Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,575)

Search Parameters:
Keywords = global volume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3035 KiB  
Article
Physical, Mechanical, and Durability Behavior of Sustainable Mortars with Construction and Demolition Waste as Supplementary Cementitious Material
by Sandra Cunha, Kubilay Kaptan, Erwan Hardy and José Aguiar
Buildings 2025, 15(15), 2757; https://doi.org/10.3390/buildings15152757 - 5 Aug 2025
Abstract
The construction industry plays a major role in the consumption of natural resources and the generation of waste. Construction and demolition waste (CDW) is produced in substantial volumes globally and is widely available. Its accumulation poses serious challenges related to storage and disposal, [...] Read more.
The construction industry plays a major role in the consumption of natural resources and the generation of waste. Construction and demolition waste (CDW) is produced in substantial volumes globally and is widely available. Its accumulation poses serious challenges related to storage and disposal, highlighting the need for effective strategies to mitigate the associated environmental impacts of the sector. This investigation intends to evaluate the influence of mixed CDW on the physical, mechanical, and durability properties of mortars with CDW partially replacing Portland cement, and allow performance comparisons with mortars produced with fly ash, a commonly used supplementary binder in cement-based materials. Thus, three mortar formulations were developed (reference mortar, mortar with 25% CDW, and mortars with 25% fly ash) and several characterization tests were carried out on the CDW powder and the developed mortars. The work’s principal findings revealed that through mechanical grinding processes, it was possible to obtain a CDW powder suitable for cement replacement and with good indicators of pozzolanic activity. The physical properties of the mortars revealed a decrease of about 10% in water absorption by immersion, which resulted in improved performance regarding durability, especially with regard to the lower carbonation depth (−1.1 mm), and a decrease of 51% in the chloride diffusion coefficient, even compared to mortars incorporating fly ash. However, the mechanical performance of the mortars incorporating CDW was reduced (25% in terms of flexural strength and 58% in terms of compressive strength), but their practical applicability was never compromised and their mechanical performance proved to be superior to that of mortars incorporating fly ash. Full article
(This article belongs to the Special Issue Research on Sustainable Materials in Building and Construction)
23 pages, 3221 KiB  
Article
Drought Modulates Root–Microbe Interactions and Functional Gene Expression in Plateau Wetland Herbaceous Plants
by Yuanyuan Chen, Shishi Feng, Qianmin Liu, Di Kang and Shuzhen Zou
Plants 2025, 14(15), 2413; https://doi.org/10.3390/plants14152413 - 4 Aug 2025
Abstract
In plateau wetlands, the interactions of herbaceous roots with ectorhizosphere soil microorganisms represent an important way to realize their ecological functions. Global change-induced aridification of plateau wetlands has altered long-established functional synergistic relationships between plant roots and ectorhizosphere soil microbes, but we still [...] Read more.
In plateau wetlands, the interactions of herbaceous roots with ectorhizosphere soil microorganisms represent an important way to realize their ecological functions. Global change-induced aridification of plateau wetlands has altered long-established functional synergistic relationships between plant roots and ectorhizosphere soil microbes, but we still know little about this phenomenon. In this context, nine typical wetlands with three different moisture statuses were selected from the eastern Tibetan Plateau in this study to analyze the relationships among herbaceous plant root traits and microbial communities and functions. The results revealed that drought significantly inhibited the accumulation of root biomass and surface area as well as the development of root volumes and diameters. Similarly, drought significantly reduced the diversity of ectorhizosphere soil microbial communities and the relative abundances of key phyla of archaea and bacteria. Redundancy analysis revealed that plant root traits and ectorhizosphere soil microbes were equally regulated by soil physicochemical properties. Functional genes related to carbohydrate metabolism were significantly associated with functional traits related to plant root elongation and nutrient uptake. Functional genes related to carbon and energy metabolism were significantly associated with traits related to plant root support and storage. Key genes such as CS,gltA, and G6PD,zwf help to improve the drought resistance and barrenness resistance of plant roots. This study helps to elucidate the synergistic mechanism of plant and soil microbial functions in plateau wetlands under drought stress, and provides a basis for evolutionary research and conservation of wetland ecosystems in the context of global change. Full article
(This article belongs to the Special Issue Soil-Beneficial Microorganisms and Plant Growth: 2nd Edition)
Show Figures

Figure 1

16 pages, 2030 KiB  
Article
Myocardial Strain Measurements Obtained with Fast-Strain-Encoded Cardiac Magnetic Resonance for the Risk Prediction and Early Detection of Chemotherapy-Related Cardiotoxicity Compared to Left Ventricular Ejection Fraction
by Daniel Lenihan, James Whayne, Farouk Osman, Rafael Rivero, Moritz Montenbruck, Arne Kristian Schwarz, Sebastian Kelle, Pia Wülfing, Susan Dent, Florian Andre, Norbert Frey, Grigorios Korosoglou and Henning Steen
Diagnostics 2025, 15(15), 1948; https://doi.org/10.3390/diagnostics15151948 - 3 Aug 2025
Viewed by 65
Abstract
Background: Breast and hematological cancer treatments, especially with anthracyclines, have been shown to be associated with an increased risk of cardiotoxicity (CTX). An accurate prediction of cardiotoxicity risk and early detection of myocardial injury may allow for effective cardioprotection to be instituted and [...] Read more.
Background: Breast and hematological cancer treatments, especially with anthracyclines, have been shown to be associated with an increased risk of cardiotoxicity (CTX). An accurate prediction of cardiotoxicity risk and early detection of myocardial injury may allow for effective cardioprotection to be instituted and tailored to reverse cardiac dysfunction and prevent the discontinuation of essential cancer treatments. Objectives: The PRoactive Evaluation of Function to Evade Cardio Toxicity (PREFECT) study sought to evaluate the ability of fast-strain-encoded (F-SENC) cardiac magnetic resonance imaging (CMR) and 2D echocardiography (2D Echo) to stratify patients at risk of CTX prior to initiating cancer treatment, detect early signs of cardiac dysfunction, including subclinical CTX (sub-CTX) and CTX, and monitor for recovery (REC) during cardioprotective therapy. Methods: Fifty-nine patients with breast cancer or lymphoma were prospectively monitored for CTX with F-SENC CMR and 2D Echo over at least 1 year for evidence of cardiac dysfunction during anthracycline based chemotherapy. F-SENC CMR also monitored myocardial deformation in 37 left ventricular (LV) segments to obtain a MyoHealth risk score based on both longitudinal and circumferential strain. Sub-CTX and CTX were classified based on pre-specified cardiotoxicity definitions. Results: CTX was observed in 9/59 (15%) and sub-CTX in 24/59 (41%) patients undergoing chemotherapy. F-SENC CMR parameters at baseline predicted CTX with a lower LVEF (57 ± 5% vs. 61 ± 5% for all, p = 0.05), as well as a lower MyoHealth (70 ± 9 vs. 79 ± 11 for all, p = 0.004) and a worse global circumferential strain (GCS) (−18 ± 1 vs. −20 ± 1 for all, p < 0.001). Pre-chemotherapy MyoHealth had a higher accuracy in predicting the development of CTX compared to CMR LVEF and 2D Echo LVEF (AUC = 0.85, 0.69, and 0.57, respectively). The 2D Echo parameters on baseline imaging did not stratify CTX risk. F-SENC CMR obtained good or excellent images in 320/322 (99.4%) scans. During cancer treatment, MyoHealth had a high accuracy of detecting sub-CTX or CTX (AUC = 0.950), and the highest log likelihood ratio (indicating a higher probability of detecting CTX) followed by F-SENC GLS and F-SENC GCS. CMR LVEF and CMR LV stroke volume index (LVSVI) also significantly worsened in patients developing CTX during cancer treatment. Conclusions: F-SENC CMR provided a reliable and accurate assessment of myocardial function during anthracycline-based chemotherapy, and demonstrated accurate early detection of CTX. In addition, MyoHealth allows for the robust identification of patients at risk for CTX prior to treatment with higher accuracy than LVEF. Full article
(This article belongs to the Special Issue New Perspectives in Cardiac Imaging)
Show Figures

Figure 1

23 pages, 343 KiB  
Article
How Do China’s OFDI Motivations Affect the Bilateral GVC Relationship and Sustainable Global Economy?
by Min Wang
Sustainability 2025, 17(15), 7049; https://doi.org/10.3390/su17157049 - 3 Aug 2025
Viewed by 71
Abstract
The purpose of this paper is to analyze how China’s outward foreign direct investment (OFDI), driven by different motivations, affects the bilateral global value chain (GVC) relationship between the home country (China) and host countries, evaluating both bilateral GVC trade value and relative [...] Read more.
The purpose of this paper is to analyze how China’s outward foreign direct investment (OFDI), driven by different motivations, affects the bilateral global value chain (GVC) relationship between the home country (China) and host countries, evaluating both bilateral GVC trade value and relative GVC positions. Employing the OECD Trade in Value Added (TiVA) database combined with Chinese listed firm data, we found the following results: (1) Strategic asset-seeking OFDI strengthens the GVC relationship between China and host countries while enhancing China’s GVC position relative to host countries. (2) Efficiency-seeking OFDI increases the domestic value-added exported from host countries to China but does not improve China’s relative GVC position. (3) Natural resource-seeking OFDI enhances bilateral GVC trade volumes but has no significant impact on the relative GVC positions of China and host countries. (4) China’s OFDI, not driven by these motivations, generates a trade substitution effect between home and host countries. We also examined the heterogeneity of these effects. Our findings suggest that China’s OFDI fosters equitable and sustainable international cooperation, supports mutually beneficial GVC trade and host-country economic growth, and therefore, progresses toward Sustainable Development Goal (SDG) 8. Full article
27 pages, 7899 KiB  
Article
Digital Enablers of Sustainability: Insights from Sustainable Development Goals (SDGs) Research Mapping
by Jeongmi Ga, Jaewoo Bong, Myeongjun Yu and Minjung Kwak
Sustainability 2025, 17(15), 7031; https://doi.org/10.3390/su17157031 - 2 Aug 2025
Viewed by 200
Abstract
As the global emphasis on sustainable development intensifies, the integration of digital technologies (DTs) into efforts to address the Sustainable Development Goals (SDGs) has gained increasing attention. However, existing research on the link between the SDGs and DTs remains fragmented and lacks a [...] Read more.
As the global emphasis on sustainable development intensifies, the integration of digital technologies (DTs) into efforts to address the Sustainable Development Goals (SDGs) has gained increasing attention. However, existing research on the link between the SDGs and DTs remains fragmented and lacks a comprehensive perspective on their interconnections. We aimed to address this gap by conducting a large-scale bibliometric analysis based on Elsevier’s SDG research mapping technique. Drawing on approximately 1.17 million publications related to both the 17 SDGs and 11 representative DTs, we explored research trends in the SDG–DT association, identified DTs that are most frequently tied to specific SDGs, and uncovered emerging areas of research within this interdisciplinary domain. Our results highlight the rapid expansion in the volume and variety of SDG–DT studies. Our findings shed light on the widespread relevance of artificial intelligence and robotics, the goal-specific applications of technologies such as 3D printing, cloud computing, drones, and extended reality, as well as the growing visibility of emerging technologies such as digital twins and blockchain. These findings offer valuable insights for researchers, policymakers, and industry leaders aiming to strategically harness DTs to support sustainable development and accelerate progress toward achieving the SDGs. Full article
Show Figures

Figure 1

37 pages, 4554 KiB  
Review
Lithium Slag as a Supplementary Cementitious Material for Sustainable Concrete: A Review
by Sajad Razzazan, Nuha S. Mashaan and Themelina Paraskeva
Materials 2025, 18(15), 3641; https://doi.org/10.3390/ma18153641 - 2 Aug 2025
Viewed by 133
Abstract
The global cement industry remains a significant contributor to carbon dioxide (CO2) emissions, prompting substantial research efforts toward sustainable construction materials. Lithium slag (LS), a by-product of lithium extraction, has attracted attention as a supplementary cementitious material (SCM). This review synthesizes [...] Read more.
The global cement industry remains a significant contributor to carbon dioxide (CO2) emissions, prompting substantial research efforts toward sustainable construction materials. Lithium slag (LS), a by-product of lithium extraction, has attracted attention as a supplementary cementitious material (SCM). This review synthesizes experimental findings on LS replacement levels, fresh-state behavior, mechanical performance (compressive, tensile, and flexural strengths), time-dependent deformation (shrinkage and creep), and durability (sulfate, acid, abrasion, and thermal) of LS-modified concretes. Statistical analysis identifies an optimal LS dosage of 20–30% (average 24%) for maximizing compressive strength and long-term durability, with 40% as a practical upper limit for tensile and flexural performance. Fresh-state tests show that workability losses at high LS content can be mitigated via superplasticizers. Drying shrinkage and creep strains decrease in a dose-dependent manner with up to 30% LS. High-volume (40%) LS blends achieve up to an 18% gain in 180-day compressive strength and >30% reduction in permeability metrics. Under elevated temperatures, 20% LS mixes retain up to 50% more residual strength than controls. In advanced systems—autoclaved aerated concrete (AAC), one-part geopolymers, and recycled aggregate composites—LS further enhances both microstructural densification and durability. In particular, LS emerges as a versatile SCM that optimizes mechanical and durability performance, supports material circularity, and reduces the carbon footprint. Full article
Show Figures

Figure 1

21 pages, 262 KiB  
Article
Sustainability in Boreal Forests: Does Elevated CO2 Increase Wood Volume?
by Nyonho Oh, Eric C. Davis and Brent Sohngen
Sustainability 2025, 17(15), 7017; https://doi.org/10.3390/su17157017 - 1 Aug 2025
Viewed by 171
Abstract
While boreal forests constitute 30% of the Earth’s forested area and are responsible for 20% of the global carbon sink, there is considerable concern about their sustainability. This paper focuses on the role of elevated CO2, examining whether wood volume in [...] Read more.
While boreal forests constitute 30% of the Earth’s forested area and are responsible for 20% of the global carbon sink, there is considerable concern about their sustainability. This paper focuses on the role of elevated CO2, examining whether wood volume in these forests has responded to increased CO2 over the last 60 years. To accomplish this, we use a rich set of wood volume measurement data from the Province of Alberta, Canada, and deploy quasi-experimental techniques to determine the effect of elevated CO2. While the few experimental studies that have examined boreal forests have found almost no effect of elevated CO2, our results indicate that a 1.0% increase in lifetime exposure to CO2 leads to a 1.1% increase in aboveground wood volume in these boreal forests. This study showcases the value of research designs that use natural settings to better account for the effects of prolonged exposure to elevated CO2. Our results should enable improved delineation of the drivers of historical changes in wood volume and carbon storage in boreal forests. In addition, when combined with other studies, these results will likely aid policymakers in designing management or policy approaches that will enhance the sustainability of forests in boreal regions. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
22 pages, 2702 KiB  
Article
Spatial Heterogeneity of Intra-Urban E-Commerce Demand and Its Retail-Delivery Interactions: Evidence from Waybill Big Data
by Yunnan Cai, Jiangmin Chen and Shijie Li
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 190; https://doi.org/10.3390/jtaer20030190 - 1 Aug 2025
Viewed by 158
Abstract
E-commerce growth has reshaped consumer behavior and retail services, driving parcel demand and challenging last-mile logistics. Existing research predominantly relies on survey data and global regression models that overlook intra-urban spatial heterogeneity in shopping behaviors. This study bridges this gap by analyzing e-commerce [...] Read more.
E-commerce growth has reshaped consumer behavior and retail services, driving parcel demand and challenging last-mile logistics. Existing research predominantly relies on survey data and global regression models that overlook intra-urban spatial heterogeneity in shopping behaviors. This study bridges this gap by analyzing e-commerce demand’s spatial distribution from a retail service perspective, identifying key drivers, and evaluating implications for omnichannel strategies and logistics. Utilizing waybill big data, spatial analysis, and multiscale geographically weighted regression, we reveal: (1) High-density e-commerce demand areas are predominantly located in central districts, whereas peripheral regions exhibit statistically lower volumes. The spatial distribution pattern of e-commerce demand aligns with the urban development spatial structure. (2) Factors such as population density and education levels significantly influence e-commerce demand. (3) Convenience stores play a dual role as retail service providers and parcel collection points, reinforcing their importance in shaping consumer accessibility and service efficiency, particularly in underserved urban areas. (4) Supermarkets exert a substitution effect on online shopping by offering immediate product availability, highlighting their role in shaping consumer purchasing preferences and retail service strategies. These findings contribute to retail and consumer services research by demonstrating how spatial e-commerce demand patterns reflect consumer shopping preferences, the role of omnichannel retail strategies, and the competitive dynamics between e-commerce and physical retail formats. Full article
(This article belongs to the Topic Data Science and Intelligent Management)
Show Figures

Figure 1

11 pages, 245 KiB  
Review
The Impact of Insulin Resistance on Lung Volume Through Right Ventricular Dysfunction in Diabetic Patients—Literature Review
by Daniel Radu, Oana-Andreea Parlițeanu, Andra-Elena Nica, Cristiana Voineag, Octavian-Sabin Alexe, Alexandra Maria Cristea, Livia Georgescu, Roxana Maria Nemeș, Andreea Taisia Tiron and Alexandra Floriana Nemeș
J. Pers. Med. 2025, 15(8), 336; https://doi.org/10.3390/jpm15080336 - 1 Aug 2025
Viewed by 164
Abstract
Insulin resistance (IR), a core component in the development of type 2 diabetes mellitus (T2DM), is increasingly recognized for its role in cardiovascular and pulmonary complications. This review explores the relationship between IR, right ventricular dysfunction (RVD), and decreased lung volume in patients [...] Read more.
Insulin resistance (IR), a core component in the development of type 2 diabetes mellitus (T2DM), is increasingly recognized for its role in cardiovascular and pulmonary complications. This review explores the relationship between IR, right ventricular dysfunction (RVD), and decreased lung volume in patients with T2DM. Emerging evidence suggests that IR contributes to early structural and functional alterations in the right ventricle, independent of overt cardiovascular disease. The mechanisms involved include oxidative stress, inflammation, dyslipidemia, and obesity—factors commonly found in metabolic syndrome and T2DM. These pathophysiological changes compromise right ventricular contractility, leading to reduced pulmonary perfusion and respiratory capacity. RVD has been associated with chronic lung disease, pulmonary hypertension, and obstructive sleep apnea, all of which are prevalent in the diabetic population. As RVD progresses, it can result in impaired gas exchange, interstitial pulmonary edema, and exercise intolerance—highlighting the importance of early recognition and management. Therapeutic strategies should aim to improve insulin sensitivity and cardiac function through lifestyle interventions, pharmacological agents such as SGLT2 inhibitors and GLP-1/GIP analogs, and routine cardiac monitoring. These approaches may help slow the progression of RVD and its respiratory consequences. Considering the global burden of diabetes and obesity, and the growing incidence of related complications, further research is warranted to clarify the mechanisms linking IR, RVD, and respiratory dysfunction. Understanding this triad will be crucial for developing targeted interventions that improve outcomes and quality of life in affected patients. Full article
(This article belongs to the Section Mechanisms of Diseases)
19 pages, 2806 KiB  
Article
Operating Solutions to Improve the Direct Reduction of Iron Ore by Hydrogen in a Shaft Furnace
by Antoine Marsigny, Olivier Mirgaux and Fabrice Patisson
Metals 2025, 15(8), 862; https://doi.org/10.3390/met15080862 (registering DOI) - 1 Aug 2025
Viewed by 220
Abstract
The production of iron and steel plays a significant role in the anthropogenic carbon footprint, accounting for 7% of global GHG emissions. In the context of CO2 mitigation, the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based [...] Read more.
The production of iron and steel plays a significant role in the anthropogenic carbon footprint, accounting for 7% of global GHG emissions. In the context of CO2 mitigation, the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based direct reduction of iron ore in shaft furnaces. Before industrialization, detailed modeling and parametric studies were needed to determine the proper operating parameters of this promising technology. The modeling approach selected here was to complement REDUCTOR, a detailed finite-volume model of the shaft furnace, which can simulate the gas and solid flows, heat transfers and reaction kinetics throughout the reactor, with an extension that describes the whole gas circuit of the direct reduction plant, including the top gas recycling set up and the fresh hydrogen production. Innovative strategies (such as the redirection of part of the bustle gas to a cooling inlet, the use of high nitrogen content in the gas, and the introduction of a hot solid burden) were investigated, and their effects on furnace operation (gas utilization degree and total energy consumption) were studied with a constant metallization target of 94%. It has also been demonstrated that complete metallization can be achieved at little expense. These strategies can improve the thermochemical state of the furnace and lead to different energy requirements. Full article
(This article belongs to the Special Issue Recent Developments and Research on Ironmaking and Steelmaking)
Show Figures

Graphical abstract

22 pages, 2171 KiB  
Review
A Bibliometric Analysis of Chrononutrition, Cardiometabolic Risk, and Public Health in International Research (1957–2025)
by Emily Gabriela Burgos-García, Katiuska Mederos-Mollineda, Darley Jhosue Burgos-Angulo, David Job Morales-Neira and Dennis Alfredo Peralta-Gamboa
Int. J. Environ. Res. Public Health 2025, 22(8), 1205; https://doi.org/10.3390/ijerph22081205 - 31 Jul 2025
Viewed by 177
Abstract
Introduction: Breakfast has emerged as a critical factor in preventing cardiovascular diseases, driven not only by its nutritional content but also by its alignment with circadian rhythms. However, gaps remain in the literature regarding its clinical impact and thematic evolution. Objective: [...] Read more.
Introduction: Breakfast has emerged as a critical factor in preventing cardiovascular diseases, driven not only by its nutritional content but also by its alignment with circadian rhythms. However, gaps remain in the literature regarding its clinical impact and thematic evolution. Objective: To characterize the global scientific output on the relationship between breakfast quality and cardiovascular health through a systematic bibliometric analysis. Methodology: The PRISMA 2020 protocol was applied to select 1436 original articles indexed in Scopus and Web of Science (1957–2025). Bibliometric tools, including R (v4.4.2) and VOSviewer (v1.6.19) were used to map productivity, impact, collaboration networks, and emerging thematic areas. Results: Scientific output has grown exponentially since 2000. The most influential journals are the American Journal of Clinical Nutrition, Nutrients, and Diabetes Care. The United States, United Kingdom, and Japan lead in publication volume and citations, with increasing participation from Latin American countries. Thematic trends have shifted from traditional clinical markers to innovative approaches such as chrononutrition, digital health, and personalized nutrition. However, methodological gaps persist, including a predominance of observational studies and an underrepresentation of vulnerable populations. Conclusions: Breakfast is a dietary practice with profound implications for cardiometabolic health. This study provides a comprehensive overview of scientific literature, highlighting both advancements and challenges. Strengthening international collaboration networks, standardizing definitions of a healthy breakfast, and promoting evidence-based interventions in school, clinical, and community settings are recommended. Full article
Show Figures

Figure 1

22 pages, 2576 KiB  
Review
Essential Per- and Polyfluoroalkyl Substances (PFAS) in Our Society of the Future
by Rudy Dams and Bruno Ameduri
Molecules 2025, 30(15), 3220; https://doi.org/10.3390/molecules30153220 - 31 Jul 2025
Viewed by 155
Abstract
Per- or polyfluoroalkyl substances (PFASs) are man-made compounds involved in compositions of many industrial processes and consumer products. The largest-volume man-made PFAS are made up of refrigerants and fluoropolymers. Major concerns for our society related to these substances are their contribution to global [...] Read more.
Per- or polyfluoroalkyl substances (PFASs) are man-made compounds involved in compositions of many industrial processes and consumer products. The largest-volume man-made PFAS are made up of refrigerants and fluoropolymers. Major concerns for our society related to these substances are their contribution to global warming as greenhouse gasses and the potential for adverse effects on living organisms, particularly by long-chain perfluoroalkyl acid derivatives. Restrictions on manufacturing and applications will increase in the near future. The full remediation of historical and current contaminations of air, soil and water remains problematic, especially for ultra-short PFASs, such as trifluoroacetic acid. Future monitoring of PFAS levels and their impact on ecosystems remains important. PFASs have become integrated in the lifestyle and infrastructures of our modern worldwide society and are likely to be part of that society for years to come in essential applications by closing the fluorine loop. Full article
(This article belongs to the Special Issue Insights for Organofluorine Chemistry, 2nd Edition)
Show Figures

Figure 1

23 pages, 6014 KiB  
Article
Modeling Water Table Response in Apulia (Southern Italy) with Global and Local LSTM-Based Groundwater Forecasting
by Lorenzo Di Taranto, Antonio Fiorentino, Angelo Doglioni and Vincenzo Simeone
Water 2025, 17(15), 2268; https://doi.org/10.3390/w17152268 - 30 Jul 2025
Viewed by 254
Abstract
For effective groundwater resource management, it is essential to model the dynamic behaviour of aquifers in response to rainfall. Here, a methodological approach using a recurrent neural network, specifically a Long Short-Term Memory (LSTM) network, is used to model groundwater levels of the [...] Read more.
For effective groundwater resource management, it is essential to model the dynamic behaviour of aquifers in response to rainfall. Here, a methodological approach using a recurrent neural network, specifically a Long Short-Term Memory (LSTM) network, is used to model groundwater levels of the shallow porous aquifer in Southern Italy. This aquifer is recharged by local rainfall, which exhibits minimal variation across the catchment in terms of volume and temporal distribution. To gain a deeper understanding of the complex interactions between precipitation and groundwater levels within the aquifer, we used water level data from six wells. Although these wells were not directly correlated in terms of individual measurements, they were geographically located within the same shallow aquifer and exhibited a similar hydrogeological response. The trained model uses two variables, rainfall and groundwater levels, which are usually easily available. This approach allowed the model, during the training phase, to capture the general relationships and common dynamics present across the different time series of wells. This methodology was employed despite the geographical distinctions between the wells within the aquifer and the variable duration of their observed time series (ranging from 27 to 45 years). The results obtained were significant: the global model, trained with the simultaneous integration of data from all six wells, not only led to superior performance metrics but also highlighted its remarkable generalization capability in representing the hydrogeological system. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

13 pages, 652 KiB  
Article
Right Ventricular Structure and Function in Patients with Primary Aldosteronism: A Cardiac Magnetic Resonance Study
by Mateusz Śpiewak, Sylwia Kołodziejczyk-Kruk, Agata Kubik, Agnieszka Łebek-Szatańska, Elżbieta Szwench-Pietrasz, Elżbieta Florczak, Magdalena Januszewicz, Andrzej Januszewicz and Magdalena Marczak
J. Clin. Med. 2025, 14(15), 5367; https://doi.org/10.3390/jcm14155367 - 29 Jul 2025
Viewed by 264
Abstract
Background/Objectives: While aldosterone excess has a detrimental impact on the left ventricle, no data exist concerning right ventricular (RV) function in primary aldosteronism (PA) patients. We aimed to assess RV structure and function in patients with PA using cardiac magnetic resonance imaging. Methods: [...] Read more.
Background/Objectives: While aldosterone excess has a detrimental impact on the left ventricle, no data exist concerning right ventricular (RV) function in primary aldosteronism (PA) patients. We aimed to assess RV structure and function in patients with PA using cardiac magnetic resonance imaging. Methods: Thirty PA patients and 30 age- and sex-matched healthy volunteers were studied. All patients underwent cardiac magnetic resonance with the assessment of RV structure and function. Results: Neither the RV mass index (RVMi) nor the RV ejection fraction (RVEF) correlated with the aldosterone levels (p = 0.36 and p = 0.37, respectively). On the contrary, we found a weak positive correlation between the RV end-diastolic volume index (RVEDVi) and aldosterone concentration (rho = 0.5, p = 0.005). Neither the RVEDVi nor the RVEF differed between the PA patients and the control group (p = 0.077 and p = 0.93, respectively). The RVMi was higher in the PA group, at 18.9 (4.9) g/m2, versus 13.6 (3.2) g/m2 (SD) in the control group (p < 0.0001). The RVEDVi was positively correlated with the duration of hypertension (rho = 0.4, p = 0.03), and the latter was correlated inversely with the RVEF (rho = −0.47, p = 0.009). The RV global longitudinal strain was impaired in PA patients in comparison with the controls (−16.8 (2.5%) versus −19.6 (2.7%), p = 0.0001). Conclusions: The PA patients exhibited larger RVMi values than the controls. The higher the aldosterone levels were, the higher the observed RVEDVi. Additionally, the longer the duration of hypertension, the higher the observed RVEDVi and the lower the noted RVEF. The PA patients exhibited subclinical RV systolic dysfunction, expressed as impaired RV global longitudinal strain. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

26 pages, 3356 KiB  
Article
Integrating Urban Factors as Predictors of Last-Mile Demand Patterns: A Spatial Analysis in Thessaloniki
by Dimos Touloumidis, Michael Madas, Panagiotis Kanellopoulos and Georgia Ayfantopoulou
Urban Sci. 2025, 9(8), 293; https://doi.org/10.3390/urbansci9080293 - 29 Jul 2025
Viewed by 210
Abstract
While the explosive growth in e-commerce stresses urban logistics systems, city planners lack of fine-grained data in order to anticipate and manage the resulting freight flows. Using a three-stage analytical approach combining descriptive zonal statistics, hotspot analysis and different regression modeling from univariate [...] Read more.
While the explosive growth in e-commerce stresses urban logistics systems, city planners lack of fine-grained data in order to anticipate and manage the resulting freight flows. Using a three-stage analytical approach combining descriptive zonal statistics, hotspot analysis and different regression modeling from univariate to geographically weighted regression, this study integrates one year of parcel deliveries from a leading courier with open spatial layers of land-use zoning, census population, mobile-signal activity and household income to model last-mile demand across different land use types. A baseline linear regression shows that residential population alone accounts for roughly 30% of the variance in annual parcel volumes (2.5–3.0 deliveries per resident) while adding daytime workforce and income increases the prediction accuracy to 39%. In a similar approach where coefficients vary geographically with Geographically Weighted Regression to capture the local heterogeneity achieves a significant raise of the overall R2 to 0.54 and surpassing 0.70 in residential and institutional districts. Hot-spot analysis reveals a highly fragmented pattern where fewer than 5% of blocks generate more than 8.5% of all deliveries with no apparent correlation to the broaden land-use classes. Commercial and administrative areas exhibit the greatest intensity (1149 deliveries per ha) yet remain the hardest to explain (global R2 = 0.21) underscoring the importance of additional variables such as retail mix, street-network design and tourism flows. Through this approach, the calibrated models can be used to predict city-wide last-mile demand using only public inputs and offers a transferable, privacy-preserving template for evidence-based freight planning. By pinpointing the location and the land uses where demand concentrates, it supports targeted interventions such as micro-depots, locker allocation and dynamic curb-space management towards more sustainable and resilient urban-logistics networks. Full article
Show Figures

Figure 1

Back to TopTop