Comparative Biochemical and Pharmacodynamic Analyses of Asarum heterotropoides Fr. Schmidt var. Mandshuricum (Maxim) Kitag and Asarum sieboldii Miq var. Seoulense Nakai Roots
Abstract
:1. Background
2. Results
2.1. Effect of Asarum Root-Drying Methods on Biochemical Content Yield
2.2. Essential Oil Composition of 36 Asarum Samples
2.3. Comparative Metabolome Analysis of A. heterotropoides and A. sieboldii Roots and Leaves
2.4. Pharmacodynamic Evaluation of Essential Oil and Ethanol Extracts of Asarum Roots
3. Discussion
4. Methods
4.1. Plant Material
4.2. Sample Drying
4.3. Essential Oil Extraction and GC-MS Analysis
4.4. Preparation of EEs and LC-MS Analysis
4.5. Asarinin Extraction and Content Determination
4.6. Study of the Anti-Inflammatory and Analgesic Effect of Asarum
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antsyshkina, A.M.; Ars, Y.V.; Bokov, D.O.; Pozdnyakova, N.A.; Prostodusheva, T.V.; Zaichikova, S.G. The Genus Asarum L.: A Phytochemical and Ethnopharmacological Review. Syst. Rev. Pharm. 2020, 11, 472–502. [Google Scholar]
- Shaoqing, C.; Xuan, W.; Shu, Z.; Zhicen, L. Herbological study of Chinese traditional drug Xixin (herba asari). Beijing Yi Ke Da Xue Xue Bao J. Beijing Med. Univ. 1997, 29, 233–235. [Google Scholar]
- Perumalsamy, H.; Jung, M.Y.; Hong, S.M.; Ahn, Y.-J. Growth-Inhibiting and morphostructural effects of constituents identified in Asarum heterotropoides root on human intestinal bacteria. BMC Complement. Altern. Med. 2013, 13, 245. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, C. The genus Asarum: A review on phytochemistry, ethnopharmacology, toxicology and pharmacokinetics. J. Ethnopharmacol. 2022, 282, 114642. [Google Scholar] [CrossRef]
- Dan, Y.; Liu, H.-Y.; Gao, W.-W.; Chen, S.-L. Activities of essential oils from Asarum heterotropoides var. mandshuricum against five phytopathogens. Crop Prot. 2010, 29, 295–299. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, S.; Cao, J.; Pang, X.; Zhang, Z.; Chen, Z.; Zhou, Y.; Geng, Z.; Sang, Y.; Du, S. Toxic and Repellent Effects of Volatile Phenylpropenes from Asarum heterotropoides on Lasioderma serricorne and Liposcelis bostrychophila. Molecules 2018, 23, 2131. [Google Scholar] [CrossRef]
- Pang, X.; Almaz, B.; Qi, X.-J.; Wang, Y.; Feng, Y.-X.; Geng, Z.-F.; Xi, C.; Du, S.-S. Bioactivity of essential oil from Atalantia buxifolia leaves and its major sesquiterpenes against three stored-product insects. J. Essent. Oil Bear. Plants 2020, 23, 38–50. [Google Scholar] [CrossRef]
- Lee, J.; Lee, Y.J.; Oh, S.-M.; Yi, J.-M.; Kim, N.S.; Bang, O.-S. Bioactive compounds from the roots of Asiasarum heterotropoides. Molecules 2013, 19, 122–138. [Google Scholar] [CrossRef]
- Jeong, M.; Kim, H.M.; Lee, J.S.; Choi, J.-H.; Jang, D.S. (−)-Asarinin from the roots of Asarum sieboldii induces apoptotic cell death via caspase activation in human ovarian cancer cells. Molecules 2018, 23, 1849. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.H.; Jang, J.H.; Cho, H.Y.; Lee, Y.B. Simultaneous determination of asarinin, β-eudesmol, and wogonin in rats using ultraperformance liquid chromatography–tandem mass spectrometry and its application to pharmacokinetic studies following administration of standards and Gumiganghwal-tang. Biomed. Chromatogr. 2021, 35, e5021. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.T.; Moon, J.N.; Saravana, P.; Tilahun, A.; Chun, B.-S. Composition of Asarum heterotropoides var. mandshuricum radix oil from different extraction methods and activities against human body odor-producing bacteria. J. Food Drug Anal. 2016, 24, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, Q.; Gu, H.; Yang, L. A modified approach for separating essential oil from the roots and rhizomes of Asarum heterotropoides var. mandshuricum. J. Clean. Prod. 2018, 172, 2075–2089. [Google Scholar] [CrossRef]
- Li, J.-H.; Cui, E.-J.; Zheng, C.-J. Chemical constituents from the roots of Asarum sieboldii Miq. var. Seoulense Nakai. Biochem. Syst. Ecol. 2021, 94, 104220. [Google Scholar] [CrossRef]
- Wang, Z.-Q. Analysis and evaluation on main active ingredients of Asarum heterotropoides var. mandshuricum from different habitats. Chin. Tradit. Herb. Drugs 2020, 24, 748–756. [Google Scholar]
- Liu, D.; Liu, C. Chemical Components of Volatile Oil Chemical of Cultivated Asarum Produced in Different Places. Chin. J. Exp. Tradit. Med. Formulae 2010, 16, 79–82. [Google Scholar]
- Ahmed, A.; Ayoub, K.; Chaima, A.J.; Hanaa, L.; Abdelaziz, C. Effect of drying methods on yield, chemical composition and bioactivities of essential oil obtained from Moroccan Mentha pulegium L. Biocatal. Agric. Biotechnol. 2018, 16, 638–643. [Google Scholar] [CrossRef]
- Zhu, L.; Li, M.; Yang, W.; Zhang, J.; Yang, X.; Zhang, Q.; Wang, H. Effects of different drying methods on drying characteristics and quality of Glycyrrhiza uralensis (licorice). Foods 2023, 12, 1652. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Zhang, Y.-F.; Shang, M.-Y.; Yu, J.; Tang, J.-W.; Liu, G.-X.; Li, Y.-L.; Li, X.-M.; Wang, X.; Cai, S.-Q. Phenanthrene derivatives from roots and rhizomes of Asarum heterotropoides var. mandshuricum. Fitoterapia 2017, 117, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Yang, N.; Sui, Y.; Li, Y.; Zhao, W.; Zhang, L.; Mu, L.; Tang, Z. Altitudinal Variation on Metabolites, Elements, and Antioxidant Activities of Medicinal Plant Asarum. Metabolites 2023, 13, 1193. [Google Scholar] [CrossRef] [PubMed]
- Shahat, A.A.; Hammouda, F.M.; Shams, K.A.; Saleh, M.A. Comparative chemical analysis of the essential oil of wild and cultivated fennel (Foeniculum vulgare Mill). J. Essent. Oil Bear. Plants 2012, 15, 314–319. [Google Scholar] [CrossRef]
- Arsenijević, J.; Drobac, M.; Šoštarić, I.; Jevđović, R.; Živković, J.; Ražić, S.; Moravčević, Đ.; Maksimović, Z. Comparison of essential oils and hydromethanol extracts of cultivated and wild growing Thymus pannonicus All. Ind. Crops Prod. 2019, 130, 162–169. [Google Scholar] [CrossRef]
- Ilić, Z.S.; Kevrešan, Ž.; Šunić, L.; Stanojević, L.; Milenković, L.; Stanojević, J.; Milenković, A.; Cvetković, D. Chemical profiling and antioxidant activity of wild and cultivated sage (Salvia officinalis L.) essential oil. Horticulturae 2023, 9, 624. [Google Scholar] [CrossRef]
- Hassiotis, C.; Ntana, F.; Lazari, D.; Poulios, S.; Vlachonasios, K. Environmental and developmental factors affect essential oil production and quality of Lavandula angustifolia during flowering period. Ind. Crops Prod. 2014, 62, 359–366. [Google Scholar] [CrossRef]
- Lal, R.; Gupta, P.; Chanotiya, C.; Mishra, A.; Kumar, A. Eminent high essential oil yielding and photosynthesis efficient genotype selection across multi-environments in the palmarosa {Cymbopogon martinii (Roxb.) Wats.}. Ecol. Genet. Genom. 2023, 27, 100167. [Google Scholar] [CrossRef]
- Das, S.; Prakash, B. Effect of Environmental Factors on Essential Oil Biosynthesis, Chemical Stability, and Yields. In Plant Essential Oils: From Traditional to Modern-Day Application; Springer: Berlin/Heidelberg, Germany, 2023; pp. 225–247. [Google Scholar]
- Elshamy, A.I.; Abd-ElGawad, A.M.; El-Amier, Y.A.; El Gendy, A.E.N.G.; Al-Rowaily, S.L. Interspecific variation, antioxidant and allelopathic activity of the essential oil from three Launaea species growing naturally in heterogeneous habitats in Egypt. Flavour Fragr. J. 2019, 34, 316–328. [Google Scholar] [CrossRef]
- Maurya, S.; Chandra, M.; Yadav, R.K.; Narnoliya, L.K.; Sangwan, R.S.; Bansal, S.; Sandhu, P.; Singh, U.; Kumar, D.; Sangwan, N.S. Interspecies comparative features of trichomes in Ocimum reveal insights for biosynthesis of specialized essential oil metabolites. Protoplasma 2019, 256, 893–907. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Z.; Gu, H.; Yang, F.; Zhang, L.; Yang, L. Improved method to obtain essential oil, asarinin and sesamin from Asarum heterotropoides var. mandshuricum using microwave-assisted steam distillation followed by solvent extraction and antifungal activity of essential oil against Fusarium spp. Ind. Crops Prod. 2021, 162, 113295. [Google Scholar] [CrossRef]
- Şanli, A.; Karadoğan, T. Geographical impact on essential oil composition of endemic Kundmannia anatolica Hub.-Mor.(Apiaceae). Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 131–137. [Google Scholar] [CrossRef]
- Wu, H.; Li, J.; Zhang, F.; Li, L.; Liu, Z.; He, Z. Essential oil components from Asarum sieboldii Miquel are toxic to the house dust mite Dermatophagoides farinae. Parasitol. Res. 2012, 111, 1895–1899. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, Y.-F.; Shang, M.-Y.; Liu, G.-X.; Li, Y.-L.; Wang, X.; Cai, S.-Q. Chemical constituents from the roots and rhizomes of Asarum heterotropoides var. mandshuricum and the in vitro anti-inflammatory activity. Molecules 2017, 22, 125. [Google Scholar] [CrossRef]
- Xie, B.; Shang, M.; Wang, X.; Cai, S.; Lee, K. A new aristolochic acid derivative from Asarum himalaicum. Yao Xue Xue Bao Acta Pharm. Sin. 2011, 46, 188–192. [Google Scholar]
- Xie, B.B.; Shang, M.Y.; Lee, K.-H.; Wang, X.; Komatsu, K.; Cai, S.Q. 5–Methoxyaristololactam I, the First Natural 5–Substituted Aristololactam from Asarum ichangense. Nat. Prod. Commun. 2011, 6, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.-S.; Ou, L.-F.; Teng, C.-M. Aristolochic acids, aristolactam alkaloids and amides from Aristolochia kankauensis. Phytochemistry 1994, 36, 1063–1068. [Google Scholar] [PubMed]
- Zhang, Z.; Kang, H. Protective effect of Asarum sieboldii essential oil on ovalbumin induced allergic rhinitis in rat. Biosci. Rep. 2020, 40, BSR20191370. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, S.; Huan, X.; Xie, Y.; Xie, Z.; Sun, Y.; Cao, N.; Xie, Q.; Wang, Y.; Wang, H. The antinociceptive and anti-inflammatory potential and pharmacokinetic study of significant alkamides ingredients from Asarum Linn. J. Ethnopharmacol. 2022, 297, 115569. [Google Scholar] [CrossRef]
- Chen, M.-T.; Yang, Y.-J.; Li, Y.-S.; Li, X.-J.; Zhang, W.K.; Wang, J.-P.; Wang, X.; Tian, G.-H.; Tang, H.-B. Shengfu oil enhances the healing of full-thickness scalded skin accompanying the differential regulation of β-catenin, Dlk1, and COX-2. Front. Pharmacol. 2017, 8, 801. [Google Scholar] [CrossRef]
- Baumgart, D.C.; Carding, S.R. Inflammatory bowel disease: Cause and immunobiology. Lancet 2007, 369, 1627–1640. [Google Scholar] [CrossRef]
- Zuo, X.; Gu, Y.; Wang, C.; Zhang, J.; Zhang, J.; Wang, G.; Wang, F. A systematic review of the anti-inflammatory and immunomodulatory properties of 16 essential oils of herbs. Evid.-Based Complement. Altern. Med. 2020, 2020, 8878927. [Google Scholar] [CrossRef]
- Pharmacopoeia, C. Commission. In Pharmacopoeia of the People’s Republic of China; China Medical Science and Technology Press: Beijing, China, 2010. [Google Scholar]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27. [Google Scholar] [CrossRef]
- Xiong, Y.; Jing, Y.; Shang, M.; Li, C.; Ye, J.; Wang, X.; Cai, S. Anti-inflammatory and anti-nociceptive effects in mice of water and ethanol extracts of roots and rhizomes of Asarum heterotropoides var. mandshuricum. Zhongguo Zhong Yao Za Zhi Zhongguo Zhongyao Zazhi China J. Chin. Mater. Medica 2009, 34, 2252–2257. [Google Scholar]
- Kim, S.-J.; Zhang, C.G.; Lim, J.T. Mechanism of anti-nociceptive effects of Asarum sieboldii Miq. Radix: Potential role of bradykinin, histamine and opioid receptor-mediated pathways. J. Ethnopharmacol. 2003, 88, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, W.; Xiang, Q.; Kim, J.; Dufresne, C.; Liu, Y.; Li, T.; Chen, S. Creation of a Plant Metabolite Spectral Library for Untargeted and Targeted Metabolomics. Int. J. Mol. Sci. 2023, 24, 2249. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M. KEGG bioinformatics resource for plant genomics and metabolomics. Plant Bioinform. Methods Protoc. 2016, 1374, 55–70. [Google Scholar]
- Liebisch, G.; Fahy, E.; Aoki, J.; Dennis, E.A.; Durand, T.; Ejsing, C.S.; Fedorova, M.; Feussner, I.; Griffiths, W.J.; Köfeler, H. Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures. J. Lipid Res. 2020, 61, 1539–1555. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
Compound | R24 | L24 |
---|---|---|
(3,4,5-Trihydroxy-6-methyloxan-2-yl)2-(methylamino)benzoate | 0.1714 | 3.7265 |
3,4-Dimethoxycinnamic acid | 4.7718 | 0.3927 |
2-(hydroxymethyl)-5-[6-(methylamino)purin-9-yl]oxolan-3-ol | 4.2107 | 0.3638 |
Saxitoxin | 0.1501 | 6.4897 |
4-Methoxycinnamaldehyde | 2.4054 | 4.9084 |
[(2S)-2,3-dihydroxypropyl] (6Z,9Z,12Z)-octadeca-6,9,12-trienoate | 0.1474 | 5.3676 |
Salsolinol | 0.2827 | 2.7246 |
Isorhamnetin | 0.0134 | 0.1739 |
Indoline-2-carboxylic acid | 0.1248 | 0.6896 |
Choline | 3.9046 | 4.8109 |
DL-Arginine | 3.1928 | 0.577 |
6-Methoxyflavanone | 0.1519 | 0.3365 |
Normorphine | 0.1469 | 1.3902 |
(S)-Glutamic acid | 2.9912 | 1.0074 |
(2E,4E)-N-(2-methylpropyl)deca-2,4-dienamide | 4.4423 | 1.4944 |
Muramic acid | 0.9621 | 0.0958 |
N-Desmethylvenlafaxine | 1.0444 | 0.0757 |
gamma-Glutamylglutamic acid | 2.3282 | 6.4897 |
Asarinin | 1.5148 | 4.9084 |
O-Desmethylvenlafaxine | 1.5097 | 4.8109 |
Asparagine | 1.9377 | 3.7265 |
Sauchinone | 2.103 | 3.6052 |
(9Z,11E,15Z)-13-hydroxyoctadeca-9,11,15-trienoic acid | 1.0682 | 2.7246 |
9-Oxo-10(E),12(E)-octadecadienoic acid | 1.2009 | 2.4944 |
Adenosine | 1.1578 | 1.6364 |
Acetyl-trans-resveratrol | 3.722 | 1.4944 |
L-Pyroglutamic acid | 1.6079 | 1.3886 |
(2E,4E)-N-(2-methylpropyl)dodeca-2,4-dienamide | 5.6764 | 1.2843 |
Methyl caffeate | 1.0602 | 1.1626 |
5-Methyluridine | 1.2054 | 1.0929 |
Menadione | 1.1893 | 1.078 |
Kaempferol | 0.0098 | 1.0608 |
Stiripentol | 0.0889 | 1.0074 |
Aristolochic acids | 0.0006 | 0.0062 |
Group | Degree of Swelling (mg) | Inhibition Rate (%) | Group | Degree of Swelling (mg) | Inhibition Rate (%) |
---|---|---|---|---|---|
NS | 11.40 ± 1.22 | 0 | Ibuprofen | 6.90 ± 0.43 ** | 39.47 |
V2low | 8.60 ± 0.94 ** | 29.82 | E2low | 9.38 ± 0.53 * | 17.72 |
V2mild | 7.62 ± 0.99 ** | 33.04 | E2mild | 8.68 ± 0.92 ** | 23.86 |
V2high | 6.52 ± 0.86 ** | 42.81 | E2high | 8.38 ± 0.88 ** | 26.49 |
V8low | 6.42 ± 0.50 ** | 43.68 | E8low | 8.68 ± 0.76 ** | 23.86 |
V8mild | 5.46 ± 0.78 ** | 52.11 | E8medium | 8.04 ± 0.61 ** | 29.47 |
V8high | 4.98 ± 0.61 ** | 56.32 | E8high | 7.01 ± 0.80 ** | 38.6 |
Group | Number of Twists (Second Rate) | Inhibition Rate (%) | Group | Number of Twists (Second Rate) | Inhibition Rate (%) |
---|---|---|---|---|---|
NS | 41.2 ± 2.94 | 0 | DEX | 19.6 ± 2.70 ** | 52.43 |
V2low | 28.4 ± 3.20 ** | 31.07 | E2low | 31.2 ± 4.54 ** | 24.27 |
V2mild | 21.8 ± 3.96 ** | 47.09 | E2mild | 26.6 ± 4.80 ** | 35.44 |
V2high | 17.6 ± 1.81 ** | 57.28 | E2high | 19.2 ± 3.26 ** | 53.4 |
V8low | 20.8 ± 3.27 ** | 49.51 | E8low | 25.8 ± 4.86 ** | 37.38 |
V8mild | 14.4 ± 1.14 ** | 65.05 | E8medium | 18.6 ± 3.04 ** | 54.85 |
V8high | 6.20 ± 2.58 ** | 84.95 | E8high | 11.4 ± 3.02 ** | 72.33 |
No. | Origin | Latitude and Longitude | Growth Years | Collection Date | No. | Origin | Latitude and Longitude | Growth Years | Collection Date |
---|---|---|---|---|---|---|---|---|---|
1 | Fusong, Jilin | N 41°55′ E 128°01′ | Four | 2020.07 | 19 | Liuhe, Jilin | N 42°07′ E 125°35′ | Six | 2020.08 |
2 | Fusong, Jilin | N 41°55′ E 128°01′ | Six | 2020.07 | 20 | Liuhe, Jilin | N 42°07′ E 125°35′ | Eight | 2020.08 |
3 | Jian, Jilin | N 40°58′ E 126°18′ | Seven | 2020.06 | 21 | Tonghua, Jilin | N 42°47′ E 126°23′ | Four | 2020.06 |
4 | Jian, Jilin | N 40°58′ E 126°18′ | Seven | 2020.07 | 22 | Tonghua, Jilin | N 42°47′ E 126°23′ | Four | 2020.07 |
5 | Jian, Jilin | N 40°58′ E 126°18′ | Seven | 2020.08 | 23 | Tonghua, Jilin | N 42°47′ E 126°23′ | Four | 2020.08 |
6 | Jian, Jilin | N 40°58′ E 126°18′ | Seven | 2020.09 | 24 | Tonghua, Jilin | N 42°47′ E 126°23′ | Five | 2020.07 |
7 | Jian, Jilin | N 40°58′ E 126°18′ | Wild | 2020.06 | 25 | Tonghua, Jilin | N 42°47′ E 126°23′ | Five | 2020.08 |
8 | Jian, Jilin | N 40°58′ E 126°18′ | Wild | 2020.07 | 26 | Tonghua, Jilin | N 42°47′ E 126°23′ | Six | 2020.06 |
9 | Jian, Jilin | N 40°58′ E 126°18′ | Wild | 2020.08 | 27 | Tonghua, Jilin | N 42°47′ E 126°23′ | Six | 2020.07 |
10 | Jian, Jilin | N 40°58′ E 126°18′ | Wild | 2020.09 | 28 | Tonghua, Jilin | N 42°47′ E 126°23′ | Six | 2020.08 |
11 | Liuhe, Jilin | N 42°07′ E 125°35′ | Four | 2020.06 | 29 | Wangqing, Jilin | N 43°36′ E 129°44′ | Ten | 2020.07 |
12 | Liuhe, Jilin | N 42°07′ E 125°35′ | Four | 2020.07 | 30 | Xinbin, Liaoning | N 41°22′ E 124°49′ | Ten | 2020.06 |
13 | Liuhe, Jilin | N 42°07′ E 125°35′ | Four | 2020.08 | 31 | Xinbin, Liaoning | N 41°22′ E 124°49′ | Wild | 2020.06 |
14 | Liuhe, Jilin | N 42°07′ E 125°35′ | Five | 2020.06 | 32 | Ningqiang, Shanxi | N 33°48′ E 105°31′ | Five | 2020.07 |
15 | Liuhe, Jilin | N 42°07′ E 125°35′ | Five | 2020.07 | 33 | Ningqiang, Shanxi | N 33°48′ E 105°31′ | Six | 2020.07 |
16 | Liuhe, Jilin | N 42°07′ E 125°35′ | Five | 2020.08 | 34 | Ningqiang, Shanxi | N 33°48′ E 105°31′ | Wild | 2020.07 |
17 | Liuhe, Jilin | N 42°07′ E 125°35′ | Six | 2020.06 | 35 | Lveyang, Shanxi | N 33°33′ E 106°16′ | Six | 2020.07 |
18 | Liuhe, Jilin | N 42°07′ E 125°35′ | Six | 2020.07 | 36 | Lveyang, Shanxi | N 33°33′ E 106°16′ | Wild | 2020.07 |
Pretreatment Group | Dose (μL.kg−1) | Dose (μL.kg−1) | |
---|---|---|---|
Normal Saline | NS | 0 | 0 |
Volatile oil | V2 Low | 1.65 | 1.65 |
Volatile oil | V2 mild | 3.3 | 3.3 |
Volatile oil | V2 high | 6.6 | 6.6 |
Volatile oil | V8 Low | 1.7 | 1.7 |
Volatile oil | V8 mild | 3.4 | 3.4 |
Volatile oil | V8 high | 6.8 | 6.8 |
Dexamethasone/ibuprofen | DEX/IBP | (DEX) 0.26 | (IBP) 0.104 |
Ethanol extract | E2 Low | 8.85 | 8.85 |
Ethanol extract | E2 mild | 17.7 | 17.7 |
Ethanol extract | E2 high | 35.4 | 35.4 |
Ethanol extract | E8 Low | 13.9 | 13.9 |
Ethanol extract | E8 mild | 27.8 | 27.8 |
Ethanol extract | E8 high | 55.6 | 55.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, Z.; Zhao, G.; Wang, Y.; Xu, X.; Wang, Y.; Zhang, Z.; Wang, G. Comparative Biochemical and Pharmacodynamic Analyses of Asarum heterotropoides Fr. Schmidt var. Mandshuricum (Maxim) Kitag and Asarum sieboldii Miq var. Seoulense Nakai Roots. Pharmaceuticals 2024, 17, 1301. https://doi.org/10.3390/ph17101301
Li H, Wang Z, Zhao G, Wang Y, Xu X, Wang Y, Zhang Z, Wang G. Comparative Biochemical and Pharmacodynamic Analyses of Asarum heterotropoides Fr. Schmidt var. Mandshuricum (Maxim) Kitag and Asarum sieboldii Miq var. Seoulense Nakai Roots. Pharmaceuticals. 2024; 17(10):1301. https://doi.org/10.3390/ph17101301
Chicago/Turabian StyleLi, Huiling, Zhiqing Wang, Guangyuan Zhao, Yanhong Wang, Xuanwei Xu, Yingping Wang, Ze Zhang, and Guanghui Wang. 2024. "Comparative Biochemical and Pharmacodynamic Analyses of Asarum heterotropoides Fr. Schmidt var. Mandshuricum (Maxim) Kitag and Asarum sieboldii Miq var. Seoulense Nakai Roots" Pharmaceuticals 17, no. 10: 1301. https://doi.org/10.3390/ph17101301
APA StyleLi, H., Wang, Z., Zhao, G., Wang, Y., Xu, X., Wang, Y., Zhang, Z., & Wang, G. (2024). Comparative Biochemical and Pharmacodynamic Analyses of Asarum heterotropoides Fr. Schmidt var. Mandshuricum (Maxim) Kitag and Asarum sieboldii Miq var. Seoulense Nakai Roots. Pharmaceuticals, 17(10), 1301. https://doi.org/10.3390/ph17101301