Transcriptomic Networks Reveal the Tissue-Specific Cold Shock Responses in Japanese Flounder (Paralichthys olivaceus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Acute Cold Shock Challenge for Adult P. olivaceus
2.2. Histological Examination of P. olivaceus Tissues
2.3. RNA Isolation, Library Preparation, and Sequencing
2.4. Transcriptome Analysis of P. olivaceus Tissues in Response to Cold Shock Stress
2.5. Gene Coexpression Network Construction and Functional Characterization
3. Results and Discussion
3.1. Histological Observation of P. olivaceus Tissues after Cold Shock Challenge
3.2. Tissue-Specific Transcriptomic Response of P. olivaceus under Cold Shock Stress
3.3. Tissue Specific Coexpression Network of P. olivaceus DEGs under Cold Shock Stress
3.4. Coordinated Regulation of the Tissue-Specific P. olivaceus DEGs
3.5. Modulation of P. olivaceus CRMs with the Cold Shock Response
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alfonso, S.; Gesto, M.; Sadoul, B. Temperature increase and its effects on fish stress physiology in the context of global warming. J. Fish. Biol. 2021, 98, 1496–1508. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.H.; Patrick, P.H.; Rytwinski, T.; Taylor, J.J.; Willmore, W.G.; Reesor, B.; Cooke, S.J. An updated review of cold shock and cold stress in fish. J. Fish. Biol. 2022, 100, 1102–1137. [Google Scholar] [CrossRef]
- Donaldson, M.R.; Cooke, S.J.; Patterson, D.A.; Macdonald, J.S. Cold shock and fish. J. Fish. Biol. 2010, 73, 1491–1530. [Google Scholar] [CrossRef]
- Cheng, C.H.; Liang, H.Y.; Luo, S.W.; Wang, A.L.; Ye, C.X. The protective effects of vitamin C on apoptosis, DNA damage and proteome of pufferfish (Takifugu obscurus) under low temperature stress. J. Therm. Biol. 2017, 71, 128–135. [Google Scholar] [CrossRef]
- Chandra, J.; Samali, A.; Orrenius, S. Triggering and modulation of apoptosis by oxidative stress. Free. Radic. Biol. Med. 2000, 29, 323–333. [Google Scholar] [CrossRef]
- Ren, X.; Yu, X.; Gao, B.; Liu, P.; Li, J. Characterization of three caspases and their pathogen-induced expression pattern in Portunus trituberculatus. Fish. Shellfish. Immun. 2017, 66, 189–197. [Google Scholar] [CrossRef]
- Zhi, B.; Wang, L.; Wang, G.; Zhang, X. Contribution of the caspase gene sequence diversification to the specifically antiviral defense in invertebrate. PLoS ONE 2011, 6, e24955. [Google Scholar] [CrossRef] [PubMed]
- Nie, M.; Hu, J.; Lu, Y.; Wu, Z.; Wang, L.; Xu, D.; Zhang, P.; You, F. Cold effect analysis and screening of SNPs associated with cold-tolerance in the olive flounder Paralichthys olivaceus. J. Appl. Ichthyol. 2019, 35, 924–932. [Google Scholar] [CrossRef]
- Nie, M.; Lu, Y.; Zou, C.; Wang, L.; Zhang, P.; You, F. Insight into AMPK regulation mechanism in vivo and in vitro: Responses to low temperatures in the olive flounder Paralichthys olivaceus. J. Thermal Biol. 2020, 91, 102640. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Liu, M.; Zhang, D.; Wang, J.; Niu, H.; Liu, Y.; Wu, Z.; Han, B.; Zhai, W.; Shen, Y.; et al. Global identification of the genetic networks and cis-regulatory elements of the cold response in zebrafish. Nucleic Acids Res. 2015, 43, 9198–9213. [Google Scholar] [CrossRef]
- Gao, S.; Chang, Y.; Zhao, X.; Sun, B.; Zhang, L.; Liang, L.; Dong, Z. The effect of different bicarbonate alkalinity on the gill structure of amur ide (Leuciscus waleckii). Acta Hydrobiol. Sinica. 2020, 44, 736–743. [Google Scholar]
- Vornanen, M.; Hassinen, M.; Koskinen, H.; Krasnov, A. Steady-state effects of temperature acclimation on the transcriptome of the rainbow trout heart. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R1177–R1184. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wen, J.; Ou, Y.; Li, J.; Zhou, H. Effects of transport stress on liver, gill and spleen tissue structure of juvenile Eleutheronema tetradactylum. J. South. Agric. 2017, 48, 1708–1714. [Google Scholar]
- Yan, W.; Qiao, Y.; He, J.; Qu, J.; Liu, Y.; Zhang, Q.; Wang, X. Molecular mechanism based on histopathology, antioxidant system and transcriptomic profiles in heat stress response in the gills of Japanese flounder. Int. J. Mol. Sci. 2022, 23, 3286. [Google Scholar] [CrossRef]
- Quiring, L.; Walter, B.; Lohaus, N.; Schwan, D.; Rech, A.; Dlugos, A.; Rauen, U. Characterisation of cold-induced mitochondrial fission in porcine aortic endothelial cells. Mol. Med. 2022, 28, 13. [Google Scholar] [CrossRef]
- Pucci, F.; Rooman, M. Physical and molecular bases of protein thermal stability and cold adaptation. Curr. Opin. Struct. Biol. 2017, 42, 117–128. [Google Scholar] [CrossRef]
- Schleger, I.C.; Pereira, D.M.C.; Resende, A.C.; Romão, S.; Herrerias, T.; Neundorf, A.K.A.; Sloty, A.M.; Guimarães, I.M.; de Souza, M.R.D.P.; Carster, G.P.; et al. Cold and warm waters: Energy metabolism and antioxidant defenses of the freshwater fish Astyanax lacustris (Characiformes:Characidae) under thermal stress. J. Comp. Physiol. B 2022, 192, 77–94. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 1. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, M.; Lu, W.; Wang, Y.; Li, X.; Cheng, J. Transcriptomic modulation reveals the specific cellular response in Chinese sea bass (Lateolabrax maculatus) gills under salinity change and alkalinity stress. Int. J. Mol. Sci. 2023, 24, 5877. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, Q.; Xiao, Y.; Xu, S.; Wang, X.; Yang, J.; Song, Z.; You, F.; Li, J. High temperature increases the gsdf expression in masculinization of genetically female Japanese flounder (Paralichthys olivaceus). Gen. Comp. Endocrinol. 2019, 274, 17–25. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Kitano, T. High temperature induces cyp26b1 mRNA expression and delays meiotic initiation of germ cells by increasing cortisol levels during gonadal sex differentiation in Japanese flounder. Biochem. Biophys. Res. Commun. 2012, 419, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wu, Z.; Song, Z.; Xiao, P.; Liu, Y.; Zhang, P.; You, F. Insight into the heat resistance of fish via blood: Effects of heat stress on metabolism, oxidative stress and antioxidant response of olive flounder Paralichthys olivaceus and turbot Scophthalmus maximus. Fish. Shellfish. Immunol. 2016, 58, 125–135. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, J.; Shi, Z. Effects of high temperature and sex hormone in expression of kiss2 and gpr54-2 genes in olive flounder Paralichthys olivaceus. Fish. Sci. 2018, 37, 227–232. [Google Scholar]
- Hu, J.; You, F.; Wang, Q.; Weng, S.; Liu, H.; Wang, L.; Zhang, P.J.; Tan, X. Transcriptional responses of olive flounder (Paralichthys olivaceus) to low temperature. PLoS ONE 2014, 9, e108582. [Google Scholar] [CrossRef]
- Kurlta, Y.; Sakuma, T.; Kakehi, S.; Shimamura, S.; Sanematsu, A.; Kitagawa, H.; Ito, S.I.; Kawabe, R.; Shibata, Y.; Tomiyama, T. Seasonal changes in depth and temperature of habitat for Japanese flounder Paralichthys olivaceus on the Pacific coast of northeastern Japan. Fish. Sci. 2021, 87, 223–237. [Google Scholar]
- Xin, M.; Ma, D.; Wang, B. Chemicohydrographic characteristics of the Yellow Sea Cold Water Mass. Acta Oceanol. Sin. 2015, 34, 5–11. [Google Scholar] [CrossRef]
- Lu, Y.; Nie, M.; Wang, L.; Xiong, Y.; Wang, F.; Wang, L.; Xiao, P.; Wu, Z.; Liu, Y.; You, F. Energy response and modulation of AMPK pathway of the olive flounder Paralichthys olivaceus in low-temperature challenged. Aquaculture 2018, 484, 205–213. [Google Scholar] [CrossRef]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yang, P.; Jiang, F.; Wei, Y.; Ma, Z.; Kang, L. De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits. PLoS ONE 2010, 5, e15633. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Liu, Q. The Effects of Operation and Low Temperature Stress on Organization Structure, Antioxidant System of Juvenile Eleutheronema tetradactylum. Master’s Thesis, Shanghai Ocean Univeresity, Shanghai, China, 19 May 2017. [Google Scholar]
- Gerna, G.; Kabanova, A.; Lilleri, D. Human cytomegalovirus cell tropism and host cell receptors. Vaccines 2019, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Koivunen, J.; Tu, H.; Kemppainen, A.; Anbazhagan, P.; Finnilä, M.A.; Saarakkala, S.; Käpylä, J.; Lu, N.; Heikkinen, A.; Juffer, A.H.; et al. Integrin α11β1 is a receptor for collagen XIII. Cell Tissue Res. 2021, 383, 1135–1153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ma, X.; Guo, J.; Yao, K.; Wang, C.; Dong, Z.; Zhu, H.; Fan, F.; Huang, Z.; Yang, X.; et al. Bone marrow CD34+ cell subset under induction of moderate stiffness of extracellular matrix after myocardial infarction facilitated endothelial lineage commitment in vitro. Stem Cell Res. Ther. 2017, 8, 280. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huang, J.; Li, Y.; Zhang, J.; He, C.; Li, T.; Jiang, D.; Dong, A.; Ma, H.; Copenhaver, G.P.; et al. DNA polymerase epsilon binds histone H3.1-H4 and recruits MORC1 to mediate meiotic heterochromatin condensation. Proc. Natl. Acad. Sci. USA 2022, 119, e2213540119. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Johmura, Y.; Wang, T.W.; Migita, T.; Wu, W.; Noguchi, R.; Yamaguchi, K.; Furukawa, Y.; Nakamura, S.; Miyoshi, I.; et al. TP53/p53-FBXO22-TFEB controls basal autophagy to govern hormesis. Autophagy 2021, 17, 3776–3793. [Google Scholar] [CrossRef]
- Ladurner, R.; Straight, A.F. MIS12/MIND control at the kinetochore. Cell 2016, 167, 889–891. [Google Scholar] [CrossRef]
- Nilsson, M.I.; Nissar, A.A.; Al-Sajee, D.; Tarnopolsky, M.A.; Parise, G.; Lach, B.; Fürst, D.O.; van der Ven, P.F.M.; Kley, R.A.; Hawke, T.J. Xin is a marker of skeletal muscle damage severity in myopathies. Am. J. Pathol. 2013, 183, 1703–1709. [Google Scholar] [CrossRef]
- Lin, F.H.; Wang, A.; Dai, W.; Chen, S.; Ding, Y.; Sun, L.V. Lmod3 promotes myoblast differentiation and proliferation via the AKT and ERK pathways. Exp. Cell Res. 2020, 396, 112297. [Google Scholar] [CrossRef] [PubMed]
- Flores-Martin, J.B.; Bonnet, L.V.; Palandri, A.; Zamanillo-Hermida, S.; Hallak, M.E.; Galiano, M.R. The 19S proteasome subunit Rpt5 reversibly associates with cold-stable microtubules in glial cells at low temperatures. FEBS Lett. 2022, 596, 1165–1177. [Google Scholar] [CrossRef]
- Delphin, C.; Bouvier, D.; Seggio, M.; Couriol, E.; Saoudi, Y.; Denarier, E.; Bosc, C.; Valiron, O.; Bisbal, M.; Arnal, I.; et al. MAP6-F is a temperature sensor that directly binds to and protects microtubules from cold-induced depolymerization. J. Biol. Chem. 2012, 287, 35127–35138. [Google Scholar] [CrossRef]
- Zelko, I.N.; Mariani, T.J.; Folz, R.J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free. Radic. Biol. Med. 2002, 33, 337–349. [Google Scholar] [CrossRef]
- Roll-Mecak, A. The tubulin code in microtubule dynamics and information encoding. Dev. Cell 2020, 54, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Bugyi, B.; Kengyel, A. Myosin XVI. Adv. Exp. Med. Biol. 2020, 1239, 405–419. [Google Scholar] [PubMed]
- Wook Choi, D.; Yong Choi, C. HIPK2 modification code for cell death and survival. Mol. Cell Oncol. 2014, 1, e955999. [Google Scholar] [CrossRef]
- Keen, A.N.; Klaiman, J.M.; Shiels, H.A.; Gillis, T.E. Temperature-induced cardiac remodelling in fish. J. Exp. Biol. 2017, 220 Pt 2, 147–160. [Google Scholar] [PubMed]
- Shih, R.H.; Cheng, S.E.; Tung, W.H.; Yang, C.M. Up-regulation of heme oxygenase-1 protects against cold injury-induced brain damage: A laboratory-based study. J. Neurotrauma. 2010, 27, 1477–1487. [Google Scholar] [CrossRef]
- Dai, Y.; Fleischhacker, A.S.; Liu, L.; Fayad, S.; Gunawan, A.L.; Stuehr, D.J.; Ragsdale, S.W. Heme delivery to heme oxygenase-2 involves glyceraldehyde-3-phosphate dehydrogenase. Biol. Chem. 2022, 403, 1043–1053. [Google Scholar] [CrossRef]
- Labib, K.; Gambus, A. A key role for the GINS complex at DNA replication forks. Trends Cell Biol. 2007, 17, 271–278. [Google Scholar] [CrossRef]
- Zou, L.; Mitchell, J.; Stillman, B. CDC45, a novel yeast gene that functions with the origin recognition complex and MCM proteins in initiation of DNA replication. Mol. Cell. Biol. 1997, 17, 553–563. [Google Scholar] [CrossRef]
- Cipullo, M.; Pearce, S.F.; Lopez Sanchez, I.G.; Gopalakrishna, S.; Krüger, A.; Schober, F.; Busch, J.D.; Li, X.; Wredenberg, A.; Atanassov, I.; et al. Human GTPBP5 is involved in the late stage of mitoribosome large subunit assembly. Nucleic Acids Res. 2021, 49, 354–370. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y. Molecular Mechanism of Liver Response to High Temperature stress in Japanese Flounder (Paralichthys olivaceus). Master Thesis, Ocean University of China, Qingdao, China, 13 May 2022. [Google Scholar]
- Li, Y. Transcriptome Analysis of Liver and Head Kidney in Rainbow Trout (Oncorhynchus mykiss) Reveals the Response to Heat Stress by RNA-seq. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 19 May 2018. [Google Scholar]
- Wei, L. Transcriptome analysis of brain and liver in Nile tilapia (Oreochromis niloticus) reveals the response to high temperature by RNA-seq. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 30 May 2020. [Google Scholar]
- Miao, B.B.; Niu, S.F.; Wu, R.X.; Liang, Z.B.; Tang, B.G.; Zhai, Y.; Xu, X.Q. Gene expression profile and co-expression network of pearl gentian grouper under cold stress by integrating Illumina and PacBio sequences. Animals 2021, 11, 1745. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Chu, P.; Xu, J.; Wei, X.; Fu, D.; Wang, T.; Yin, S. Combined effects of low temperature and salinity on the immune response, antioxidant capacity and lipid metabolism in the pufferfish (Takifugu fasciatus). Aquaculture 2021, 531, 735866. [Google Scholar] [CrossRef]
- Ramos, A.R.; Elong Edimo, W.; Erneux, C. Phosphoinositide 5-phosphatase activities control cell motility in glioblastoma: Two phosphoinositides PI(4,5)P2 and PI(3,4)P2 are involved. Adv. Biol. Regul. 2018, 67, 40–48. [Google Scholar] [CrossRef] [PubMed]
- César-Razquin, A.; Snijder, B.; Frappier-Brinton, T.; Isserlin, R.; Gyimesi, G.; Bai, X.; Reithmeier, R.A.; Hepworth, D.; Hediger, M.A.; Edwards, A.M. A call for systematic research on solute carriers. Cell 2015, 162, 478–487. [Google Scholar] [CrossRef]
- Otto, T.; Sicinski, P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer. 2017, 17, 93–115. [Google Scholar] [CrossRef]
- Pasion, S.G.; Forsburg, S.L. Deconstructing a conserved protein family: The role of MCM proteins in eukaryotic DNA replication. Genet. Eng. 2001, 23, 129–155. [Google Scholar]
- Kim, J.H.; Kim, H.R.; Patel, R. Inactivation of Mad2B enhances apoptosis in human cervical cancer cell line upon cisplatin-induced DNA damage. Biomol. Ther. 2023, 31, 340–349. [Google Scholar] [CrossRef]
- González-Magaña, A.; Blanco, F.J. Human PCNA structure, function and interactions. Biomolecules 2020, 10, 570. [Google Scholar] [CrossRef]
- Peng, T.; Hu, T.; Lin, Y.; Tang, Z.; Zeng, L. Effects of low temperature stress on indices of biochemistry, immunity and antioxidation in Nile Tilapia. Fish. Sci. 2012, 31, 259–263. [Google Scholar]
- Barmeyer, C.; Schulzke, J.D.; Fromm, M. Claudin-related intestinal diseases. Semin. Cell Dev. Biol. 2015, 42, 30–38. [Google Scholar] [CrossRef]
- Price, E.R.; Ruff, L.J.; Guerra, A.; Karasov, W.H. Cold exposure increases intestinal paracellular permeability to nutrients in the mouse. J. Exp. Biol. 2013, 216 Pt 21, 4065–4070. [Google Scholar] [CrossRef] [PubMed]
- Masters, T.A.; Kendrick-Jones, J.; Buss, F. Myosins: Domain organisation, motor properties, physiological roles and cellular functions. Handb. Exp. Pharmacol. 2017, 235, 77–122. [Google Scholar] [PubMed]
- Lu, X.; Li, R.; Wang, X.; Guo, Q.; Wang, L.; Zhou, X. Overexpression of epithelial splicing regulatory protein 1 in metastatic lesions of serous ovarian carcinoma correlates with poor patient prognosis. Cancer Biother. Radiopharm. 2022, 37, 850–861. [Google Scholar] [CrossRef]
- Ampah, K.K.; Greaves, J.; Shun-Shion, A.S.; Asnawi, A.W.; Lidster, J.A.; Chamberlain, L.H.; Collins, M.O.; Peden, A.A. S-acylation regulates the trafficking and stability of the unconventional Q-SNARE STX19. J. Cell Sci. 2018, 131, jcs212498. [Google Scholar] [CrossRef]
- Zhang, W.; Qiu, X.; Sun, D.; Zhang, D.; Qi, Y.; Li, X.; Liu, B.; Liu, J.; Lin, B. Systematic analysis of the clinical relevance of cell division cycle associated family in endometrial carcinoma. J. Cancer. 2020, 11, 5588–5600. [Google Scholar] [CrossRef]
- Heath, C.M.; Wignall, S.M. Chromokinesin Kif4 promotes proper anaphase in mouse oocyte meiosis. Mol. Biol. Cell. 2019, 30, 1691–1704. [Google Scholar] [CrossRef]
- Spiller, F.; Medina-Pritchard, B.; Abad, M.A.; Wear, M.A.; Molina, O.; Earnshaw, W.C.; Jeyaprakash, A.A. Molecular basis for Cdk1-regulated timing of Mis18 complex assembly and CENP-A deposition. EMBO Rep. 2017, 18, 894–905. [Google Scholar] [CrossRef]
- Rieder, C.L.; Cole, R.W. Cold-shock and the mammalian cell cycle. Cell Cycle. 2002, 1, 169–175. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Zhu, Q.; Han, P.; Zhou, T.; Li, J.; Wang, X.; Cheng, J. Transcriptomic Networks Reveal the Tissue-Specific Cold Shock Responses in Japanese Flounder (Paralichthys olivaceus). Biology 2023, 12, 784. https://doi.org/10.3390/biology12060784
He J, Zhu Q, Han P, Zhou T, Li J, Wang X, Cheng J. Transcriptomic Networks Reveal the Tissue-Specific Cold Shock Responses in Japanese Flounder (Paralichthys olivaceus). Biology. 2023; 12(6):784. https://doi.org/10.3390/biology12060784
Chicago/Turabian StyleHe, Jiayi, Qing Zhu, Ping Han, Tianyu Zhou, Juyan Li, Xubo Wang, and Jie Cheng. 2023. "Transcriptomic Networks Reveal the Tissue-Specific Cold Shock Responses in Japanese Flounder (Paralichthys olivaceus)" Biology 12, no. 6: 784. https://doi.org/10.3390/biology12060784
APA StyleHe, J., Zhu, Q., Han, P., Zhou, T., Li, J., Wang, X., & Cheng, J. (2023). Transcriptomic Networks Reveal the Tissue-Specific Cold Shock Responses in Japanese Flounder (Paralichthys olivaceus). Biology, 12(6), 784. https://doi.org/10.3390/biology12060784