Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = global brain proteome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 937 KiB  
Review
Precision Neuro-Oncology in Glioblastoma: AI-Guided CRISPR Editing and Real-Time Multi-Omics for Genomic Brain Surgery
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7364; https://doi.org/10.3390/ijms26157364 - 30 Jul 2025
Viewed by 379
Abstract
Precision neurosurgery is rapidly evolving as a medical specialty by merging genomic medicine, multi-omics technologies, and artificial intelligence (AI) technology, while at the same time, society is shifting away from the traditional, anatomic model of care to consider a more precise, molecular model [...] Read more.
Precision neurosurgery is rapidly evolving as a medical specialty by merging genomic medicine, multi-omics technologies, and artificial intelligence (AI) technology, while at the same time, society is shifting away from the traditional, anatomic model of care to consider a more precise, molecular model of care. The general purpose of this review is to contemporaneously reflect on how these advances will impact neurosurgical care by providing us with more precise diagnostic and treatment pathways. We hope to provide a relevant review of the recent advances in genomics and multi-omics in the context of clinical practice and highlight their transformational opportunities in the existing models of care, where improved molecular insights can support improvements in clinical care. More specifically, we will highlight how genomic profiling, CRISPR-Cas9, and multi-omics platforms (genomics, transcriptomics, proteomics, and metabolomics) are increasing our understanding of central nervous system (CNS) disorders. Achievements obtained with transformational technologies such as single-cell RNA sequencing and intraoperative mass spectrometry are exemplary of the molecular diagnostic possibilities in real-time molecular diagnostics to enable a more directed approach in surgical options. We will also explore how identifying specific biomarkers (e.g., IDH mutations and MGMT promoter methylation) became a tipping point in the care of glioblastoma and allowed for the establishment of a new taxonomy of tumors that became applicable for surgeons, where a change in practice enjoined a different surgical resection approach and subsequently stratified the adjuvant therapies undertaken after surgery. Furthermore, we reflect on how the novel genomic characterization of mutations like DEPDC5 and SCN1A transformed the pre-surgery selection of surgical candidates for refractory epilepsy when conventional imaging did not define an epileptogenic zone, thus reducing resective surgery occurring in clinical practice. While we are atop the crest of an exciting wave of advances, we recognize that we also must be diligent about the challenges we must navigate to implement genomic medicine in neurosurgery—including ethical and technical challenges that could arise when genomic mutation-based therapies require the concurrent application of multi-omics data collection to be realized in practice for the benefit of patients, as well as the constraints from the blood–brain barrier. The primary challenges also relate to the possible gene privacy implications around genomic medicine and equitable access to technology-based alternative practice disrupting interventions. We hope the contribution from this review will not just be situational consolidation and integration of knowledge but also a stimulus for new lines of research and clinical practice. We also hope to stimulate mindful discussions about future possibilities for conscientious and sustainable progress in our evolution toward a genomic model of precision neurosurgery. In the spirit of providing a critical perspective, we hope that we are also adding to the larger opportunity to embed molecular precision into neuroscience care, striving to promote better practice and better outcomes for patients in a global sense. Full article
(This article belongs to the Special Issue Molecular Insights into Glioblastoma Pathogenesis and Therapeutics)
Show Figures

Figure 1

22 pages, 6492 KiB  
Article
An RGD-Conjugated Prodrug Nanoparticle with Blood–Brain–Barrier Penetrability for Neuroprotection Against Cerebral Ischemia–Reperfusion Injury
by Ayijiang Taledaohan, Maer Maer Tuohan, Renbo Jia, Kai Wang, Liujia Chan, Yijiang Jia, Feng Wang and Yuji Wang
Antioxidants 2024, 13(11), 1339; https://doi.org/10.3390/antiox13111339 - 1 Nov 2024
Cited by 1 | Viewed by 1443
Abstract
Cerebral ischemia–reperfusion injury significantly contributes to global morbidity and mortality. Loganin is a natural product with various neuroprotective effects; however, it lacks targeted specificity for particular cells or receptors, which may result in reduced therapeutic efficacy and an increased risk of side effects. [...] Read more.
Cerebral ischemia–reperfusion injury significantly contributes to global morbidity and mortality. Loganin is a natural product with various neuroprotective effects; however, it lacks targeted specificity for particular cells or receptors, which may result in reduced therapeutic efficacy and an increased risk of side effects. To address the limitations of loganin, we developed LA-1, a novel compound incorporating an Arg-Gly-Asp (RGD) peptide to target integrin receptor αvβ3, enhancing brain-targeting efficacy. LA-1 exhibited optimal nanoscale properties, significantly improved cell viability, reduced ROS production, and enhanced survival rates in vitro. In vivo, LA-1 decreased infarct sizes, improved neurological function, and reduced oxidative stress and neuroinflammation. Proteomic analysis showed LA-1 modulates PI3K/Akt and Nrf2/HO-1 pathways, providing targeted neuroprotection. These findings suggest LA-1’s potential for clinical applications in treating cerebral ischemia–reperfusion injury. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

24 pages, 3272 KiB  
Article
Environmental Temperature Variation Affects Brain Lipid Composition in Adult Zebrafish (Danio rerio)
by Elisa Maffioli, Simona Nonnis, Armando Negri, Manuela Fontana, Flavia Frabetti, Anna Rita Rossi, Gabriella Tedeschi and Mattia Toni
Int. J. Mol. Sci. 2024, 25(17), 9629; https://doi.org/10.3390/ijms25179629 - 5 Sep 2024
Cited by 3 | Viewed by 1824
Abstract
This study delves deeper into the impact of environmental temperature variations on the nervous system in teleost fish. Previous research has demonstrated that exposing adult zebrafish (Danio rerio) to 18 °C and 34 °C for 4 or 21 days induces behavioural [...] Read more.
This study delves deeper into the impact of environmental temperature variations on the nervous system in teleost fish. Previous research has demonstrated that exposing adult zebrafish (Danio rerio) to 18 °C and 34 °C for 4 or 21 days induces behavioural changes compared to fish kept at a control temperature of 26 °C, suggesting alterations in the nervous system. Subsequent studies revealed that these temperature conditions also modify brain protein expression, indicating potential neurotoxic effects. The primary aim of this work was to investigate the effects of prolonged exposure (21 days) to 18 °C or 34 °C on the brain lipidomes of adult zebrafish compared to a control temperature. Analysis of the brain lipidome highlighted significant alteration in the relative abundances of specific lipid molecules at 18 °C and 34 °C, confirming distinct effects induced by both tested temperatures. Exposure to 18 °C resulted in an increase in levels of phospholipids, such as phosphatidylethanolamine, alongside a general reduction in levels of sphingolipids, including sphingomyelin. Conversely, exposure to 34 °C produced more pronounced effects, with increases in levels of phosphatidylethanolamine and those of various sphingolipids such as ceramide, gangliosides, and sphingomyelin, alongside a reduction in levels of ether phospholipids, including lysophosphatidylethanolamine ether, phosphatidylethanolamine ether, and phosphatidylglycerol ether, as well as levels of glycolipids like monogalactosyldiacylglycerol. These results, when integrated with existing proteomic and behavioural data, offer new insights into the effects of thermal variations on the nervous system in teleost fish. Specifically, our proteomic and lipidomic findings suggest that elevated temperatures may disrupt mitochondrial function, increase neuronal susceptibility to oxidative stress and cytotoxicity, alter axonal myelination, impair nerve impulse transmission, hinder synapse function and neurotransmitter release, and potentially lead to increased neuronal death. These findings are particularly relevant in the fields of cell biology, neurobiology, and ecotoxicology, especially in the context of global warming. Full article
(This article belongs to the Special Issue The Influence of Environmental Factors on Disease and Health Outcomes)
Show Figures

Figure 1

35 pages, 49743 KiB  
Article
Proteomics Analysis of Proteotoxic Stress Response in In-Vitro Human Neuronal Models
by Ayodele Alaiya, Bothina Mohammed Alharbi, Zakia Shinwari, Mamoon Rashid, Tahani H. Albinhassan, Abderrezak Bouchama, Mai B. Alwesmi, Sameer Mohammad and Shuja Shafi Malik
Int. J. Mol. Sci. 2024, 25(12), 6787; https://doi.org/10.3390/ijms25126787 - 20 Jun 2024
Viewed by 2492
Abstract
Heat stroke, a hazardous hyperthermia-related illness, is characterized by CNS injury, particularly long-lasting brain damage. A root cause for hyperthermic neurological damage is heat-induced proteotoxic stress through protein aggregation, a known causative agent of neurological disorders. Stress magnitude and enduring persistence are highly [...] Read more.
Heat stroke, a hazardous hyperthermia-related illness, is characterized by CNS injury, particularly long-lasting brain damage. A root cause for hyperthermic neurological damage is heat-induced proteotoxic stress through protein aggregation, a known causative agent of neurological disorders. Stress magnitude and enduring persistence are highly correlated with hyperthermia-associated neurological damage. We used an untargeted proteomic approach using liquid chromatography–tandem mass spectrometry (LC-MS/MS) to identify and characterize time-series proteome-wide changes in dose-responsive proteotoxic stress models in medulloblastoma [Daoy], neuroblastoma [SH-SY5Y], and differentiated SH-SY5Y neuron-like cells [SH(D)]. An integrated analysis of condition–time datasets identified global proteome-wide differentially expressed proteins (DEPs) as part of the heat-induced proteotoxic stress response. The condition-specific analysis detected higher DEPs and upregulated proteins in extreme heat stress with a relatively conservative and tight regulation in differentiated SH-SY5Y neuron-like cells. Functional network analysis using ingenuity pathway analysis (IPA) identified common intercellular pathways associated with the biological processes of protein, RNA, and amino acid metabolism and cellular response to stress and membrane trafficking. The condition-wise temporal pathway analysis in the differentiated neuron-like cells detects a significant pathway, functional, and disease association of DEPs with processes like protein folding and protein synthesis, Nervous System Development and Function, and Neurological Disease. An elaborate dose-dependent stress-specific and neuroprotective cellular signaling cascade is also significantly activated. Thus, our study provides a comprehensive map of the heat-induced proteotoxic stress response associating proteome-wide changes with altered biological processes. This helps to expand our understanding of the molecular basis of the heat-induced proteotoxic stress response with potential translational connotations. Full article
(This article belongs to the Special Issue Neurometabolic Disorders in the Adults)
Show Figures

Figure 1

14 pages, 1562 KiB  
Article
Cerebrospinal and Brain Proteins Implicated in Neuropsychiatric and Risk Factor Traits: Evidence from Mendelian Randomization
by Roxane de La Harpe, Loukas Zagkos, Dipender Gill, Héléne T. Cronjé and Ville Karhunen
Biomedicines 2024, 12(2), 327; https://doi.org/10.3390/biomedicines12020327 - 31 Jan 2024
Viewed by 2930
Abstract
Neuropsychiatric disorders present a global health challenge, necessitating an understanding of their molecular mechanisms for therapeutic development. Using Mendelian randomization (MR) analysis, this study explored associations between genetically predicted levels of 173 proteins in cerebrospinal fluid (CSF) and 25 in the brain with [...] Read more.
Neuropsychiatric disorders present a global health challenge, necessitating an understanding of their molecular mechanisms for therapeutic development. Using Mendelian randomization (MR) analysis, this study explored associations between genetically predicted levels of 173 proteins in cerebrospinal fluid (CSF) and 25 in the brain with 14 neuropsychiatric disorders and risk factors. Follow-up analyses assessed consistency across plasma protein levels and gene expression in various brain regions. Proteins were instrumented using tissue-specific genetic variants, and colocalization analysis confirmed unbiased gene variants. Consistent MR and colocalization evidence revealed that lower cortical expression of low-density lipoprotein receptor-related protein 8, coupled higher abundance in the CSF and plasma, associated with lower fluid intelligence scores and decreased bipolar disorder risk. Additionally, elevated apolipoprotein-E2 and hepatocyte growth factor-like protein in the CSF and brain were related to reduced leisure screen time and lower odds of physical activity, respectively. Furthermore, elevated CSF soluble tyrosine-protein kinase receptor 1 level increased liability to attention deficit hyperactivity disorder and schizophrenia alongside lower fluid intelligence scores. This research provides genetic evidence supporting novel tissue-specific proteomic targets for neuropsychiatric disorders and their risk factors. Further exploration is necessary to understand the underlying biological mechanisms and assess their potential for therapeutic intervention. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Graphical abstract

23 pages, 6215 KiB  
Article
The Antitumor Effect of the DNA Polymerase Alpha Inhibitor ST1926 in Glioblastoma: A Proteomics Approach
by Chirine El-Baba, Zeinab Ayache, Mona Goli, Berthe Hayar, Zeinab Kawtharani, Claudio Pisano, Firas Kobeissy, Yehia Mechref and Nadine Darwiche
Int. J. Mol. Sci. 2023, 24(18), 14069; https://doi.org/10.3390/ijms241814069 - 14 Sep 2023
Cited by 6 | Viewed by 2301
Abstract
Glioblastoma Multiforme (GBM) is the most aggressive form of malignant brain tumor. The median survival rate does not exceed two years, indicating an imminent need to develop novel therapies. The atypical adamantyl retinoid ST1926 induces apoptosis and growth inhibition in different cancer types. [...] Read more.
Glioblastoma Multiforme (GBM) is the most aggressive form of malignant brain tumor. The median survival rate does not exceed two years, indicating an imminent need to develop novel therapies. The atypical adamantyl retinoid ST1926 induces apoptosis and growth inhibition in different cancer types. We have shown that ST1926 is an inhibitor of the catalytic subunit of DNA polymerase alpha (POLA1), which is involved in initiating DNA synthesis in eukaryotic cells. POLA1 levels are elevated in GBM versus normal brain tissues. Therefore, we studied the antitumor effects of ST1926 in several human GBM cell lines. We further explored the global protein expression profiles in GBM cell lines using liquid chromatography coupled with tandem mass spectrometry to identify new targets of ST1926. Low sub-micromolar concentrations of ST1926 potently decreased cell viability, induced cell damage and apoptosis, and reduced POLA1 protein levels in GBM cells. The proteomics profiles revealed 197 proteins significantly differentially altered upon ST1926 treatment of GBM cells involved in various cellular processes. We explored the differential gene and protein expression of significantly altered proteins in GBM compared to normal brain tissues. Full article
(This article belongs to the Special Issue New Insights into Glioblastoma: Cellular and Molecular)
Show Figures

Figure 1

13 pages, 1730 KiB  
Article
Global Protein Profiling in Processed Immunohistochemistry Tissue Sections
by Simone Venz, Viola von Bohlen und Halbach, Christian Hentschker, Heike Junker, Andreas Walter Kuss, Thomas Sura, Elke Krüger, Uwe Völker, Oliver von Bohlen und Halbach, Lars Riff Jensen and Elke Hammer
Int. J. Mol. Sci. 2023, 24(14), 11308; https://doi.org/10.3390/ijms241411308 - 11 Jul 2023
Cited by 1 | Viewed by 1684
Abstract
Tissue sections, which are widely used in research and diagnostic laboratories and have already been examined by immunohistochemistry (IHC), may subsequently provide a resource for proteomic studies, even though only small amount of protein is available. Therefore, we established a workflow for tandem [...] Read more.
Tissue sections, which are widely used in research and diagnostic laboratories and have already been examined by immunohistochemistry (IHC), may subsequently provide a resource for proteomic studies, even though only small amount of protein is available. Therefore, we established a workflow for tandem mass spectrometry-based protein profiling of IHC specimens and characterized defined brain area sections. We investigated the CA1 region of the hippocampus dissected from brain slices of adult C57BL/6J mice. The workflow contains detailed information on sample preparation from brain slices, including removal of antibodies and cover matrices, dissection of region(s) of interest, protein extraction and digestion, mass spectrometry measurement, and data analysis. The Gene Ontology (GO) knowledge base was used for further annotation. Literature searches and Gene Ontology annotation of the detected proteins verify the applicability of this method for global protein profiling using formalin-fixed and embedded material and previously used IHC slides. Full article
(This article belongs to the Special Issue Mass Spectrometry in Molecular Biology)
Show Figures

Graphical abstract

20 pages, 3278 KiB  
Article
Kunjin Virus, Zika Virus, and Yellow Fever Virus Infections Have Distinct Effects on the Coding Transcriptome and Proteome of Brain-Derived U87 Cells
by Carolin Brand, Gabrielle Deschamps-Francoeur, Kristen M. Bullard-Feibelman, Michelle S. Scott, Brian J. Geiss and Martin Bisaillon
Viruses 2023, 15(7), 1419; https://doi.org/10.3390/v15071419 - 23 Jun 2023
Cited by 6 | Viewed by 2475
Abstract
As obligate intracellular parasites, viruses rely heavily on host cells for replication, and therefore dysregulate several cellular processes for their benefit. In return, host cells activate multiple signaling pathways to limit viral replication and eradicate viruses. The present study explores the complex interplay [...] Read more.
As obligate intracellular parasites, viruses rely heavily on host cells for replication, and therefore dysregulate several cellular processes for their benefit. In return, host cells activate multiple signaling pathways to limit viral replication and eradicate viruses. The present study explores the complex interplay between viruses and host cells through next generation RNA sequencing as well as mass spectrometry (SILAC). Both the coding transcriptome and the proteome of human brain-derived U87 cells infected with Kunjin virus, Zika virus, or Yellow Fever virus were compared to the transcriptome and the proteome of mock-infected cells. Changes in the abundance of several hundred mRNAs and proteins were found in each infection. Moreover, the alternative splicing of hundreds of mRNAs was found to be modulated upon viral infection. Interestingly, a significant disconnect between the changes in the transcriptome and those in the proteome of infected cells was observed. These findings provide a global view of the coding transcriptome and the proteome of Flavivirus-infected cells, leading to a better comprehension of Flavivirus–host interactions. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

16 pages, 1731 KiB  
Article
Investigating SH-SY5Y Neuroblastoma Cell Surfaceome as a Model for Neuronal-Targeted Novel Therapeutic Modalities
by Pooja Gangras, Valentina Gelfanova, Graham D. Williams, Samuel K. Handelman, Ryan M. Smith and Marjoke F. Debets
Int. J. Mol. Sci. 2022, 23(23), 15062; https://doi.org/10.3390/ijms232315062 - 1 Dec 2022
Cited by 13 | Viewed by 4367
Abstract
The SH-SY5Y neuroblastoma cells are a widely used in vitro model approximating neurons for testing the target engagement of therapeutics designed for neurodegenerative diseases and pain disorders. However, their potential as a model for receptor-mediated delivery and uptake of novel modalities, such as [...] Read more.
The SH-SY5Y neuroblastoma cells are a widely used in vitro model approximating neurons for testing the target engagement of therapeutics designed for neurodegenerative diseases and pain disorders. However, their potential as a model for receptor-mediated delivery and uptake of novel modalities, such as antibody-drug conjugates, remains understudied. Investigation of the SH-SY5Y cell surfaceome will aid in greater in vitro to in vivo correlation of delivery and uptake, thereby accelerating drug discovery. So far, the majority of studies have focused on total cell proteomics from undifferentiated and differentiated SH-SY5Y cells. While some studies have investigated the expression of specific proteins in neuroblastoma tissue, a global approach for comparison of neuroblastoma cell surfaceome to the brain and dorsal root ganglion (DRG) neurons remains uninvestigated. Furthermore, an isoform-specific evaluation of cell surface proteins expressed on neuroblastoma cells remains unexplored. In this study, we define a bioinformatic workflow for the identification of high-confidence surface proteins expressed on brain and DRG neurons using tissue proteomic and transcriptomic data. We then delineate the SH-SY5Y cell surfaceome by surface proteomics and show that it significantly overlaps with the human brain and DRG neuronal surface proteome. We find that, for 32% of common surface proteins, SH-SY5Y-specific major isoforms are alternatively spliced, maintaining their protein-coding ability, and are predicted to localize to the cell surface. Validation of these isoforms using surface proteomics confirms a SH-SY5Y-specific alternative NRCAM (neuron-glia related cell adhesion molecule) isoform, which is absent in typical brain neurons, but present in neuroblastomas, making it a receptor of interest for neuroblastoma-specific therapeutics. Full article
(This article belongs to the Special Issue Oligonucleotide, Therapy, and Applications 3.0)
Show Figures

Figure 1

18 pages, 4928 KiB  
Article
Proteomic Analysis Reveals That Mitochondria Dominate the Hippocampal Hypoxic Response in Mice
by Qianqian Shao, Jia Liu, Gaifen Li, Yakun Gu, Mengyuan Guo, Yuying Guan, Zhengming Tian, Wei Ma, Chaoyu Wang and Xunming Ji
Int. J. Mol. Sci. 2022, 23(22), 14094; https://doi.org/10.3390/ijms232214094 - 15 Nov 2022
Cited by 5 | Viewed by 2268
Abstract
Hypoxic stress occurs in various physiological and pathological states, such as aging, disease, or high-altitude exposure, all of which pose a challenge to many organs in the body, necessitating adaptation. However, the exact mechanisms by which hypoxia affects advanced brain function (learning and [...] Read more.
Hypoxic stress occurs in various physiological and pathological states, such as aging, disease, or high-altitude exposure, all of which pose a challenge to many organs in the body, necessitating adaptation. However, the exact mechanisms by which hypoxia affects advanced brain function (learning and memory skills in particular) remain unclear. In this study, we investigated the effects of hypoxic stress on hippocampal function. Specifically, we studied the effects of the dysfunction of mitochondrial oxidative phosphorylation using global proteomics. First, we found that hypoxic stress impaired cognitive and motor abilities, whereas it caused no substantial changes in the brain morphology or structure of mice. Second, bioinformatics analysis indicated that hypoxia affected the expression of 516 proteins, of which 71.1% were upregulated and 28.5% were downregulated. We demonstrated that mitochondrial function was altered and manifested as a decrease in NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 expression, accompanied by increased reactive oxygen species generation, resulting in further neuronal injury. These results may provide some new insights into how hypoxic stress alters hippocampal function via the dysfunction of mitochondrial oxidative phosphorylation. Full article
(This article belongs to the Special Issue Oxygen Variations)
Show Figures

Figure 1

17 pages, 34241 KiB  
Article
Global Proteomic Profile of Aluminum-Induced Hippocampal Impairments in Rats: Are Low Doses of Aluminum Really Safe?
by Leonardo Oliveira Bittencourt, Rakhel Dayanne Damasceno-Silva, Walessa Alana Bragança Aragão, Luciana Eiró-Quirino, Ana Carolina Alves Oliveira, Rafael Monteiro Fernandes, Marco Aurelio M. Freire, Sabrina Carvalho Cartágenes, Aline Dionizio, Marília Afonso Rabelo Buzalaf, Juliana Silva Cassoli, Ana Cirovic, Aleksandar Cirovic, Cristiane do Socorro Ferraz Maia and Rafael Rodrigues Lima
Int. J. Mol. Sci. 2022, 23(20), 12523; https://doi.org/10.3390/ijms232012523 - 19 Oct 2022
Cited by 14 | Viewed by 3782
Abstract
Hippocampus is the brain area where aluminum (Al) accumulates in abundance and is widely associated with learning and memory. In the present study, we evaluate behavioral, tissue, and proteomic changes in the hippocampus of Wistar rats caused by exposure to doses that mimic [...] Read more.
Hippocampus is the brain area where aluminum (Al) accumulates in abundance and is widely associated with learning and memory. In the present study, we evaluate behavioral, tissue, and proteomic changes in the hippocampus of Wistar rats caused by exposure to doses that mimic human consumption of aluminum chloride (AlCl3) in urban areas. For this, male Wistar rats were divided into two groups: Control (distilled water) and AlCl3 (8.3 mg/kg/day), both groups were exposed orally for 60 days. After the Al exposure protocol, cognitive functions were assessed by the Water maze test, followed by a collection for analysis of the global proteomic profile of the hippocampus by mass spectrometry. Aside from proteomic analysis, we performed a histological analysis of the hippocampus, to the determination of cell body density by cresyl violet staining in Cornu Ammonis fields (CA) 1 and 3, and hilus regions. Our results indicated that exposure to low doses of aluminum chloride triggered a decreased cognitive performance in learning and memory, being associated with the deregulation of proteins expression, mainly those related to the regulation of the cytoskeleton, cellular metabolism, mitochondrial activity, redox regulation, nervous system regulation, and synaptic signaling, reduced cell body density in CA1, CA3, and hilus. Full article
Show Figures

Figure 1

13 pages, 2362 KiB  
Article
Study on Tissue Homogenization Buffer Composition for Brain Mass Spectrometry-Based Proteomics
by Adam Aleksander Karpiński, Julio Cesar Torres Elguera, Anne Sanner, Witold Konopka, Leszek Kaczmarek, Dominic Winter, Anna Konopka and Ewa Bulska
Biomedicines 2022, 10(10), 2466; https://doi.org/10.3390/biomedicines10102466 - 2 Oct 2022
Cited by 5 | Viewed by 4674
Abstract
Mass spectrometry-based proteomics aims to study the proteome both qualitatively and quantitatively. A key step in proteomic analysis is sample preparation, which is crucial for reliable results. We investigated the effect of the composition of the homogenization buffer used to extract proteins from [...] Read more.
Mass spectrometry-based proteomics aims to study the proteome both qualitatively and quantitatively. A key step in proteomic analysis is sample preparation, which is crucial for reliable results. We investigated the effect of the composition of the homogenization buffer used to extract proteins from brain tissue on the yield of protein extraction and the number and type of extracted proteins. Three different types of buffers were compared—detergent-based buffer (DB), chaotropic agent-based buffer (CAB) and buffer without detergent and chaotropic agent (DFB). Based on label-free quantitative protein analysis, detergent buffer was identified as the most suitable for global proteomic profiling of brain tissue. It allows the most efficient extraction of membrane proteins, synaptic and synaptic membrane proteins along with ribosomal, mitochondrial and myelin sheath proteins, which are of particular interest in the field of neurodegenerative disorders research. Full article
(This article belongs to the Special Issue Mass Spectrometry Based Proteomics in Medical Research)
Show Figures

Figure 1

17 pages, 5340 KiB  
Article
Identification and Characterization of Elevated Expression of Transferrin and Its Receptor TfR1 in Mouse Models of Depression
by Xin Chang, Mengxin Ma, Liping Chen, Zhihong Song, Zhe Zhao, Wei Shen, Huihui Jiang, Yan Wu, Ming Fan and Haitao Wu
Brain Sci. 2022, 12(10), 1267; https://doi.org/10.3390/brainsci12101267 - 20 Sep 2022
Cited by 11 | Viewed by 2977
Abstract
Depression has become one of the severe mental disorders threatening global human health. In this study, we first used the proteomics approach to obtain the differentially expressed proteins in the liver between naive control and chronic social defeat stress (CSDS) induced depressed mice. [...] Read more.
Depression has become one of the severe mental disorders threatening global human health. In this study, we first used the proteomics approach to obtain the differentially expressed proteins in the liver between naive control and chronic social defeat stress (CSDS) induced depressed mice. We have identified the upregulation of iron binding protein transferrin (TF) in the liver, the peripheral blood, and the brain in CSDS-exposed mice. Furthermore, bioinformatics analysis of the Gene Expression Omnibus (GEO) database from various mouse models of depression revealed the significantly upregulated transcripts of TF and its receptor TfR1 in multiple brain regions in depressed mice. We also used the recombinant TF administration via the tail vein to detect its permeability through the blood-brain barrier (BBB). We demonstrated the permeability of peripheral TF into the brain through the BBB. Together, these results identified the elevated expression of TF and its receptor TfR1 in both peripheral liver and the central brain in CSDS-induced depressed mice, and peripheral administration of TF can be transported into the brain through the BBB. Therefore, our data provide a compelling information for understanding the potential role and mechanisms of the cross-talk between the liver and the brain in stress-induced depression. Full article
Show Figures

Figure 1

12 pages, 3026 KiB  
Article
pH-Responsive Lipid Nanoparticles Achieve Efficient mRNA Transfection in Brain Capillary Endothelial Cells
by Yu Sakurai, Himeka Watanabe, Kazuma Nishio, Kohei Hashimoto, Atsuki Harada, Masaki Gomi, Masayoshi Suzuki, Ryotaro Oyama, Takumi Handa, Risa Sato, Hina Takeuchi, Ryoga Taira, Kenta Tezuka, Kota Tange, Yuta Nakai, Hidetaka Akita and Yasuo Uchida
Pharmaceutics 2022, 14(8), 1560; https://doi.org/10.3390/pharmaceutics14081560 - 27 Jul 2022
Cited by 10 | Viewed by 4442
Abstract
The blood–brain barrier (BBB), which is comprised of brain capillary endothelial cells, plays a pivotal role in the transport of drugs from the blood to the brain. Therefore, an analysis of proteins in the endothelial cells, such as transporters and tight junction proteins, [...] Read more.
The blood–brain barrier (BBB), which is comprised of brain capillary endothelial cells, plays a pivotal role in the transport of drugs from the blood to the brain. Therefore, an analysis of proteins in the endothelial cells, such as transporters and tight junction proteins, which contribute to BBB function, is important for the development of therapeutics for the treatment of brain diseases. However, gene transfection into the vascular endothelial cells of the BBB is fraught with difficulties, even in vitro. We report herein on the development of lipid nanoparticles (LNPs), in which mRNA is encapsulated in a nano-sized capsule composed of a pH-activated and reductive environment-responsive lipid-like material (ssPalm). We evaluated the efficiency of mRNA delivery into non-polarized human brain capillary endothelial cells, hCMEC/D3 cells. The ssPalm LNPs permitted marker genes (GFP) to be transferred into nearly 100% of the cells, with low toxicity in higher concentration. A proteomic analysis indicated that the ssPalm-LNP had less effect on global cell signaling pathways than a Lipofectamine MessengerMAX/GFP-encoding mRNA complex (LFN), a commercially available transfection reagent, even at higher mRNA concentrations. Full article
(This article belongs to the Special Issue Advanced Blood-Brain Barrier Drug Delivery)
Show Figures

Figure 1

29 pages, 15026 KiB  
Article
Extracellular Alterations in pH and K+ Modify the Murine Brain Endothelial Cell Total and Phospho-Proteome
by Jared R. Wahl, Anjali Vivek, Seph M. Palomino, Moyad Almuslim, Karissa E. Cottier, Paul R. Langlais, John M. Streicher, Todd W. Vanderah, Erika Liktor-Busa and Tally M. Largent-Milnes
Pharmaceutics 2022, 14(7), 1469; https://doi.org/10.3390/pharmaceutics14071469 - 15 Jul 2022
Cited by 2 | Viewed by 2886
Abstract
Pathologies of the blood–brain barrier (BBB) have been linked to a multitude of central nervous system (CNS) disorders whose pathology is poorly understood. Cortical spreading depression (CSD) has long been postulated to be involved in the underlying mechanisms of these disease states, yet [...] Read more.
Pathologies of the blood–brain barrier (BBB) have been linked to a multitude of central nervous system (CNS) disorders whose pathology is poorly understood. Cortical spreading depression (CSD) has long been postulated to be involved in the underlying mechanisms of these disease states, yet a complete understanding remains elusive. This study seeks to utilize an in vitro model of the blood–brain barrier (BBB) with brain endothelial cell (b.End3) murine endothelioma cells to investigate the role of CSD in BBB pathology by characterizing effects of the release of major pronociceptive substances into the extracellular space of the CNS. The application of trans-endothelial electrical resistance (TEER) screening, transcellular uptake, and immunoreactive methods were used in concert with global proteome and phospho-proteomic approaches to assess the effect of modeled CSD events on the modeled BBB in vitro. The findings demonstrate relocalization and functional alteration to proteins associated with the actin cytoskeleton and endothelial tight junctions. Additionally, unique pathologic mechanisms induced by individual substances released during CSD were found to have unique phosphorylation signatures in phospho-proteome analysis, identifying Zona Occludins 1 (ZO-1) as a possible pathologic “checkpoint” of the BBB. By utilizing these phosphorylation signatures, possible novel diagnostic methods may be developed for CSD and warrants further investigation. Full article
Show Figures

Graphical abstract

Back to TopTop