Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = ginseng breeding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4634 KiB  
Article
Dynamic Coordination of Alternative Splicing and Subgenome Expression Bias Underlies Rusty Root Symptom Response in Panax ginseng
by Jing Zhao, Juzuo Li, Xiujuan Lei, Peng Di, Hongwei Xun, Zhibin Zhang, Jian Zhang, Xiangru Meng and Yingping Wang
Plants 2025, 14(14), 2120; https://doi.org/10.3390/plants14142120 - 9 Jul 2025
Viewed by 318
Abstract
Ginseng rusty root symptoms (GRSs) compromise the yield and quality of Panax ginseng. While transcriptomic analyses have demonstrated extensive remodeling of stress signaling networks, the post-transcriptional defense circuitry remains obscure. We profiled alternative splicing (AS) in three phloem tissues, the healthy phloem [...] Read more.
Ginseng rusty root symptoms (GRSs) compromise the yield and quality of Panax ginseng. While transcriptomic analyses have demonstrated extensive remodeling of stress signaling networks, the post-transcriptional defense circuitry remains obscure. We profiled alternative splicing (AS) in three phloem tissues, the healthy phloem (AG), the non-reddened phloem neighboring lesions (BG), and the reddened lesion core (CG), to delineate AS reprogramming during GRS progression. The frequency of AS was sharply elevated in CG, with intron retention predominating. Extensive gains and losses of splice events indicate large-scale rewiring of the splice network. Overlapping differentially alternative spliced genes (DAGs) identified in both CG vs AG and CG vs BG contrasts were significantly enriched for RNA–spliceosome assembly and stress–response pathways, revealing a conserved post-transcriptional response associated with lesion formation. Integrative analysis of differentially expressed genes uncovered 671 loci under dual regulation; functional classification categorized these genes in receptor-like kinase signaling and chromatin-remodeling modules, underscoring the synergy between AS and transcriptional control. Moreover, the B subgenome disproportionately contributed stress-responsive transcripts in diseased tissue, suggesting an adaptive, subgenome-biased strategy. These findings demonstrate that dynamic AS remodeling and subgenome expression bias jointly orchestrate ginseng defense against GRS and provide a framework for breeding disease-resilient crops. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Science)
Show Figures

Figure 1

15 pages, 8244 KiB  
Article
The Effects of Low-Temperature Stress on the Physiological Characteristics and Active Components of Ginseng Under Different Soil Moisture Conditions
by Jiao Liu, Hongyan Jin, Yingping Wang, Xiaoying Liu, Yonghua Xu and He Yang
Horticulturae 2025, 11(5), 526; https://doi.org/10.3390/horticulturae11050526 - 13 May 2025
Viewed by 566
Abstract
Ginseng growth is susceptible to environmental stresses, particularly the frequent occurrence of low temperatures and water fluctuations in spring in Northeast China, which often lead to a decline in medicinal yield and quality. This study systematically analyzed the physiological response characteristics and variation [...] Read more.
Ginseng growth is susceptible to environmental stresses, particularly the frequent occurrence of low temperatures and water fluctuations in spring in Northeast China, which often lead to a decline in medicinal yield and quality. This study systematically analyzed the physiological response characteristics and variation patterns of active components under dual stresses of low temperature and water. The aim was to elucidate the adaptation mechanism of ginseng to abiotic stresses, providing a theoretical basis for optimizing ginseng cultivation management practices and enhancing the quality of medicinal materials. In this study, 2-year-old and 4-year-old ginseng roots were selected as research materials. They were subjected to treatments of low soil moisture (20–30%), medium soil moisture (40–50%), and high soil moisture (60–70%). Low-temperature treatments were conducted at 0 °C for different durations (4 h, 24 h, 33 h, 48 h). Physiological indicators of the ginseng roots were determined at each time point, and the active components of ginseng roots in the control and treatment groups were investigated. The results indicated significant differences in osmotic adjustment substance changes between 2-year-old and 4-year-old ginseng roots. The content of superoxide dismutase (SOD) increased during low-temperature stress in both age groups. An increase or decrease in soil moisture significantly enhanced the accumulation of total ginsenosides. However, low-temperature stress notably reduced the accumulation of total ginsenosides. Nevertheless, after low-temperature treatment, the PPT-type ginsenosides in the high soil moisture group showed a significant increase. The findings of this study provide a scientific basis for improving the medicinal component content of ginseng and offer theoretical support for future water management practices. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

17 pages, 5103 KiB  
Article
A Heat-Shock Transcription Factor in Panax ginseng, PgHSFA2, Confers Heat and Salt Resistance in Transgenic Tobacco
by Sung Won Jeon, Yi Rae Kim, Jung Yeon Han, Ukhan Jeong, Eun Ju Cheong and Yong Eui Choi
Int. J. Mol. Sci. 2025, 26(8), 3836; https://doi.org/10.3390/ijms26083836 - 18 Apr 2025
Viewed by 539
Abstract
Panax ginseng plants are susceptible to high temperatures and intense sunlight, necessitating cultivation under artificially shaded structures. Identifying the genes associated with heat resistance is critical for advancing molecular breeding strategies to develop heat-tolerant ginseng varieties. Heat-shock transcription factors (HSFs) are widely recognized [...] Read more.
Panax ginseng plants are susceptible to high temperatures and intense sunlight, necessitating cultivation under artificially shaded structures. Identifying the genes associated with heat resistance is critical for advancing molecular breeding strategies to develop heat-tolerant ginseng varieties. Heat-shock transcription factors (HSFs) are widely recognized as key regulators of plant responses to abiotic stresses, primarily by controlling heat-shock proteins (HSPs). To identify HSF genes in P. ginseng, transcriptome analysis was conducted on ginseng plants subjected to heat-shock treatment (1 h at 40 °C). Among the 26 HSF unigenes annotated from the ginseng transcriptome, a unigene related to the HSFA2 family exhibited the highest transcriptional activity following heat-shock treatment. The expression of PgHSFA2, a gene identified from this unigene, was analyzed under temperature and salt-stress conditions in ginseng plants using qPCR. The results showed that PgHSFA2 was highly responsive to various abiotic stresses, including heat, cold, salt, and intense sunlight. To assess the functional role of PgHSFA2, transgenic tobacco plants overexpressing this gene were analyzed. The overexpression of PgHSFA2 led to an elevated expression of heat-shock proteins (HSPs) in tobacco, resulting in enhanced resistance to high temperature and salt stress. Transgenic tobacco plants exhibited significantly less reduction in chlorophyll fluorescence compared to nontransgenic controls when exposed to salt stress (200 and 400 mM NaCl) and high-temperature stress (42 °C), indicating improved stress tolerance. In conclusion, PgHSFA2 is a crucial HSF that regulates the transcriptional control of HSPs in ginseng plants. The constitutive expression of PgHSFA2 in transgenic ginseng could potentially confer improved tolerance to high temperatures, making it a valuable target for molecular breeding. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

20 pages, 4643 KiB  
Article
Evaluation of the Potential of Pyrimidine Nucleoside Antibiotics Against Alternaria spp. Resistant to QoIs Fungicides: Insights for the Management of Ginseng Alternaria Leaf and Stem Blight Disease
by Shuai Shao, Mingyuan Hu, Xiaolin Chen, Ming’en Jiang, Changqing Chen, Baohui Lu and Jie Gao
Agriculture 2025, 15(8), 875; https://doi.org/10.3390/agriculture15080875 - 16 Apr 2025
Viewed by 479
Abstract
To manage the developing resistance of Alternaria spp. [the causal fungi of ginseng Alternaria leaf and stem blight (GALSB)] to QoIs fungicides, the toxicity and biochemical activity of pyrimidine nucleoside antibiotics (PNA) against Alternaria spp., cross-resistance between PNA and eight other fungicides currently [...] Read more.
To manage the developing resistance of Alternaria spp. [the causal fungi of ginseng Alternaria leaf and stem blight (GALSB)] to QoIs fungicides, the toxicity and biochemical activity of pyrimidine nucleoside antibiotics (PNA) against Alternaria spp., cross-resistance between PNA and eight other fungicides currently used to control GALSB disease, and the efficacy of PNA for controlling GALSB in vitro and in vivo were investigated. The distributions of EC50 values of PNA against the mycelial growth (115 isolates) and conidia germination (89 isolates) of A. alternata were unimodal, with mean EC50 values of 10.192 ± 4.961 μg/mL and 0.828 ± 0.101 μg/mL, respectively. There were no significant correlations between the sensitivity of A. alternata to PNA and eight other fungicides (p < 0.05). PNA caused morphological changes in A. alternata mycelia and germ tubes, increased cell membrane permeability, and reduced intracellular DNA and protein levels. On detached ginseng leaves, 300 μg/mL PNA achieved mean protective and curative effects of 87.93% and 94.77% against A. alternata 7 days post-inoculation, outperforming that of 300 μg/mL kresoxim-methyl. Field trial results showed that PNA (180 g a.i./hm2) achieved mean efficacies of 85.63%, 84.07%, and 72.55% at three sites 7, 15, and 30 days after the last spray, which were 5.28–37.74% higher than those of control fungicides pyraclostrobin, azoxystrobin, and kresoxim-methyl at corresponding time points. Overall, our findings indicate that PNA are effective agents for the management of Alternaria spp. resistance to QoIs fungicides. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Graphical abstract

18 pages, 10631 KiB  
Article
Integrated Transcriptomic and Metabolomic Analysis Reveals Tissue-Specific Flavonoid Biosynthesis and MYB-Mediated Regulation of UGT71A1 in Panax quinquefolius
by Yumeng Wang, Jiaxin Zhang, Ping Wang, Yongkang Li, Yihan Wang, Yan Yan, Junwen Chi, Jiankang Chen, Junmei Lian, Xiangmin Piao, Xiujuan Lei, Ying Xiao, Jeremy Murray, Micheal K. Deyholos, Yingping Wang, Peng Di and Jian Zhang
Int. J. Mol. Sci. 2025, 26(6), 2669; https://doi.org/10.3390/ijms26062669 - 16 Mar 2025
Viewed by 1107
Abstract
Panax quinquefolius is a globally valued medicinal plant rich in bioactive flavonoids, yet the molecular mechanisms underlying their biosynthesis remain poorly understood. In this study, we integrated transcriptomic and metabolomic analyses to investigate tissue-specific flavonoid accumulation and regulatory networks in roots, leaves, and [...] Read more.
Panax quinquefolius is a globally valued medicinal plant rich in bioactive flavonoids, yet the molecular mechanisms underlying their biosynthesis remain poorly understood. In this study, we integrated transcriptomic and metabolomic analyses to investigate tissue-specific flavonoid accumulation and regulatory networks in roots, leaves, and flowers. Metabolomic profiling identified 141 flavonoid metabolites, with flavones, flavonols, and C-glycosylflavones predominantly enriched in aerial tissues (leaves and flowers), while specific glycosides like tricin 7-O-acetylglucoside showed root-specific accumulation. Transcriptome sequencing revealed 15,551–18,946 DEGs across tissues, and the reliability of the transcriptomic data was validated by qRT-PCR. KEGG and GO annotation analyses suggested that these DEGs may play a crucial role in the biosynthesis and metabolism of secondary metabolites. From the DEGs, UGTs and MYB TFs were identified and subjected to correlation analysis. Functional validation through in vitro enzymatic assays confirmed that PqUGT71A1 catalyzes apigenin and naringenin glycosylation at the 7-OH position. Additionally, subcellular localization and yeast one-hybrid assays demonstrated that PqMYB7 and PqMYB13 interact with the PqUGT71A1 promoter and activate its expression.. This study unveils the spatial dynamics of flavonoid metabolism in P. quinquefolius and establishes a MYB-UGT regulatory axis, providing critical insights for metabolic engineering and bioactive compound optimization in medicinal plants. Full article
(This article belongs to the Special Issue Advances in Plant Genomics and Genetics: 2nd Edition)
Show Figures

Figure 1

14 pages, 5415 KiB  
Article
Tetraploidization Altered Phenotypic Traits and Metabolite Profile of Java Ginseng (Talinum paniculatum (Jacq.) Gaertn.)
by Yingying Liu, Xiao Huang, Xinsheng Gao, Xiaofei Zhang, Huasun Huang, Weiguo Li and Yuanyuan Zhang
Plants 2025, 14(3), 480; https://doi.org/10.3390/plants14030480 - 6 Feb 2025
Viewed by 1069
Abstract
Polyploidization is a beneficial technique for enhancing the biomass of and secondary metabolite concentrations in plants. Java ginseng (Talinum paniculatum (Jacq.) Gaertn.) can be used as an alternative source of nutrition and has both ornamental and medicinal value. To improve the biomass [...] Read more.
Polyploidization is a beneficial technique for enhancing the biomass of and secondary metabolite concentrations in plants. Java ginseng (Talinum paniculatum (Jacq.) Gaertn.) can be used as an alternative source of nutrition and has both ornamental and medicinal value. To improve the biomass and content of medicinal ingredients, this study established an in vitro system that was used to induce polyploidy of java ginseng. Tetraploids were successfully produced by exposing the axillary buds to colchicine. The most favorable medium for inducing polyploidy was Murashige and Skoog medium devoid of hormonal substances, while immersing stem segments in a solution of 1–3 mg/mL colchicine for 48 h could achieve tetraploidy induction with a maximum rate of 18.03%. Tetraploids were distinguished from diploids by flow cytometry, with the tetraploids exhibiting darker and thicker leaves, bigger fruit and pollen, and larger stomata but lower stomatal density, while the aboveground biomass yield was reduced significantly compared with that of the diploids. Tetraploidization also altered the metabolite profile, with 22 metabolite concentrations being significantly increased (p < 0.05) and 74 metabolite concentrations being significantly decreased (p < 0.05) in the leaves of the tetraploids. The autotetraploid produced in this study could provide novel insights into artificial polyploid breeding and could be utilized as a germplasm to generate new polyploids. Full article
(This article belongs to the Special Issue Horticultural Plant Physiology and Molecular Biology)
Show Figures

Figure 1

17 pages, 2724 KiB  
Article
Whole Genome Identification and Integrated Analysis of Long Non-Coding RNAs Responding ABA-Mediated Drought Stress in Panax ginseng C.A. Meyer
by Peng Chen, Cheng Chang and Lingyao Kong
Curr. Issues Mol. Biol. 2025, 47(1), 5; https://doi.org/10.3390/cimb47010005 - 25 Dec 2024
Viewed by 953
Abstract
Panax ginseng C.A. Meyer is a perennial herb that is used worldwide for a number of medical purposes. Long non-coding RNAs (lncRNAs) play a crucial role in diverse biological processes but still remain poorly understood in ginseng, which has limited the application of [...] Read more.
Panax ginseng C.A. Meyer is a perennial herb that is used worldwide for a number of medical purposes. Long non-coding RNAs (lncRNAs) play a crucial role in diverse biological processes but still remain poorly understood in ginseng, which has limited the application of molecular breeding in this plant. In this study, we identified 17,478 lncRNAs and 3106 novel mRNAs from ginseng by high-throughput illumine sequencing. 50 and 257 differentially expressed genes (DEGs) and DE lncRNAs (DELs) were detected under drought + ABA vs. drought conditions, respectively. The DEGs and DELs target genes main enrichment is focused on the “biosynthesis of secondary metabolites”, “starch and sucrose metabolism”, and “carbon metabolism” pathways under drought + ABA vs. drought conditions according to KEGG pathway enrichment analysis, suggesting that these secondary metabolites biosynthesis pathways might be crucial for ABA-mediated drought stress response in ginseng. Together, we identified drought stress response lncRNAs in ginseng for the first time and found that the target genes of these lncRNAs mainly regulate the biosynthesis of secondary metabolites pathway to response to drought stress. These findings also open up a new visual for molecular breeding in ginseng. Full article
Show Figures

Figure 1

16 pages, 41800 KiB  
Article
Genome-Wide Characterization and Analysis of the bHLH Gene Family in Perilla frutescens
by Jiankang Chen, Jiayi Xu, Ping Wang, Yihan Wang, Yumeng Wang, Junmei Lian, Yan Yan, Lin Cheng, Yingping Wang and Peng Di
Int. J. Mol. Sci. 2024, 25(24), 13717; https://doi.org/10.3390/ijms252413717 - 22 Dec 2024
Cited by 2 | Viewed by 1349
Abstract
Perilla frutescens (L.) Britt. is a traditional medicinal and culinary plant with a long history of cultivation and significant potential for broader utilization. The basic helix-loop-helix (bHLH) gene family is essential for regulating plant growth, development, stress responses, and secondary metabolism. [...] Read more.
Perilla frutescens (L.) Britt. is a traditional medicinal and culinary plant with a long history of cultivation and significant potential for broader utilization. The basic helix-loop-helix (bHLH) gene family is essential for regulating plant growth, development, stress responses, and secondary metabolism. However, the bHLH gene family in P. frutescens has not yet been characterized. In this study, a total of 205 bHLH genes were identified in P. frutescens through genome mining and analysis. Phylogenetic analysis classified these PfbHLH genes into 23 distinct subfamilies. Promoter analysis revealed an enrichment of cis-acting elements linked to plant hormone signaling and stress responses, suggesting their potential regulatory roles in development, growth, and stress adaptation. Expression profiling based on publicly available RNA-seq data demonstrated tissue-specific expression patterns of PfbHLH genes in roots, stems, and leaves. Four PfbHLH genes (PfbHLH66, PfbHLH45, PfbHLH13, and PfbHLH5) showed significant responses to methyl jasmonate (MeJA) induction. Yeast one-hybrid assays confirmed that these PfbHLH proteins could bind to the cis-acting G-box (CACGTG) element. This study offers new perspectives on the evolution, regulatory mechanisms, and functional roles of the bHLH gene family in P. frutescens. The findings deepen our understanding of the functional diversity within this gene family and establish a foundation for genetic enhancement and the biosynthesis of medicinal compounds in the species. Full article
(This article belongs to the Special Issue Plant Responses to Biotic and Abiotic Stresses)
Show Figures

Figure 1

16 pages, 2376 KiB  
Article
Comparative Biochemical and Pharmacodynamic Analyses of Asarum heterotropoides Fr. Schmidt var. Mandshuricum (Maxim) Kitag and Asarum sieboldii Miq var. Seoulense Nakai Roots
by Huiling Li, Zhiqing Wang, Guangyuan Zhao, Yanhong Wang, Xuanwei Xu, Yingping Wang, Ze Zhang and Guanghui Wang
Pharmaceuticals 2024, 17(10), 1301; https://doi.org/10.3390/ph17101301 - 30 Sep 2024
Cited by 2 | Viewed by 1224
Abstract
Background:Asarum heterotropoides and Asarum sieboldii are commonly used in traditional Chinese medicine. However, little is known about how they differ in terms of essential oil (EO) and ethanol extract (EE) content and composition. Moreover, the effect of various geographical locations on the [...] Read more.
Background:Asarum heterotropoides and Asarum sieboldii are commonly used in traditional Chinese medicine. However, little is known about how they differ in terms of essential oil (EO) and ethanol extract (EE) content and composition. Moreover, the effect of various geographical locations on the essential oil (EO), ethanol extract (EE), and asarinin content of different Asarum samples remains unknown. We tested four root-drying methods, i.e., soil removal and shade drying (P1), water washing and shade drying (P2), and water washing and drying at 30 °C (P3) and 40 °C (P4). We used LC-MS and GC-MS to investigate these differences. We also investigated the pharmacodynamic effects of EO and EE. Results: Overall, the EO, EE and asarinin contents of the analysed samples were 19.21–51.53 μL.g−1, 20.00–45.00 μL.g−1, and 1.268–2.591 mg.g−1, respectively. P1 treatment yielded the lowest volatile oil content compared to the other three treatments. GC-MS analysis revealed 78 EO components. Among the six major EO components, eucarvone, 3,5-dimethoxytoluene, and methyl eugenol were higher in A. heterotropoides than in A. sieboldii. However, the latter had a higher myristicin content. LC-MS analysis identified 888 EE components in roots and leaves of A. heterotropoides and A. sieboldii; 317 differentially accumulated metabolites were identified. EO and EE showed a dose-dependent reduction in the degree of swelling and an increase in the inhibition rate of drug concentration on acetic acid writhing in mice. Asarum EO proved to be more effective than EE in the pharmacodynamic study. Conclusions: We conclude that Asarum species show inter- and intra-specific differences in EO and EE content and composition, which may influence the pharmacodynamics of Asarum root extracts. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

15 pages, 5552 KiB  
Article
Evaluation of the Antifungal and Biochemical Activities of Fungicides and Biological Agents against Ginseng Sclerotinia Root Rot Caused by Sclerotinia nivalis
by Shi Feng, Chunlin Wang, Zhaoyang Xu, Baozhu Dou, Xue Wang, Lina Yang, Baohui Lu and Jie Gao
Microorganisms 2024, 12(9), 1761; https://doi.org/10.3390/microorganisms12091761 - 25 Aug 2024
Viewed by 1255
Abstract
The objective of this study was to identify effective agents for the prevention and control of ginseng Sclerotinia root rot disease caused by Sclerotinia nivalis. The inhibitory effects of 16 chemical fungicides and 10 biocontrol agents (strains) on mycelial growth and sclerotium [...] Read more.
The objective of this study was to identify effective agents for the prevention and control of ginseng Sclerotinia root rot disease caused by Sclerotinia nivalis. The inhibitory effects of 16 chemical fungicides and 10 biocontrol agents (strains) on mycelial growth and sclerotium formation in S. nivalis were determined using a plate confrontation essay. The results showed that the best chemical agents for inhibiting the mycelial growth and sclerotium formation of S. nivalis were fluconazole and fludioxonil, while Bacillus amyloliquefaciens FS6 and B. subtilis (Kono) were the best biocontrol agents (strains). The results of field trials in 2022 and 2023 showed that the control effects of fluconazole and fludioxonil on ginseng Sclerotinia root rot disease were 90.60–98.16%, and those of the biocontrol agents B. amyloliquefaciens FS6 and B. subtilis (Kono) were 94.80–97.24%, respectively. Chemical agents produced abnormal and twisted mycelia, while the biocontrol agents increased mycelial branching, dilated the mycelium tip, and revealed an abnormal balloon. All of the fungicides decreased the ergosterol content, changed the cell membrane permeability, and increased the protein and nucleic acid permeability. These results suggest that these are potential agents for controlling ginseng Sclerotinia root rot disease, and their biochemical mechanisms of chemical and biocontrol of this disease were demonstrated. Full article
Show Figures

Figure 1

21 pages, 10213 KiB  
Article
Low-Temperature Regulates the Cell Structure and Chlorophyll in Addition to Cellulose Metabolism of Postharvest Red Toona sinensis Buds across Different Seasons
by Qian Zhao, Fu Wang, Yifei Wang, Xiulai Zhong, Shunhua Zhu, Xinqi Zhang, Shuyao Li, Xiujuan Lei, Zhenyuan Zang, Guofei Tan and Jian Zhang
Int. J. Mol. Sci. 2024, 25(14), 7719; https://doi.org/10.3390/ijms25147719 - 14 Jul 2024
Cited by 1 | Viewed by 1587
Abstract
Postharvest fibrosis and greening of Toona sinensis buds significantly affect their quality during storage. This study aimed to clarify the effects of low-temperature storage on postharvest red TSB quality harvested in different seasons. Red TSB samples were collected from Guizhou province, China, 21 [...] Read more.
Postharvest fibrosis and greening of Toona sinensis buds significantly affect their quality during storage. This study aimed to clarify the effects of low-temperature storage on postharvest red TSB quality harvested in different seasons. Red TSB samples were collected from Guizhou province, China, 21 days after the beginning of spring (Lichun), summer (Lixia), and autumn (Liqiu), and stored at 4 °C in dark conditions. We compared and analyzed the appearance, microstructure, chlorophyll and cellulose content, and expression levels of related genes across different seasons. The results indicated that TSB harvested in spring had a bright, purple-red color, whereas those harvested in summer and autumn were green. All samples lost water and darkened after 1 day of storage. Severe greening occurred in spring-harvested TSB within 3 days, a phenomenon not observed in summer and autumn samples. Microstructural analysis revealed that the cells in the palisade and spongy tissues of spring and autumn TSB settled closely during storage, while summer TSB cells remained loosely aligned. Xylem cells were smallest in spring-harvested TSB and largest in autumn. Prolonged storage led to thickening of the secondary cell walls and pith cell autolysis in the petioles, enlarging the cavity area. Chlorophyll content was higher in leaves than in petioles, while cellulose content was lower in petioles across all seasons. Both chlorophyll and cellulose content increased with storage time. Gene expression analysis showed season-dependent variations and significant increases in the expression of over half of the chlorophyll-related and cellulose-related genes during refrigeration, correlating with the observed changes in chlorophyll and cellulose content. This research provides valuable insights for improving postharvest storage and freshness preservation strategies for red TSB across different seasons. Full article
(This article belongs to the Special Issue New Insights into Environmental Stresses and Plants)
Show Figures

Figure 1

22 pages, 5157 KiB  
Article
Identification of PgRg1-3 Gene for Ginsenoside Rg1 Biosynthesis as Revealed by Combining Genome-Wide Association Study and Gene Co-Expression Network Analysis of Jilin Ginseng Core Collection
by Sizhang Liu, Xiaxia Chen, Tianqi Zhao, Jinghui Yu, Ping Chen, Yanfang Wang, Kangyu Wang, Mingzhu Zhao, Yue Jiang, Yi Wang and Meiping Zhang
Plants 2024, 13(13), 1784; https://doi.org/10.3390/plants13131784 - 27 Jun 2024
Cited by 1 | Viewed by 1590
Abstract
Ginseng, an important medicinal plant, is characterized by its main active component, ginsenosides. Among more than 40 ginsenosides, Rg1 is one of the ginsenosides used for measuring the quality of ginseng. Therefore, the identification and characterization of genes for Rg1 biosynthesis are important [...] Read more.
Ginseng, an important medicinal plant, is characterized by its main active component, ginsenosides. Among more than 40 ginsenosides, Rg1 is one of the ginsenosides used for measuring the quality of ginseng. Therefore, the identification and characterization of genes for Rg1 biosynthesis are important to elucidate the molecular basis of Rg1 biosynthesis. In this study, we utilized 39,327 SNPs and the corresponding Rg1 content from 344 core ginseng cultivars from Jilin Province. We conducted a genome-wide association study (GWAS) combining weighted gene co-expression network analysis (WGCNA), SNP-Rg1 content association analysis, and gene co-expression network analysis; three candidate Rg1 genes (PgRg1-1, PgRg1-2, and PgRg1-3) and one crucial candidate gene (PgRg1-3) were identified. Functional validation of PgRg1-3 was performed using methyl jasmonate (MeJA) regulation and RNAi, confirming that this gene regulates Rg1 biosynthesis. The spatial–temporal expression patterns of the PgRg1-3 gene and known key enzyme genes involved in ginsenoside biosynthesis differ. Furthermore, variations in their networks have a significant impact on Rg1 biosynthesis. This study established an accurate and efficient method for identifying candidate genes, cloned a novel gene controlling Rg1 biosynthesis, and identified 73 SNPs significantly associated with Rg1 content. This provides genetic resources and effective tools for further exploring the molecular mechanisms of Rg1 biosynthesis and molecular breeding. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

14 pages, 3607 KiB  
Article
Identification and Expression Analysis of R2R3-MYB Transcription Factors Associated with Flavonoid Biosynthesis in Panax quinquefolius
by Guimei Song, Yan Yan, Chun Guo, Jiankang Chen, Yumeng Wang, Yingping Wang, Jiaxin Zhang, Chang Gao, Junmei Lian, Xiangmin Piao and Peng Di
Int. J. Mol. Sci. 2024, 25(7), 3709; https://doi.org/10.3390/ijms25073709 - 26 Mar 2024
Cited by 4 | Viewed by 1428
Abstract
Panax quinquefolius L. is an important medicinal plant, and flavonoids are among its main secondary metabolites. The R2R3-MYB transcription factor plays an irreplaceable role in plant growth, development, and secondary metabolism. In our study, we identified 159 R2R3-MYBs and analyzed their physical and [...] Read more.
Panax quinquefolius L. is an important medicinal plant, and flavonoids are among its main secondary metabolites. The R2R3-MYB transcription factor plays an irreplaceable role in plant growth, development, and secondary metabolism. In our study, we identified 159 R2R3-MYBs and analyzed their physical and chemical properties in P. quinquefolius. The protein length of 159 PqMYBs varied from 107 to 1050 amino acids. The molecular weight ranged from 12.21 to 116.44 kDa. The isoelectric point was between 4.57 and 10.34. We constructed a phylogenetic tree of P. quinquefolius and Arabidopsis thaliana R2R3-MYB family members, and PqMYB members were divided into 33 subgroups. Transcriptome data analysis showed that the expression patterns of PqMYBs in root, leaf, and flower were significantly different. Following the MeJA treatment of seedlings, five candidate PqMYB genes demonstrated a response. A correlation analysis of PqMYBs and candidate flavonoid pathway genes showed that PqMYB2, PqMYB46, and PqMYB72 had correlation coefficients that were higher than 0.8 with PqCHS, PqANS4, and PqCCoAMT10, respectively. Furthermore, a transient expression assay confirmed that the three PqMYBs were localized in the nucleus. We speculated that these three PqMYBs were related to flavonoid biosynthesis in P. quinquefolius. These results provided a theoretical basis and a new perspective for further understanding the R2R3-MYB gene family and the biosynthesis mechanism of secondary metabolites in P. quinquefolius. Full article
(This article belongs to the Special Issue Advances in Genetics and Phylogenomics of Tree)
Show Figures

Figure 1

17 pages, 14399 KiB  
Article
Genome-Wide Identification and Analysis of the Aux/IAA Gene Family in Panax ginseng: Evidence for the Role of PgIAA02 in Lateral Root Development
by Yihan Wang, Qi Wang, Peng Di and Yingping Wang
Int. J. Mol. Sci. 2024, 25(6), 3470; https://doi.org/10.3390/ijms25063470 - 19 Mar 2024
Cited by 8 | Viewed by 1909
Abstract
Panax ginseng C. A. Meyer (Ginseng) is one of the most used traditional Chinese herbal medicines, with its roots being used as the main common medicinal parts; its therapeutic potential has garnered significant attention. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) is a [...] Read more.
Panax ginseng C. A. Meyer (Ginseng) is one of the most used traditional Chinese herbal medicines, with its roots being used as the main common medicinal parts; its therapeutic potential has garnered significant attention. AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) is a family of early auxin-responsive genes capable of regulating root development in plants through the auxin signaling pathway. In the present study, 84 Aux/IAA genes were identified from the ginseng genome and their complexity and diversity were determined through their protein domains, phylogenetic relationships, gene structures, and cis-acting element predictions. Phylogenetic analyses classified PgIAA into six subgroups, with members in the same group showing greater sequence similarity. Analyses of interspecific collinearity suggest that segmental duplications likely drove the evolution of PgIAA genes, followed by purifying selection. An analysis of cis-regulatory elements suggested that PgIAA family genes may be involved in the regulation of plant hormones. RNA-seq data show that the expression pattern of Aux/IAA genes in Ginseng is tissue-specific, and PgIAA02 and PgIAA36 are specifically highly expressed in lateral, fibrous, and arm roots, suggesting their potential function in root development. The PgIAA02 overexpression lines exhibited an inhibition of lateral root growth in Ginseng. In addition, yeast two-hybrid and subcellular localization experiments showed that PgIAA02 interacted with PgARF22/PgARF36 (ARF: auxin response factor) in the nucleus and participated in the biological process of root development. The above results lay the foundation for an in-depth study of Aux/IAA and provide preliminary information for further research on the role of the Aux/IAA gene family in the root development of Ginseng. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

22 pages, 10458 KiB  
Article
Cissus antractica-ZnO NPs Induce Apoptosis in A549 Cells through ROS-Generated p53/Bcl-2/Bax Signaling Pathways and Inhibition of Inflammatory Cytokines
by Esrat Jahan Rupa, Jinnatun Nahar, Md. Al-Amin, Jin-Kyu Park, Mohanapriya Murugesan, Muhammad Awais, Seung-Jin Lee, Il Mun Kim, Li Ling, Deok-Chun Yang, Dong-Uk Yang, Dae-Hyo Jung and Seok-Kyu Jung
Coatings 2023, 13(12), 2077; https://doi.org/10.3390/coatings13122077 - 13 Dec 2023
Cited by 4 | Viewed by 1990
Abstract
Biogenic synthesis using medicinal plants has less harmful effects as compared to the chemical synthesis of nanoparticles. Here, for the first time, we successfully demonstrated the eco-friendly synthesis of zinc oxide nanoparticles (ZnO NPs) using an aqueous extract of Cissus antractica. The [...] Read more.
Biogenic synthesis using medicinal plants has less harmful effects as compared to the chemical synthesis of nanoparticles. Here, for the first time, we successfully demonstrated the eco-friendly synthesis of zinc oxide nanoparticles (ZnO NPs) using an aqueous extract of Cissus antractica. The green synthesis method offers great potential for developing new medications that enhance drug bioavailability. The current work highlighted the cytotoxicity, cell death, and routes of apoptosis in lung cancer cells (A549) and inflammatory effects through synthesizing zinc oxide nanoparticles (ZnO NPs) from the Cissus antractica plant using an eco-friendly methodology. UV–visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and energy-dispersive X-ray spectroscopy (EDS) were also used to characterize the synthesized ZnO nanoparticles. The average size of the NPs was 100 nm, and the NPs were crystalline in nature, as confirmed by FE-TEM and XRD analysis, respectively. In addition, the morphology of the nanoparticles analyzed by FE-TEM showed a spherical shape. The cell viability assay indicated that CA-ZnO NPs are non-toxic to normal cell lines at concentrations up to 20 µg/mL but showed significant toxicity in the A549 cell line. The nanoformulation also increased the ROS generation level in A549 lung cancer cells, and cellular apoptosis was confirmed via Hoechst and PI staining. The CA-ZnO NPs showed significant colony inhibition as well as cell migration ability that highlighted the CA-ZnO NPs as an anticancer agent. Additionally, this study demonstrated that NPs reduced the production of reactive oxygen species (ROS) and enhanced the expression of genes for BAX accumulation by releasing Cyto-c, but decreased Bcl-2 gene expression via the mitochondrial-mediated apoptosis pathway. In addition, the anti-inflammatory effect was also investigated; the CA-ZnO NPs showed significant NO inhibition ability with suppression of pro-inflammatory cytokines (TNF-α, iNOS, COX-2, IL-6, IL-8). In conclusion, Cissus antractica can be a source of significant Nano drugs with more advanced research in order to develop future anti-inflammatory and anticancer medications. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

Back to TopTop