasma, has been calibrated on the basis of an electrical model of the chamber and in situ measurements. The three-dimensional fields of pressure, temperature, velocity, turbulent characteristics, electric current density, and voltage in the chamber have been simulated and analysed. Methods for further development and application of the models and for technological and constructive enhancement of the plasma treatment technologies are discussed. Full article
(This article belongs to the Special Issue Advances in Plasma Treatment of Materials)
Show Figures

Figure 1

20 pages, 6782 KB  
Article
Accelerating Millimeter-Wave Imaging: Automating Glow Discharge Detector Focal Plane Arrays with Chirped FMCW Radar for Rapid Measurement and Instrumentation Applications
by Arun Ramachandra Kurup, Daniel Rozban, Amir Abramovich, Yitzhak Yitzhaky and Natan Kopeika
Electronics 2025, 14(9), 1819; https://doi.org/10.3390/electronics14091819 - 29 Apr 2025
Viewed by 861
Abstract
This article presents an innovative integration of Glow Discharge Detector Focal Plane Arrays (GDD FPA) with Chirped Frequency Modulated Continuous Wave (FMCW) Radar, enhancing millimeter-wave (MMW) imaging. The cost-effective FPA design using GDDs as pixel elements forms the foundation of the system. We [...] Read more.
This article presents an innovative integration of Glow Discharge Detector Focal Plane Arrays (GDD FPA) with Chirped Frequency Modulated Continuous Wave (FMCW) Radar, enhancing millimeter-wave (MMW) imaging. The cost-effective FPA design using GDDs as pixel elements forms the foundation of the system. We investigate MMW effects on GDD discharge currents via basic data acquisition (DAQ) and implement a scanning mechanism with a step motor for sub-pixel imaging. The setup integrates an MMW source, optical components, a timer/counter, and an 8 × 8 FPA with 64 GDD, operating in electrical detection modes and processing signals using Fast Fourier Transform (FFT) algorithms. Recent advancements in millimeter-wave imaging have focused on improving image resolution and acquisition speed through various techniques, including lock-in amplifiers and electrical detection methods. However, these methods introduce complexity, cost, and extended acquisition times. Our approach mitigates these challenges by implementing a simplified FPA design that eliminates the need for external signal conditioning elements, providing faster and more efficient image acquisition. The primary contributions include significant improvements in the speed and automation of image acquisition achieved through a coordinated control mechanism for efficient row scanning. Compared to previous generations of GDD FPAs, this system achieves a notable reduction in image acquisition time by up to 75%, while maintaining high fidelity. These enhancements make the system particularly suitable for time-sensitive applications. Additionally, future research directions include the incorporation of 3D imaging using FMCW radar. Results from the FMCW measurements using the single GDD circuit demonstrate the system’s ability to accurately capture and process MMW radiation, even at low intensities. The combined strengths of GDD FPA and chirped FMCW radar underscore the system’s effectiveness in MMW detection, laying the groundwork for advanced MMW imaging capabilities across diverse applications. Full article
Show Figures

Figure 1

19 pages, 4353 KB  
Article
Effect of Cathode Cooling in Three-Dimensional Simulations of an Atmospheric Pressure Glow Discharge
by Valentin Boutrouche and Juan Pablo Trelles
Plasma 2024, 7(4), 920-938; https://doi.org/10.3390/plasma7040051 - 29 Nov 2024
Viewed by 1274
Abstract
The Atmospheric Pressure Glow Discharge (APGD) is a relatively simple and versatile plasma source used in a wide range of applications. Active cooling of the cathode can effectively mitigate instabilities, leading to glow-to-arc transitions. This study investigates the effect of varying the degree [...] Read more.
The Atmospheric Pressure Glow Discharge (APGD) is a relatively simple and versatile plasma source used in a wide range of applications. Active cooling of the cathode can effectively mitigate instabilities, leading to glow-to-arc transitions. This study investigates the effect of varying the degree of cathode cooling in APGD with a planar cathode in helium. The plasma flow model incorporates mass conservation, chemical species transport, momentum conservation, conservation of thermal energy of heavy species and of electrons, and electrostatics. The model is applied to time-dependent simulations through a three-dimensional computational domain describing the whole discharge, without geometric symmetry or steady-state assumptions. Simulations of an experimentally characterized APGD explore the effects of electric current and cathode cooling—ranging from thermally insulated to extreme convective cooling. Results show the formation of an annular region with high electric field over the cathode surface under conditions of high current and low cooling. Full article
Show Figures

Graphical abstract

30 pages, 16422 KB  
Article
An Investigation into the Behavior of Cathode and Anode Spots in a Welding Discharge
by Antonina I. Karlina, Andrey E. Balanovskiy, Viktor V. Kondratiev, Victoria V. Romanova, Andrey G. Batukhtin and Yulia I. Karlina
Appl. Sci. 2024, 14(21), 9774; https://doi.org/10.3390/app14219774 - 25 Oct 2024
Cited by 19 | Viewed by 2780
Abstract
The effective development of modern welding technologies and the improvement of equipment and materials inevitably require deep theoretical knowledge about the physical phenomena occurring in the electric arc column and in the near-electrode region. However, there is still no convincing theoretical description of [...] Read more.
The effective development of modern welding technologies and the improvement of equipment and materials inevitably require deep theoretical knowledge about the physical phenomena occurring in the electric arc column and in the near-electrode region. However, there is still no convincing theoretical description of an arc discharge. This article demonstrates, through the generalization of known experimental facts and studies using a high-speed camera, that the conductive channel of an electric arc has a discrete structure, consisting of a set of thin channels through which the main discharge current passes. The cathode spot of an arc discharge is a highly heated and brightly glowing area on the cathode’s surface. Electron emission occurs from this region, which supports the discharge as well as the removal of the cathode material. We propose a new technique to study the reverse side of the cathode spot, revealing a structure consisting of individual cells or fragments of the cathode spot. For the first time, we present the anode spots captured by a high-speed camera. We carry out an analysis of the spots’ structure. We determine the parameters affecting the mobility of cathode and anode spots. We propose a hypothesis based on the obtained experimental facts about the heterogeneous structure of cathode and anode spots in an arc discharge and the existence of current filaments that affect the mobility of spots during arc combustion. Full article
(This article belongs to the Section Surface Sciences and Technology)
Show Figures

Figure 1

14 pages, 3241 KB  
Article
Modeling the Effect of Ionospheric Electron Density Profile and Its Inhomogeneities on Sprite Halos
by Jinbo Zhang, Jiawei Niu, Zhibin Xie, Yajun Wang, Xiaolong Li and Qilin Zhang
Atmosphere 2024, 15(10), 1169; https://doi.org/10.3390/atmos15101169 - 30 Sep 2024
Cited by 1 | Viewed by 1546
Abstract
Sprite halos are diffuse glow discharges in the D-region ionosphere triggered by the quasi-electrostatic (QES) fields of lightning discharges. A three-dimensional (3D) QES model is adopted to investigate the effect of ionospheric electron density on sprite halos. The electron density is described by [...] Read more.
Sprite halos are diffuse glow discharges in the D-region ionosphere triggered by the quasi-electrostatic (QES) fields of lightning discharges. A three-dimensional (3D) QES model is adopted to investigate the effect of ionospheric electron density on sprite halos. The electron density is described by an exponential formula, parameterized by reference height (h’) and sharpness (β), and the local inhomogeneity has a Gaussian density distribution. Simulation results indicate that the reference height and steepness of the nighttime electron density affect the penetration altitudes and amplitudes of normalized electric fields, as well as the altitudes and intensities of the corresponding sprite halos optical emissions. A comparison of the daytime and nighttime conditions demonstrates that the daytime electron density profile is not favorable for generating sprite halos emissions. Furthermore, the pre-existing electron density inhomogeneities lead to enhanced local electric fields and optical emissions, potentially offering a plausible explanation for the horizontal displacement between sprites and their parent lightning, as well as their clustering. Full article
(This article belongs to the Special Issue Impact of Thunderstorms on the Upper Atmosphere)
Show Figures

Figure 1

17 pages, 4486 KB  
Article
Production of High-Power Nitrogen Sputtering Plasma for TiN Film Preparation
by Taishin Sato, Sawato Igarashi, Katsuyuki Takahashi, Seiji Mukaigawa and Koichi Takaki
Processes 2024, 12(7), 1314; https://doi.org/10.3390/pr12071314 - 25 Jun 2024
Cited by 1 | Viewed by 2226
Abstract
High-density nitrogen plasma was produced using a high-power pulsed power modulator to sputter titanium targets for the preparation of titanium nitride film. The high-power pulsed sputtering discharge unit consisted of two targets facing each other with the same electrical potential. The titanium target [...] Read more.
High-density nitrogen plasma was produced using a high-power pulsed power modulator to sputter titanium targets for the preparation of titanium nitride film. The high-power pulsed sputtering discharge unit consisted of two targets facing each other with the same electrical potential. The titanium target plates were used as target materials with dimensions of 60 mm length, 20 mm height, and 5 mm thickness. The gap length was set to be 10 mm. The magnetic field was created with a permanent magnet array behind the targets. The magnetic field strength at the gap between the target plates was 70 mT. The electrons were trapped by the magnetic and electric fields to enhance the ionization in the gap. The nitrogen and argon gases were injected into the chamber with 4 Pa gas pressure. The applied voltage to the target plates had an amplitude from −600 V to −1000 V with 600 μs in pulse width. The target current was approximately 10 A with the consumed power of 13 kW. The discharge sustaining voltage was almost constant and independent of the applied voltage, in the same manner as the conventional normal glow discharge. The ion density and electron temperature at the surface of the ionization region were obtained as 1.7 × 1019 m−3 and 3.4 eV, respectively, by the double probe measurements. The vertical distribution of ion density and electron temperature ranged from 1.1 × 1017 m−3 (at 6 cm from the target edge) to 1.7 × 1019 m−3 and from 2.4 eV (at 6 cm from the target edge) to 3.4 eV, respectively. From the emission spectra, the intensities of titanium atoms (Ti I), titanium ions (Ti II), and nitrogen ions (N2+) increased with increasing input power. However, the intensities ratio of Ti II to Ti I was not affected by the intensities from N2+. Full article
(This article belongs to the Special Issue Plasma Science and Plasma-Assisted Applications)
Show Figures

Figure 1

6 pages, 3733 KB  
Proceeding Paper
Fabrication of Electronic Silk Fabrics via RGO Adhesion Incorporating Oxygen Plasma Treatment
by Bornali Sarma, K. Vinisha Rani and D. N. Gupta
Eng. Proc. 2023, 52(1), 5; https://doi.org/10.3390/engproc2023052005 - 11 Jan 2024
Viewed by 1149
Abstract
Plasma Technology has proven to be the most effective eco-friendly method for the textile industry in improving surface adhesion. Two different silk fabrics, raw and degummed silk are treated by low-pressure glow discharge oxygen plasma to improve hydrophilic properties for better adhesion and [...] Read more.
Plasma Technology has proven to be the most effective eco-friendly method for the textile industry in improving surface adhesion. Two different silk fabrics, raw and degummed silk are treated by low-pressure glow discharge oxygen plasma to improve hydrophilic properties for better adhesion and coating process. Oxygen plasma can produce etching and formation of polar functional groups on the surface of the fabrics. The plasma conditions like voltage and working pressure are maintained constant with different exposure times. The plasma-exposed fabrics are characterized by SEM, XPS and adsorption tests. SEM reveals that the changes in the fabric surface are prominent for higher treatment time. According to the results of XPS, the oxygen-containing functional groups are increased after plasma treatment. The GO adsorption test indicates the enhancement of GO on the plasma-treated fabrics than untreated silk. The GO is prepared by the Modified Hummers method. The GO is coated on the plasma-treated silk fabrics by a dip coating method. The GO-coated silk fabrics are converted into RGO fabric by ascorbic acid as a reducing agent. Electrical conductivity measurement of the fabricated silk reveals that adequate current flows through it to glow an LED bulb. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, E-Textiles 2023)
Show Figures

Figure 1

54 pages, 11130 KB  
Review
From Basics to Frontiers: A Comprehensive Review of Plasma-Modified and Plasma-Synthesized Polymer Films
by Thierry Dufour
Polymers 2023, 15(17), 3607; https://doi.org/10.3390/polym15173607 - 30 Aug 2023
Cited by 82 | Viewed by 14629
Abstract
This comprehensive review begins by tracing the historical development and progress of cold plasma technology as an innovative approach to polymer engineering. The study emphasizes the versatility of cold plasma derived from a variety of sources including low-pressure glow discharges (e.g., radiofrequency capacitively [...] Read more.
This comprehensive review begins by tracing the historical development and progress of cold plasma technology as an innovative approach to polymer engineering. The study emphasizes the versatility of cold plasma derived from a variety of sources including low-pressure glow discharges (e.g., radiofrequency capacitively coupled plasmas) and atmospheric pressure plasmas (e.g., dielectric barrier devices, piezoelectric plasmas). It critically examines key operational parameters such as reduced electric field, pressure, discharge type, gas type and flow rate, substrate temperature, gap, and how these variables affect the properties of the synthesized or modified polymers. This review also discusses the application of cold plasma in polymer surface modification, underscoring how changes in surface properties (e.g., wettability, adhesion, biocompatibility) can be achieved by controlling various surface processes (etching, roughening, crosslinking, functionalization, crystallinity). A detailed examination of Plasma-Enhanced Chemical Vapor Deposition (PECVD) reveals its efficacy in producing thin polymeric films from an array of precursors. Yasuda’s models, Rapid Step-Growth Polymerization (RSGP) and Competitive Ablation Polymerization (CAP), are explained as fundamental mechanisms underpinning plasma-assisted deposition and polymerization processes. Then, the wide array of applications of cold plasma technology is explored, from the biomedical field, where it is used in creating smart drug delivery systems and biodegradable polymer implants, to its role in enhancing the performance of membrane-based filtration systems crucial for water purification, gas separation, and energy production. It investigates the potential for improving the properties of bioplastics and the exciting prospects for developing self-healing materials using this technology. Full article
(This article belongs to the Special Issue Plasma Processes for Polymers II)
Show Figures

Figure 1

13 pages, 3326 KB  
Article
Thin Luminous Tracks of Particles Released from Electrodes with A Small Radius of Curvature in Pulsed Nanosecond Discharges in Air and Argon
by Victor F. Tarasenko, Dmitry V. Beloplotov, Alexei N. Panchenko and Dmitry A. Sorokin
Surfaces 2023, 6(2), 214-226; https://doi.org/10.3390/surfaces6020014 - 14 Jun 2023
Cited by 6 | Viewed by 2492
Abstract
Features of the nanosecond discharge development in a non-uniform electric field are studied experimentally. High spatial resolution imaging showed that thin luminous tracks of great length with a cross-section of a few microns are observed against the background of discharge glow in air [...] Read more.
Features of the nanosecond discharge development in a non-uniform electric field are studied experimentally. High spatial resolution imaging showed that thin luminous tracks of great length with a cross-section of a few microns are observed against the background of discharge glow in air and argon. It has been established that the detected tracks are adjacent to brightly luminous white spots on the electrodes or in the vicinity of these spots, and are associated with the flight of small particles. It is shown that the tracks have various shapes and change from pulse to pulse. The particle tracks may look like curvy or straight lines. In some photos, they can change their direction of movement to the opposite. It was found that the particle’s track abruptly breaks and a bright flash is visible at the break point. The color of the tracks differs from that of the spark leaders, while the bands of the second positive nitrogen system dominate in the plasma emission spectra during the existence of a diffuse discharge. Areas of blue light are visible near the electrodes as well. The development of glow and thin luminous tracks in the gap during its breakdown is revealed using an ICCD camera. Physical reasons for the observed phenomena are discussed. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Figure 1

13 pages, 2829 KB  
Article
Fast and Enhanced MMW Imaging System Using a Simple Row Detector Circuit with GDDs as Sensor Elements and an FFT-Based Signal Acquisition System
by Arun Ramachandra Kurup, Daniel Rozban, Amir Abramovich, Yitzhak Yitzhaky and Natan Kopeika
Sensors 2023, 23(3), 1578; https://doi.org/10.3390/s23031578 - 1 Feb 2023
Cited by 2 | Viewed by 2839
Abstract
The relatively high atmospheric propagation of millimeter-waves (MMW) was found to be one of the most critical reasons for the development of reliable sensors for MMW detection. According to previous research works, it has been already shown that incident MMW radiation on a [...] Read more.
The relatively high atmospheric propagation of millimeter-waves (MMW) was found to be one of the most critical reasons for the development of reliable sensors for MMW detection. According to previous research works, it has been already shown that incident MMW radiation on a glow discharge detector (GDD) can increase the discharge current. Hence, the electrical mode of detection can be employed to detect the presence of MMW radiation. In this article, a new design of a row detector using GDDs as pixel elements, and the influence of MMW incidence on GDD’s discharge current, were acquired using an elementary data acquisition (DAQ) platform. The DAQ system computes the averaged Fast Fourier Transform (FFT) spectrum of the time signal and returns the FFT results as magnitude based on the level of detection. An FFT-based signal acquisition proved to be a better alternative to the lock-in detection that was commonly used in MMW detection systems. This improved detection circuit provides enhanced noise filtering, thereby resulting in better MMW images within a short time. The overhead expense of the entire system is very low, as it can avoid lock-in amplifier stages that were previously used for signal enhancement. A scanning mechanism using a motorized translation stage (step motor) is involved to place and align the row detector in the image plane. The scanning can be carried out vertically to perform the imaging, by configuring the step motor after selecting the desired step size and position. A simplified version of the MMW detection circuit with a dedicated over-voltage protection facility is presented here. This made the detection system more stable and reliable during its operation. The MMW detection circuit demonstrated in this work was found to be a milestone to develop larger focal plane arrays (FPA) with very inexpensive sensor elements. Full article
(This article belongs to the Special Issue Optical and RF Atmospheric Propagation)
Show Figures

Figure 1

13 pages, 3762 KB  
Article
Glass Film Formation on GOES Surface during High-Temperature Annealing: The Mechanism with Amorphous Phase Formation
by Mikhail L. Lobanov, Nikolai N. Nikul’chenkov, Vladimir V. Popov, Artem S. Yurovskikh, Mikhail Yu. Veksler and Vladimir I. Pastukhov
Nanomaterials 2022, 12(23), 4150; https://doi.org/10.3390/nano12234150 - 23 Nov 2022
Cited by 1 | Viewed by 1869
Abstract
Ceramic insulation coating (glass film) is an important constituent of grain-oriented electrical steel (GOES) designed for use in transformers. Within the scope of this study, the glass film was obtained by means of interaction between the surface of GOES containing 0.5 wt. % [...] Read more.
Ceramic insulation coating (glass film) is an important constituent of grain-oriented electrical steel (GOES) designed for use in transformers. Within the scope of this study, the glass film was obtained by means of interaction between the surface of GOES containing 0.5 wt. % Cu and a heat-resistant MgO coating during annealing up to 1100 °C in the 75%H2 + 25%N2 atmosphere. The structure of glass film was analyzed using X-ray diffraction, glow-discharge optical emission spectroscopy, scanning probe microscopy, scanning electron microscopy, differential scanning calorimetry and thermodynamic calculations. After annealing, the glass film contained the following phases: crystalline (MgFe)2SiO4 and amorphous Fe-based solid solutions. The multi-stage mechanism of the glass film formation on GOES surface during high-temperature annealing was determined. Full article
Show Figures

Figure 1

11 pages, 3469 KB  
Article
Characteristics of Radio Frequency Dielectric Barrier Discharge Using Argon Doped with Nitrogen at Atmospheric Pressure
by Sen Li, Jiazhen Sun, Rui Sun, Jie Pan, Lin Wang, Chen Chen, Qiang Chen and Zhongwei Liu
Materials 2022, 15(21), 7647; https://doi.org/10.3390/ma15217647 - 31 Oct 2022
Cited by 4 | Viewed by 2037
Abstract
In order to study the characteristics of radio frequency dielectric barrier discharge (RF-DBD) using argon doped with nitrogen at atmospheric pressure, electrical and optical diagnoses of the discharge with different nitrogen ratios from 1% to 100% were carried out, and the self-organizing form [...] Read more.
In order to study the characteristics of radio frequency dielectric barrier discharge (RF-DBD) using argon doped with nitrogen at atmospheric pressure, electrical and optical diagnoses of the discharge with different nitrogen ratios from 1% to 100% were carried out, and the self-organizing form of the filamentous plasma was studied through a transparent water electrode. At the same time, an ICCD camera was used to study the spatiotemporal evolution filamentous discharge during one cycle. Different from discharge using pure argon, using argon doped with nitrogen made the discharge change from glow discharge to filamentous discharge when the voltage increased to a certain value, and a higher nitrogen ratio made the filaments thicker and more sparsely arranged. Under different input power and nitrogen content conditions, several forms of glow discharge, hexagonal/irregularly arranged filamentous discharge and local filamentous discharge were obtained, all of which have potential applications to reduce the high cost of using inert gases. Full article
Show Figures

Figure 1

19 pages, 11949 KB  
Article
Transient Luminous Events in the Lower Part of the Atmosphere Originated in the Peripheral Regions of a Thunderstorm
by Ashot Chilingarian, Gagik Hovsepyan, Tigran Karapetyan, Balabek Sargsyan and Ekaterina Svechnikova
Universe 2022, 8(8), 412; https://doi.org/10.3390/universe8080412 - 5 Aug 2022
Cited by 6 | Viewed by 2038
Abstract
We present and discuss transient luminous events (TLEs) in the lower atmosphere, observed during large disturbances of the near-surface electric fields (NSEF) and coinciding with large enhancements of the particle fluxes (thunderstorm ground enhancements—TGEs). Despite large distances from the strongest electric field region, [...] Read more.
We present and discuss transient luminous events (TLEs) in the lower atmosphere, observed during large disturbances of the near-surface electric fields (NSEF) and coinciding with large enhancements of the particle fluxes (thunderstorm ground enhancements—TGEs). Despite large distances from the strongest electric field region, the maximum energy of TGE particles on 22 and 25 May 2018 reaches ≈40 MeV. Thus, the accelerating electric field reaches ≈2.0 keV/cm far from the zone of the strong lightning activity on the periphery of the storm. Light glows appearing simultaneously in the skies may be due to the local charge rearrangement generating a small illuminating discharge without initiating the lightning flash. This type of charge rearrangement does not lower the potential difference in the cloud, allowing the electron accelerator to operate and send particle fluxes in the direction of the earth’s surface. Full article
(This article belongs to the Section Planetary Sciences)
Show Figures

Figure 1

16 pages, 5355 KB  
Article
Breakdown Initiation and Electrical Strength of a Vacuum Insulating System in the Environment of Selected Noble Gases at AC Voltage
by Michał Lech and Paweł Węgierek
Energies 2022, 15(3), 1154; https://doi.org/10.3390/en15031154 - 4 Feb 2022
Cited by 7 | Viewed by 3726
Abstract
This paper presents the results of testing the electrical strength of an insulating system in a vacuum obtained from three noble gases: argon, neon, helium, and air. The breakdown voltages were measured for contact gaps of 1 mm and 2 mm. A difference [...] Read more.
This paper presents the results of testing the electrical strength of an insulating system in a vacuum obtained from three noble gases: argon, neon, helium, and air. The breakdown voltages were measured for contact gaps of 1 mm and 2 mm. A difference was observed in the pressure range where the electrical strength was kept constant. The chamber filled with helium residual gases lost its insulating properties at the highest pressure among the tested gases (2.00 × 100 Pa at contact gap d = 2 mm), while the chamber filled with argon gas lost its insulating properties at the lowest pressure among the tested gases (2.00 × 10−1 Pa at contact gap d = 2 mm). After a decrease in electrical strength, an intense glow discharge was observed. A theoretical description related to the initiation of an electrical breakdown in vacuum insulating systems is also presented. The situation in which the discharge chamber with a contact system was filled with the mentioned gases was analyzed. The mean free paths of the electrons and molecules as well as the velocities and energies of the electrons accelerated by the voltage applied to electrodes were calculated. The obtained results were related to the measurement parameters and analyzed in terms of the discharge development. The results of the research suggest alternatives for the further development of vacuum-extinguishing chambers used in environmentally-friendly electrical switchgear by increasing the rated operating pressure, maintaining the required electrical strength values, and thus facilitating the operation due to greater certainty in regard tomaintaining the integrity of such a vacuum interrupter. Full article
Show Figures

Figure 1

9 pages, 3943 KB  
Article
Ethanol-Induced Flash Sintering of ZnO Ceramics at Room Temperature
by Nianping Yan, Jianbing Pan, Zhixiang Deng, Muliang Cai, Xinhao Zhao, Jieming Liu, Xilin Wang and Zhidong Jia
Materials 2022, 15(3), 862; https://doi.org/10.3390/ma15030862 - 23 Jan 2022
Cited by 3 | Viewed by 3022
Abstract
Ceramic flash sintering with a strong electric field at room temperature is the most attractive method. This paper presents the flash sintering of ZnO ceramics at room temperature by the application of a 3-kV/cm electric field after a dropwise addition of ethanol. This [...] Read more.
Ceramic flash sintering with a strong electric field at room temperature is the most attractive method. This paper presents the flash sintering of ZnO ceramics at room temperature by the application of a 3-kV/cm electric field after a dropwise addition of ethanol. This method is simple and easy to control. The density of the specimen exceeded 96% after 30 s of sintering. No significant difference was observed in the initiation voltage of flash sintering with and without the dropwise addition of ethanol. Ethanol burns upon dropwise addition, causing a discharge to first occur far from the location of the dropwise addition, followed by glowing and heating up, which causes the temperature of the entire specimen to rise. Full article
(This article belongs to the Special Issue Advances in Materials Processing (Second Volume))
Show Figures

Figure 1

Back to TopTop