Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = gill tissue injury

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 10849 KiB  
Article
Mitigating Effect of Taurine Combined with Corona Dormancy on Oxidative Stress in Trachinotus ovatus Under Low-Temperature Stress
by Siwei Liu, Kaicui Zhong, Jiamei Zhong, Xiuping Fan and Xiaoming Qin
Int. J. Mol. Sci. 2025, 26(7), 2927; https://doi.org/10.3390/ijms26072927 - 24 Mar 2025
Viewed by 546
Abstract
The purpose of the present work was to establish the transportation conditions for keeping Trachinotus ovatus alive by means of corona-induced dormancy in combination with taurine. It also investigated the synergistic regulatory effects on oxidative stress mitigation and immune function during low-temperature conditions [...] Read more.
The purpose of the present work was to establish the transportation conditions for keeping Trachinotus ovatus alive by means of corona-induced dormancy in combination with taurine. It also investigated the synergistic regulatory effects on oxidative stress mitigation and immune function during low-temperature conditions and clarified the underlying mechanism. The dormancy pretreatment induced by pulsed direct current could reduce the accumulation of reactive oxygen species in fish under hypothermal and water-restricted conditions and significantly enhance the environmental adaptability of Trachinotus ovatus. The survival period and survival rate of Trachinotus ovatus were significantly increased when combined with taurine at a concentration of 70 mg/L, and the activities of enzymes related to oxidative stress also increased significantly, including catalase, superoxide dismutase (SOD), glutathione S-transferase, and so on. The underlying mechanism involved the upregulation of mRNA expression in the Nrf2/Keap1 pathway components. Furthermore, taurine supplementation was found to bolster the immune function of Trachinotus ovatus. Histological examinations revealed that taurine exerted protective effects on the ultrastructural integrity of the liver and gills, which were susceptible to stress-induced damage during transportation. Altogether, the concerted action of corona dormancy and taurine significantly mitigated the stress responses and tissue injuries of fish during low-temperature live transportation, thereby providing a mechanistic basis for the enhancement of live fish transportation techniques. Full article
(This article belongs to the Special Issue Molecular Biology of Fish Stress)
Show Figures

Figure 1

18 pages, 3530 KiB  
Article
Effects of Salinity Stress on Histological Changes, Glucose Metabolism Index and Transcriptomic Profile in Freshwater Shrimp, Macrobrachium nipponense
by Yiming Li, Yucong Ye, Wen Li, Xingguo Liu, Yunlong Zhao, Qichen Jiang and Xuan Che
Animals 2023, 13(18), 2884; https://doi.org/10.3390/ani13182884 - 11 Sep 2023
Cited by 10 | Viewed by 3087
Abstract
Salinity is an important factor in the aquatic environment and affects the ion homeostasis and physiological activities of crustaceans. Macrobrachium nipponense is a shrimp that mainly lives in fresh and low-salt waters and plays a huge economic role in China’s shrimp market. Currently, [...] Read more.
Salinity is an important factor in the aquatic environment and affects the ion homeostasis and physiological activities of crustaceans. Macrobrachium nipponense is a shrimp that mainly lives in fresh and low-salt waters and plays a huge economic role in China’s shrimp market. Currently, there are only a few studies on the effects of salinity on M. nipponense. Therefore, it is of particular importance to study the molecular responses of M. nipponense to salinity fluctuations. In this study, M. nipponense was set at salinities of 0, 8, 14 and 22‰ for 6 weeks. The gills from the control (0‰) and isotonic groups (14‰) were used for RNA extraction and transcriptome analysis. In total, 593 differentially expressed genes (DEGs) were identified, of which 282 were up-regulated and 311 were down-regulated. The most abundant gill transcripts responding to different salinity levels based on GO classification were organelle membrane (cellular component), creatine transmembrane transporter activity (molecular function) and creatine transmembrane transport (biological function). KEGG analysis showed that the most enriched and significantly affected pathways included AMPK signaling, lysosome and cytochrome P450. In addition, 15 DEGs were selected for qRT-PCR verification, which were mainly related to ion homeostasis, glucose metabolism and lipid metabolism. The results showed that the expression patterns of these genes were similar to the high-throughput data. Compared with the control group, high salinity caused obvious injury to gill tissue, mainly manifested as contraction and relaxation of gill filament, cavity vacuolation and severe epithelial disintegration. Glucose-metabolism-related enzyme activities (e.g., pyruvate kinase, hexokinase, 6-phosphate fructose kinase) and related-gene expression (e.g., hexokinase, pyruvate kinase, 6-phosphate fructose kinase) in the gills were significantly higher at a salinity of 14‰. This study showed that salinity stress activated ion transport channels and promoted an up-regulated level of glucose metabolism. High salinity levels caused damage to the gill tissue of M. nipponense. Overall, these results improved our understanding of the salt tolerance mechanism of M. nipponense. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

17 pages, 5046 KiB  
Article
The Effects of Acute Exposure to Ammonia on Oxidative Stress, Hematological Parameters, Flesh Quality, and Gill Morphological Changes of the Large Yellow Croaker (Larimichthys crocea)
by Meijie Guo, Zhenkun Xu, Hongzhi Zhang, Jun Mei and Jing Xie
Animals 2023, 13(15), 2534; https://doi.org/10.3390/ani13152534 - 6 Aug 2023
Cited by 21 | Viewed by 2511
Abstract
Ammonia is considered to be the major chemical pollutant causing fish poisoning in aquaculture. This research aimed to evaluate the impact of acute ammonia exposure on the large yellow croaker’s meat quality, gill morphology, liver oxidative stress, and hematological parameters. The fish were [...] Read more.
Ammonia is considered to be the major chemical pollutant causing fish poisoning in aquaculture. This research aimed to evaluate the impact of acute ammonia exposure on the large yellow croaker’s meat quality, gill morphology, liver oxidative stress, and hematological parameters. The fish were exposed to total ammonia nitrogen concentrations of 0, 2.96, 5.92, and 8.87 mg/L for 48 h, respectively. The findings demonstrated that all ammonia-exposed fish had higher liver lactate dehydrogenase and glutamic oxalate transaminase activities. The glucose, blood urea nitrogen, and creatinine levels in 8.87 mg/L total ammonia nitrogen (TAN) were higher than other samples. The total protein, albumin, and triglyceride levels in serum decreased significantly in ammonia-exposed samples. After 48 h of ammonia exposure, superoxide dismutase activities showed a 76.1%, 118.0%, and 156.8% increase when fish were exposed to 2.96, 5.92, and 8.87 mg/L TAN, respectively. Catalase activities and glutathione contents were considerably higher (p < 0.05) in all ammonia-treated samples compared to 0 mg/L TAN. The ammonia-treated gill lamellae become thicker, shorter, and curved. Additionally, the ammonia exposure resulted in the accumulation of free amino acids and the loss of nucleotides. The inosine monophosphate and adenosine monophosphate contents in the flesh were decreased after 12 h of exposure to 2.96, 5.92, and 8.87 mg/L ammonia compared to the control group. Overall, large yellow croakers exposed to ammonia for 6 h presented not only changes in serum composition but also oxidative stress, liver and gill tissue damage and flesh quality deterioration. Full article
(This article belongs to the Special Issue The Effects of Pollution and Other Stressors on Fish Health)
Show Figures

Figure 1

15 pages, 10680 KiB  
Article
Transcriptomic Networks Reveal the Tissue-Specific Cold Shock Responses in Japanese Flounder (Paralichthys olivaceus)
by Jiayi He, Qing Zhu, Ping Han, Tianyu Zhou, Juyan Li, Xubo Wang and Jie Cheng
Biology 2023, 12(6), 784; https://doi.org/10.3390/biology12060784 - 28 May 2023
Cited by 2 | Viewed by 2629
Abstract
Low temperature is among the important factors affecting the distribution, survival, growth, and physiology of aquatic animals. In this study, coordinated transcriptomic responses to 10 °C acute cold stress were investigated in the gills, hearts, livers, and spleens of Japanese flounder (Paralichthys [...] Read more.
Low temperature is among the important factors affecting the distribution, survival, growth, and physiology of aquatic animals. In this study, coordinated transcriptomic responses to 10 °C acute cold stress were investigated in the gills, hearts, livers, and spleens of Japanese flounder (Paralichthys olivaceus), an important aquaculture species in east Asia. Histological examination suggested different levels of injury among P. olivaceus tissues after cold shock, mainly in the gills and livers. Based on transcriptome and weighted gene coexpression network analysis, 10 tissue-specific cold responsive modules (CRMs) were identified, revealing a cascade of cellular responses to cold stress. Specifically, five upregulated CRMs were enriched with induced differentially expressed genes (DEGs), mainly corresponding to the functions of “extracellular matrix”, “cytoskeleton”, and “oxidoreductase activity”, indicating the induced cellular response to cold shock. The “cell cycle/division” and “DNA complex” functions were enriched in the downregulated CRMs for all four tissues, which comprised inhibited DEGs, suggesting that even with tissue-specific responses, cold shock may induce severely disrupted cellular functions in all tissues, reducing aquaculture productivity. Therefore, our results revealed the tissue-specific regulation of the cellular response to low-temperature stress, which warrants further investigation and provides more comprehensive insights for the conservation and cultivation of P. olivaceus in cold water. Full article
(This article belongs to the Special Issue Advances and Insights in Aquatic Physiology)
Show Figures

Figure 1

15 pages, 2018 KiB  
Article
Biochemical and Pathophysiological Responses in Capoeta capoeta under Lethal and Sub-Lethal Exposures of Silver Nanoparticles
by Dariush Azadikhah, Ahmad Mohamadi Yalsuyi, Shubhajit Saha, Nimai Chandra Saha and Caterina Faggio
Water 2023, 15(3), 585; https://doi.org/10.3390/w15030585 - 2 Feb 2023
Cited by 19 | Viewed by 3352
Abstract
The increasing use of nano-based products raises concerns regarding potential risks related to their manufacturing, transportation, waste disposal, and management operations. We used the riverine carp, Capoeta capoeta, as an aquatic animal model to demonstrate the acute toxicity of silver nanoparticles (Ag-NPs). [...] Read more.
The increasing use of nano-based products raises concerns regarding potential risks related to their manufacturing, transportation, waste disposal, and management operations. We used the riverine carp, Capoeta capoeta, as an aquatic animal model to demonstrate the acute toxicity of silver nanoparticles (Ag-NPs). This study focuses on acute toxicity first, and then integrates the findings through histopathology, hematological, and biochemical testing of lethal and sub-lethal Ag-NPs exposures. Red blood corpuscles (RBC), white blood corpuscles (WBC), hematocrit, and total serum glucose levels were significantly lower in Ag-NPs-exposed fish than in control fish. Total serum protein, triglycerides, cholesterol, and albumin were all significantly greater in exposed fish. This research focused on the impacts of Ag-NPs on gills and liver tissue, and it was found that the level of injury escalated as the concentration of Ag NPs increased. Epithelial lifting of secondary lamellas (ELSL), epithelial hypertrophy (EH) of secondary lamellae (SL), leukocyte infiltration (LI), and bottom hyperplasia (BH) were all detected in Ag-NPs-exposed fish. In Ag-NPs-treated liver cross-sections of Capoeta capoeta, macrophage aggregates (MA), fatty liver (FL), sinusoid dilatation (SD), and necrosis (N) were identified. Ag-NPs dosages, according to biomarker representations, elicit stress-specific biochemical and physiological effects, compromising the general overall health status of aquatic animals. The gradients of toxic responses across exposure concentrations and portrayals of disrupted fish health with increasing silver nanoparticle exposure time indicate a reduced physiological ability for surviving in the wild. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

14 pages, 1460 KiB  
Article
Identification of microRNAs in Silver Carp (Hypophthalmichthys molitrix) Response to Hypoxia Stress
by Qiaoxin Wang, Xiaohui Li, Hang Sha, Xiangzhong Luo, Guiwei Zou and Hongwei Liang
Animals 2021, 11(10), 2917; https://doi.org/10.3390/ani11102917 - 9 Oct 2021
Cited by 16 | Viewed by 2479
Abstract
Hypoxia is one of the serious stresses in fish culture, which can lead to physical and morphological changes, and cause injury and even death to fish. Silver carp (Hypophthalmichthys molitrix) is an important economic fish and widely distributed in China. MicroRNA [...] Read more.
Hypoxia is one of the serious stresses in fish culture, which can lead to physical and morphological changes, and cause injury and even death to fish. Silver carp (Hypophthalmichthys molitrix) is an important economic fish and widely distributed in China. MicroRNA is a kind of endogenous non-coding single-stranded small RNA, which is involved in cell development, and immune response and gene expression regulation. In this study, silver carp were kept in the closed containers for hypoxia treatment by spontaneous oxygen consumption. The samples of heart, brain, liver and gill were collected, and the total RNAs extracted separately from the four tissues were mixed in equal amounts according to the concentration. Afterwards, the RNA pool was constructed for high-throughput sequencing, and based on the small RNA sequencing, the differentially expressed microRNAs were identified. Furthermore, their target gene prediction and enrichment analyses were carried out. The results showed that a total of 229 known miRNAs and 391 putative novel miRNAs were identified, which provided valuable resources for further study on the regulatory mechanism of miRNAs in silver carp under hypoxia stress. The authors verified 16 differentially expressed miRNAs by qRT-PCR, and the results were consistent with small RNA sequencing (sRNA-seq). The predicted target genes number of differentially expressed miRNAs was 25,146. GO and KEGG functional enrichment analysis showed that these target genes were mainly involved in the adaption of hypoxia stress in silver carp through biological regulation, catalytic activity and apoptosis. This study provides references for further study of interaction between miRNAs and target genes, and the basic data for the response mechanism under hypoxia stress in silver carp. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

20 pages, 4796 KiB  
Article
Copper Oxide Nanoparticles Alter Serum Biochemical Indices, Induce Histopathological Alterations, and Modulate Transcription of Cytokines, HSP70, and Oxidative Stress Genes in Oreochromis niloticus
by Hany M. R. Abdel-Latif, Mahmoud A. O. Dawood, Samy F. Mahmoud, Mustafa Shukry, Ahmed E. Noreldin, Hanan A. Ghetas and Mohamed A. Khallaf
Animals 2021, 11(3), 652; https://doi.org/10.3390/ani11030652 - 1 Mar 2021
Cited by 49 | Viewed by 4356
Abstract
In the present study, fish were exposed to sub-lethal doses of CuONPs (68.92 ± 3.49 nm) (10 mg/L, 20 mg/L, and 50 mg/L) for a long exposure period (25 days). Compared to the control group (0.0 mg/L CuONPs), a significant dose-dependent elevation in [...] Read more.
In the present study, fish were exposed to sub-lethal doses of CuONPs (68.92 ± 3.49 nm) (10 mg/L, 20 mg/L, and 50 mg/L) for a long exposure period (25 days). Compared to the control group (0.0 mg/L CuONPs), a significant dose-dependent elevation in blood urea and creatinine values, serum alanine transaminase, aspartate transaminase, and alkaline phosphatase enzyme activities were evident in CuONPs-exposed groups (p < 0.05). Fish exposure to 50 mg/L CuONPs significantly upregulated the transcription of pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta, interleukin 12, and interleukin 8), heat shock protein 70, apoptosis-related gene (caspase 3), and oxidative stress-related (superoxide dismutase, catalase, and glutathione peroxidase) genes in liver and gills of the exposed fish in comparison with those in the control group (p < 0.05). Moreover, varying histopathological injuries were noticed in the hepatopancreatic tissues, posterior kidneys, and gills of fish groups correlated to the tested exposure dose of CuONPs. In summary, our results provide new insights and helpful information for better understanding the mechanisms of CuONPs toxicity in Nile tilapia at hematological, molecular levels, and tissue levels. Full article
(This article belongs to the Collection Effects of Pollutants on Fish)
Show Figures

Figure 1

16 pages, 3500 KiB  
Article
Effects of Acute Ammonia Stress on Antioxidant Responses, Histopathology and Ammonia Detoxification Metabolism in Triangle Sail Mussels (Hyriopsis cumingii)
by Qianqian Zhao, Ke Feng, Lianbo Zhang, Yunpeng Bai and Weizhi Yao
Water 2021, 13(4), 425; https://doi.org/10.3390/w13040425 - 5 Feb 2021
Cited by 31 | Viewed by 3954
Abstract
Ammonia is one of the major pollutants in the aquatic ecosystem. Hyriopsis cumingii has great potential for the restoration of eutrophic water. However, there is no study investigating the effect of ammonia exposure in H. cumingii. The median lethal concentration (96 h [...] Read more.
Ammonia is one of the major pollutants in the aquatic ecosystem. Hyriopsis cumingii has great potential for the restoration of eutrophic water. However, there is no study investigating the effect of ammonia exposure in H. cumingii. The median lethal concentration (96 h LC50) of unionized ammonium was 12.86 mg/L in H. cumingii. In the study, H. cumingii were exposed to 6.43 mg L−1 unionized ammonium (1/2 96 h LC50) for 0, 6, 12, 24, 48, 72, and 96 h. High environment ammonia induced antioxidant response to protect the body from oxidative damage. After exposure to ammonia, there was a same trend of induction followed by inhibition of the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione-S-transferases (GST) in the hepatopancreas and gills of H. cumingii. However, the antioxidant response could not completely counteract the oxidation effect during the exposure period, resulting in lipid peroxidation (LPO) and tissue injury in the hepatopancreas and gills of H. cumingii eventually. Moreover, this study indicated that glutamine synthetase (GS), glutamate dehydrogenase (GDH), alanine aminotransaminase (ALT), and aspartate aminotransaminase (AST) in the hepatopancreas and gills may play an important role in ammonia detoxification of H. cumingii. Our results will be helpful to understand the mechanism of aquatic toxicology induced by ammonia in shellfish. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

11 pages, 9341 KiB  
Article
Histological Changes in Gills of Two Fish Species as Indicators of Water Quality in Jansen Lagoon (São Luís, Maranhão State, Brazil)
by Débora M. S. Santos, Mércia Regina S. Melo, Denise Carla S. Mendes, Iolanda Karoline B. S. Rocha, Jakeline Priscila L. Silva, Sildiane M. Cantanhêde and Paulo C. Meletti
Int. J. Environ. Res. Public Health 2014, 11(12), 12927-12937; https://doi.org/10.3390/ijerph111212927 - 12 Dec 2014
Cited by 55 | Viewed by 14134
Abstract
Water quality of the Jansen Lagoon (São Luís, Maranhão State, Brazil) was assessed through histological biomarkers and microbiological parameters. To this end, 29 fish specimens (11 Centropomus undecimalis and 18 Sardinella sp) and eight water samples were collected during the rainy and dry [...] Read more.
Water quality of the Jansen Lagoon (São Luís, Maranhão State, Brazil) was assessed through histological biomarkers and microbiological parameters. To this end, 29 fish specimens (11 Centropomus undecimalis and 18 Sardinella sp) and eight water samples were collected during the rainy and dry periods of 2013. The lagoon water showed thermotolerant coliform indices above the limit set forth in CONAMA Resolution 357/2005. Histological changes observed in the gills were: lifting of the respiratory epithelium, hyperplasia of the lamellar epithelium, incomplete and complete fusion of several lamellae, disorganization of the lamellae, congestion of blood vessels, aneurysms, hypertrophy of the respiratory epithelium, hemorrhage and rupture of the lamellar epithelium and parasite. The histological alteration index (HAI) average value to Sardinella sp was 31.8 and to C. undecimalis was 22.2. The average HAI value in both species corresponds to category 21–50, with tissue injuries being classified from moderate to severe. The presence of histological injuries and the HAI values indicate that the fish sampled from the Jansen Lagoon are reacting to non-specific xenobiotics present at the site. Full article
Show Figures

Graphical abstract

Back to TopTop