Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (206)

Search Parameters:
Keywords = geochemical simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 10362 KB  
Article
Real-Time Updating of Geochemical and Geometallurgical Spatial Models with Multivariate Ensemble Kalman Filtering: Application to Golgohar Iron Deposit
by Sajjad Talesh Hosseini, Omid Asghari, Xavier Emery, Jörg Benndorf, Andisheh Alimoradi and Sara Mehrali
Minerals 2026, 16(2), 141; https://doi.org/10.3390/min16020141 - 28 Jan 2026
Abstract
This paper presents an updatable stochastic geometallurgical framework that integrates geochemical compositions and processing-related variables within a unified spatial modeling and data assimilation workflow. The framework combines multivariate geostatistical simulation with real-time updating based on the Ensemble Kalman Filter, allowing stochastic realizations to [...] Read more.
This paper presents an updatable stochastic geometallurgical framework that integrates geochemical compositions and processing-related variables within a unified spatial modeling and data assimilation workflow. The framework combines multivariate geostatistical simulation with real-time updating based on the Ensemble Kalman Filter, allowing stochastic realizations to be sequentially adjusted as new production data become available. The methodology accounts for geological uncertainty, compositional constraints, and multivariate dependencies. This is achieved by combining the isometric log-ratio transformation with flow anamorphosis within a multivariate Gaussian framework. As a result, compositional geochemical variables and metallurgical responses can be updated consistently while preserving their physical and statistical relationships. The framework is demonstrated using the Gol Gohar iron ore deposit as a case study. Exploration drill hole data and production-scale blast hole measurements are assimilated within an ore control context. The results indicate that the update-enabled simulation approach reduces prediction errors and spatial uncertainty, while capturing complex, non-linear relationships among geometallurgical variables. The framework is generic and can be applied to other deposits where real-time integration of geological, geochemical, and processing information is needed to support operational decision-making. Full article
(This article belongs to the Special Issue Geostatistical Methods and Practices for Specific Ore Deposits)
Show Figures

Figure 1

4 pages, 151 KB  
Editorial
Messy Chemistry and the Emergence of Life
by Alberto Vázquez-Salazar and Ranajay Saha
Life 2026, 16(2), 186; https://doi.org/10.3390/life16020186 - 23 Jan 2026
Viewed by 127
Abstract
Chemical complexity is not a nuisance to be minimized in origin of life research, it is an enabling condition. This second edition of the Special Issue on the Origin of Life in Chemically Complex Messy Environments gathers contributions that embrace multicomponent mixtures, dynamic [...] Read more.
Chemical complexity is not a nuisance to be minimized in origin of life research, it is an enabling condition. This second edition of the Special Issue on the Origin of Life in Chemically Complex Messy Environments gathers contributions that embrace multicomponent mixtures, dynamic geochemical settings, and nonequilibrium processes. The papers collected here survey surface hydrothermal routes to reactive nitriles, groundwater evolution of alkaline lakes, and transition metal sulfide-driven amino acid and amide formation without cyanide. They report one pot nucleoside and nucleotide synthesis from formamide over cerium phosphate, review non aqueous organophosphorus pathways, and probe peptide rich mixtures and formose type networks under serpentinization associated minerals. The issue also advances conceptual frameworks, including atmospheric photochemical signatures for biosignature discrimination, the role of chiral mineral surfaces in enantioseparation, and computational simulations of the origin of LUCA. Together, these studies position messy chemistry as a crucible that turns chemical diversity and environmental heterogeneity into routes toward organization and function. Full article
(This article belongs to the Special Issue Origin of Life in Chemically Complex Messy Environments: 2nd Edition)
25 pages, 53651 KB  
Article
Fracture-Filling Mechanism of Aluminous Rock Series in the Ordos Basin
by Hao Zhao and Jingong Zhang
Appl. Sci. 2026, 16(2), 1040; https://doi.org/10.3390/app16021040 - 20 Jan 2026
Viewed by 104
Abstract
The “bauxite gas reservoir” in the Ordos Basin represents a novel exploration domain, yet the mechanisms governing its widespread aluminous fracture fillings remain unclear. This study integrates core observation, thin-section analysis, geochemical simulation, and rock physics to investigate the formation and impact of [...] Read more.
The “bauxite gas reservoir” in the Ordos Basin represents a novel exploration domain, yet the mechanisms governing its widespread aluminous fracture fillings remain unclear. This study integrates core observation, thin-section analysis, geochemical simulation, and rock physics to investigate the formation and impact of these fracture systems. Results identify a characteristic filling evolutionary sequence of “wall-lining film → oolitic/globular → plug-like → vermicular.” Geochemical simulations confirm that increasing pH and decreasing Eh driven by water–rock interactions are the key drivers for aluminous mineral precipitation. A distinct well log response model characterized by high GR, DEN, and CNL values coupled with low AC and RT is established for effective identification. Seepage experiments reveal that while Al–Si colloidal fracture fillings reduce permeability, they act as natural proppants to preserve effective flow channels, acting as a crucial high-permeability network for gas migration despite the mineral occlusion. These findings refine the accumulation theory for bauxite series reservoirs and provide geological evidence for deep tight gas exploration. Full article
Show Figures

Figure 1

13 pages, 4859 KB  
Article
Numerical Investigation of CO2 Mineralization and Geomechanical Response During CO2 Storage in Saline Aquifer
by Guang Li, Shuyan Wang, Haigang Lao and Pengtao Wang
Processes 2026, 14(2), 317; https://doi.org/10.3390/pr14020317 - 16 Jan 2026
Viewed by 168
Abstract
Utilizing saline aquifers for carbon mineralization has proven to be a reliable approach for CO2 storage. However, less attention has been given to CO2 mineralization and geomechanical response at engineering durations and spatial scales. The objective of the study is to [...] Read more.
Utilizing saline aquifers for carbon mineralization has proven to be a reliable approach for CO2 storage. However, less attention has been given to CO2 mineralization and geomechanical response at engineering durations and spatial scales. The objective of the study is to evaluate the feasibility of a potential CO2 sequestration site in the Ordos Basin, located at a depth of approximately 1100 m, using the CMG-GEM numerical simulator. A coupled hydraulic–mechanical–chemical model was formulated, accounting for multiphase fluid flow, geochemical reactions, and geomechanical response. The simulation results indicated the following: (1) When CO2 is injected into a saline formation, it can react with minerals. These chemical reactions may lead to the precipitation of certain minerals (e.g., calcite, kaolinite) and the dissolution of others (e.g., anorthite), potentially affecting the porosity and permeability of the storage formation; however, the study found that the effect on porosity is negligible, with only a 1.2% reduction observed. (2) The extent of ground uplift caused by CO2 injection is strongly influenced by the injection rate. The maximum vertical ground displacements after 25 years is 6.1 cm at an injection rate of 16,000 kg/day; when the rate is increased to 24,000 kg/day, the maximum displacement rises to 9.4 cm, indicating a 54% increase. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

20 pages, 9883 KB  
Article
Optimizing Drilling in Brownfield Ni-Cu Depositional Systems Based on the Integration of Geochemical, Geophysical and Drill-Hole Data
by Céline Scheidt, Francisco Tomazoni Neto, David Zhen Yin and Jef Karel Caers
Minerals 2026, 16(1), 82; https://doi.org/10.3390/min16010082 - 15 Jan 2026
Viewed by 313
Abstract
Effective drillhole placement is critical to the success of mineral exploration, particularly in brownfield settings where subsurface information remains sparse despite the availability of data from adjacent, previously explored areas. To address the challenges of uncertainty in resource estimation and the high cost [...] Read more.
Effective drillhole placement is critical to the success of mineral exploration, particularly in brownfield settings where subsurface information remains sparse despite the availability of data from adjacent, previously explored areas. To address the challenges of uncertainty in resource estimation and the high cost of drilling, we present a drilling sequence optimization framework guided by geophysical and surface geochemical data. The framework integrates statistical learning and geostatistical simulation to construct a set of prior models of intrusion and nickel grade distribution. These models are used to quantify the expected reduction in uncertainty for each potential drillhole by evaluating their corresponding Efficacy of Information (EOI). This approach allows the sequential selection of drillhole locations that maximize information gain while managing exploration risk. We apply the methodology to a case study in the Curaçá Valley, Brazil, where prior data from a well-characterized nearby zone inform predictions in the adjacent target area. The results demonstrate that incorporating prior geological knowledge from nearby areas into the drilling strategy can significantly improve targeting efficiency and reduce uncertainty in early-stage brownfield exploration. Full article
(This article belongs to the Special Issue Geostatistical Methods and Practices for Specific Ore Deposits)
Show Figures

Figure 1

19 pages, 9069 KB  
Article
Comparative Analysis of Flow Behavior and Geochemical Impact of CO2 and Hydrogen in Lithuanian Saline Aquifer: A Simulation and Experimental Study
by Shruti Malik, Parsa Alimohammadiardakani and Mayur Pal
Energies 2026, 19(2), 359; https://doi.org/10.3390/en19020359 - 11 Jan 2026
Viewed by 185
Abstract
Lithuania covers the deepest parts of the Baltic basin and contains many reservoirs that have been explored for Hydrocarbon production and gas storage projects, including CO2 and hydrocarbon gas storage. Studies have also been conducted to assess the storage potential of these [...] Read more.
Lithuania covers the deepest parts of the Baltic basin and contains many reservoirs that have been explored for Hydrocarbon production and gas storage projects, including CO2 and hydrocarbon gas storage. Studies have also been conducted to assess the storage potential of these reservoirs for gases like CO2 and Hydrogen. In the studies, four saline aquifers, including Syderiai, Vaskai, and D11, and depleted hydrocarbon reservoirs in the Gargzdai structure were evaluated for potential CO2 storage. However, the long-term fate of these gases’ migration at the field scale has not been reported previously. In response to the existing gap, this study aims to evaluate the risks and challenges associated with subsurface CO2 and Hydrogen storage by conducting numerical simulations at two injection rates, of fluid migration, pH variations, and geomechanical responses using the tNavigator platform, complemented by laboratory experiments on outcrops representative of Syderiai formation, to achieve a detailed understanding of geochemical interactions between rocks and fluids. The results reveal distinct gas-specific behaviors: CO2 exhibits enhanced solubility trapping, density-driven convective mixing, and pronounced pH reduction, whereas Hydrogen demonstrates rapid buoyant migration, higher pressure buildup, and negligible geochemical reactivity. Both gases demonstrate short-term storage viability in the Syderiai aquifer under the modeled conditions, with pressure and total vertical stress remaining below the bottom-hole pressure limit of 450 bars. This integrated simulation and experimental study enhances our understanding of Lithuanian reservoirs for the safe, long-term storage of both CO2 and Hydrogen. Full article
(This article belongs to the Collection Feature Papers in Carbon Capture, Utilization, and Storage)
Show Figures

Figure 1

28 pages, 5903 KB  
Article
Establishment and Application of Surface Water Quality Model Based on PhreeqcRM
by Shuna Hong, Kexin Wang, Qi Tang and Jun Kong
J. Mar. Sci. Eng. 2026, 14(2), 143; https://doi.org/10.3390/jmse14020143 - 9 Jan 2026
Viewed by 195
Abstract
In this study, we developed a novel water quality model that integrated hydrodynamic, solute transport, and geochemical reactions processes. This model was built upon the open-source ELCIRC hydrodynamic model, the TVD-format solute transport model, and the PhreeqcRM geochemical reaction engine. The accuracy of [...] Read more.
In this study, we developed a novel water quality model that integrated hydrodynamic, solute transport, and geochemical reactions processes. This model was built upon the open-source ELCIRC hydrodynamic model, the TVD-format solute transport model, and the PhreeqcRM geochemical reaction engine. The accuracy of the model was rigorously validated using a 2D chain decay analytical solution, demonstrating its capability to accurately simulate water flow, solute transport, and chemical reactions. To evaluate the practical applicability of the model, case studies involving the 2012 Huaihe River benzene leakage accident and the acetic acid leakage accident in the Gulei sea area were simulated. Findings indicate that the model effectively captures the diffusion and attenuation dynamics of the benzene contamination plume. Furthermore, it accurately depicts the reaction–diffusion interaction with seawater following acetic acid release. Notably, the versatility and flexibility of the model were further demonstrated by its ability to simulate a wide range of pollutants and their associated biochemical processes. This addresses the limitations of existing water quality models and provides a powerful tool for environmental monitoring and assessment. The results of this study offer valuable insights for improving water quality management and emergency response strategies in the face of environmental pollution incidents. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

20 pages, 3043 KB  
Review
Organic Materials and Their Effects on Lead–Zinc Mineralization in the Xicheng Belt, Western Qinling (China): A Review
by Yongjie Niu, Shuang Dai, Dongbao Guo, Yalong Yi, Zhitao Ma and Hailiang Li
Minerals 2026, 16(1), 35; https://doi.org/10.3390/min16010035 - 29 Dec 2025
Viewed by 317
Abstract
Xicheng is an important Chinese area enriched in lead–zinc polymetallic ore concentration area. Since the 1970s, substantial research achievements have been made in various domains, including the geological and geochemical characteristics of the deposits, metallogenic chronology, features of the marine basin during the [...] Read more.
Xicheng is an important Chinese area enriched in lead–zinc polymetallic ore concentration area. Since the 1970s, substantial research achievements have been made in various domains, including the geological and geochemical characteristics of the deposits, metallogenic chronology, features of the marine basin during the initial mineralization stage, enrichment and precipitation of lead–zinc and other metallic ions, ore genesis, and metallogenic simulation experiments. Among these, the most representative findings focus on exhalative sedimentary reformation and the complexation of organic matter with lead–zinc metal elements during sedimentary processes. This review discusses the formation and evolution of sulfur-containing organic matter, especially H2S, under Thermal Decomposition of Sulfate (TDS), Bacterial Sulfate Reduction (BSR), and Thermochemical Sulfate Reduction (TSR) conditions, and further summarizes the general characteristics of organic matter and lead–zinc (and other metal elements) adsorption–complexation–reduction. Subsequent research on organic lead–zinc mineralization in the Xicheng area has been grounded in ore deposit geology and geochemistry, adopting the perspective of organic fluids. These studies focus particularly on the formation process of Pb–Zn organic complexes and analyze the various stages and mechanisms of mineralization based on the characteristics and evolution of organic matter. This approach provides new insights for understanding both the general features and the unique attributes of lead–zinc mineralization in the Xicheng area. Full article
(This article belongs to the Special Issue Organic Petrology and Geochemistry: Exploring the Organic-Rich Facies)
Show Figures

Figure 1

21 pages, 2265 KB  
Article
Simulation and Sensitivity Analysis of CO2 Migration and Pressure Propagation Considering Molecular Diffusion and Geochemical Reactions in Shale Oil Reservoirs
by Ruihong Qiao, Bing Yang, Hai Huang, Qianqian Ren, Zijie Cheng and Huanyu Feng
Energies 2026, 19(1), 164; https://doi.org/10.3390/en19010164 - 27 Dec 2025
Viewed by 298
Abstract
Unconventional shale oil reservoirs, characterized by ultra-low porosity and permeability, severely constrain oil recovery. CO2-enhanced oil recovery (CO2-EOR) following hydraulic fracturing is an effective approach that combines incremental oil recovery with long-term CO2 storage. However, CO2 transport [...] Read more.
Unconventional shale oil reservoirs, characterized by ultra-low porosity and permeability, severely constrain oil recovery. CO2-enhanced oil recovery (CO2-EOR) following hydraulic fracturing is an effective approach that combines incremental oil recovery with long-term CO2 storage. However, CO2 transport in the fracture–matrix system is complex, especially when molecular diffusion and geochemical reactions are coupled. This study conducts numerical simulations on a representative shale reservoir in the Ordos Basin, incorporating both mechanisms under post-fracturing injection–soaking conditions. The results show that molecular diffusion enhances CO2 mass transfer across the fracture–matrix interface, increasing the final CO2 sweep efficiency by 0.17 percentage points relative to convection alone, whereas geochemical reactions reduce it by about 0.3 percentage points. When both mechanisms coexist, the net effect is a decrease of approximately 0.2 percentage points in CO2 sweep efficiency. In contrast, pressure sweep efficiency differs by less than 0.5 percentage points among all cases and stabilizes near 47%, suggesting that pressure propagation is only weakly affected by diffusion and reactions. Sensitivity analysis reveals that, among operational parameters, injection pressure and injection rate strongly affect CO2 sweep efficiency, whereas soaking time governs pressure propagation. Among reservoir parameters, permeability has the most pronounced influence on both CO2 and pressure sweep efficiencies, followed by temperature, while initial reservoir pressure has minimal impact. This work quantitatively elucidates the coupled roles of molecular diffusion and geochemical reactions in shale reservoirs and provides practical guidance for optimizing post-fracturing CO2-EOR operations. Full article
Show Figures

Figure 1

21 pages, 1731 KB  
Article
Hydrodynamic Parameter Estimation for Simulating Soil-Vegetation-Atmosphere Hydrology Across Forest Stands in the Strengbach Catchment
by Benjamin Belfort, Aya Alzein, Solenn Cotel, Anthony Julien and Sylvain Weill
Hydrology 2026, 13(1), 11; https://doi.org/10.3390/hydrology13010011 - 24 Dec 2025
Viewed by 364
Abstract
Modeling the water cycle in the critical zone requires understanding interactions between the soil–vegetation–atmosphere compartments. Mechanistic modeling of soil water flow relies on the accurate determination of hydrodynamic parameters that control hydraulic conductivity and water retention curves. These parameters can be derived either [...] Read more.
Modeling the water cycle in the critical zone requires understanding interactions between the soil–vegetation–atmosphere compartments. Mechanistic modeling of soil water flow relies on the accurate determination of hydrodynamic parameters that control hydraulic conductivity and water retention curves. These parameters can be derived either using pedotransfer functions (PTFs), using soil properties obtained from field samples, or through inverse modeling, which allows the parameters to be adjusted to minimize differences between simulations and observations. While PTFs are widely used due to their simplicity, inverse modeling requires specific instrumentation and advanced numerical tools. This study, conducted at the Hydro-Geochemical Environmental Observatory (Strengbach forested catchment) in France, aims to determine the optimal hydrodynamic parameters for two contrasting forest plots, one dominated by spruce and the other by beech. The methodology integrates granulometric data across multiple soil layers to estimate soil parameters using PTFs (Rosetta). Water content and conductivity data were then corrected to account for soil stoniness, improving the KGE and NSE metrics. Finally, inverse parameter estimation based on water content measurements allowed for refinement of the evaluation of α, Ks, and n. This framework to estimate soil parameter was applied on different time periods to investigate the influence of the calibration chronicles on the estimated parameters. Results indicate that our methodology is efficient and that the optimal calibration period does not correspond to one with the most severe drought conditions; instead, a balanced time series including both wet and dry phases is preferable. Our findings also emphasize that KGE and NSE must be interpreted with caution, and that long simulation periods are essential for evaluating parameter robustness. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

17 pages, 4057 KB  
Article
Comprehensive Modeling of CO2 Sequestration in Syderiai Deep Saline Aquifer: Insights into Leakage, Geo-Mechanical Changes, and Geo-Chemical Impacts
by Shankar Lal Dangi, Shruti Malik, Ravi Sharma and Mayur Pal
Appl. Sci. 2026, 16(1), 167; https://doi.org/10.3390/app16010167 - 23 Dec 2025
Viewed by 323
Abstract
This paper presents a comprehensive study on the feasibility and implications of a CO2 injection simulation in the Syderiai deep saline aquifer of Lithuania, focusing on leakage, geo-mechanical aspects, and geo-chemical aspects. The Syderiai aquifer, characterized by its sandstone formation covered by [...] Read more.
This paper presents a comprehensive study on the feasibility and implications of a CO2 injection simulation in the Syderiai deep saline aquifer of Lithuania, focusing on leakage, geo-mechanical aspects, and geo-chemical aspects. The Syderiai aquifer, characterized by its sandstone formation covered by shaly rocks, is considered a potential site for CO2 geological storage in Lithuania. Using 3D mechanistic models developed in T-navigator software, we conducted extensive simulations to analyze CO2 storage behavior and associated impacts. The leakage study examines various scenarios to assess the impact of fracture permeability, layer-wise heterogeneity, and fracture position on CO2 injection and leakage volumes. Results indicate that while fracture permeability influences CO2 migration dynamics, its impact on both free and dissolved CO2 leakage volumes is minimal, highlighting that leakage behavior is more dependent on the presence of fractures than their permeability. Geo-mechanical analysis reveals the effects of CO2 injection on the bulk modulus and shear modulus of sandstone and shale formations, highlighting changes in compaction and cementation. The geo-chemical study was performed using TOUGHREACT software V4.13-OMP to investigate the distribution of pH, porosity change, and free CO2 over 1000-years following 10-year CO2 injection. Results demonstrate the acidifying effect of CO2 injection and its implications for the caprock–reservoir interface over time. The findings offer valuable perspectives on the feasibility and consequences of CO2 geological storage in the Syderiai deep saline aquifer, highlighting the importance of incorporating leakage, geo-mechanical aspects, and geo-chemical aspects for implementing efficient CO2 storage. Full article
Show Figures

Figure 1

19 pages, 26733 KB  
Article
Kaolinite Illitization Under Hydrothermal Conditions: Experimental Insight into Transformation Pathways
by Mashaer A. Alfaraj, Abdulwahab Muhammad Bello, Anas Muhammad Salisu and Khalid Al-Ramadan
Minerals 2026, 16(1), 4; https://doi.org/10.3390/min16010004 - 19 Dec 2025
Viewed by 437
Abstract
Illite plays a critical role in diagenetic processes of sedimentary rocks, influencing geochemical evolution, reservoir quality, and fluid flow pathways. This study experimentally investigated the hydrothermal transformation of kaolinite to illite using sandstones from the Upper Ordovician Quwarah Member of Qasim Formation, northwest [...] Read more.
Illite plays a critical role in diagenetic processes of sedimentary rocks, influencing geochemical evolution, reservoir quality, and fluid flow pathways. This study experimentally investigated the hydrothermal transformation of kaolinite to illite using sandstones from the Upper Ordovician Quwarah Member of Qasim Formation, northwest Saudi Arabia. Experiments were performed to simulate burial diagenesis involving illitization using three fluid systems: a synthetic solution (0.2 M KCl and 0.5 M MgCl2), natural Red Sea water, and modified Red Sea water (0.2 M KCl and 0.5 M MgCl2 + Red Sea water) at different temperatures (80 °C, 150 °C, 200 °C, 250 °C). Analysis included thin-section petrography, scanning electron microscopy, and X-ray diffraction, whereas the elemental compositions of the experimental solutions were analyzed using ICP-MS and Ion Chromatography. At 80 °C and 150 °C, kaolinite underwent dissolution without significant mineralogical changes. At 200 °C, continued kaolinite disaggregation and dissolution produced smectite and mixed smectite–chlorite/illite layers, indicating early transformation pathways. At 250 °C, fluid chemistry exerted strong control on clay minerals. The synthetic solution formed smectite with minor chlorite and illite; Red Sea water favored well developed smectite; the modified Red Sea water promoted well-developed illite due to increased potassium availability. The experiments show illitization is strongly temperature dependent and primarily controlled by potassium activity in fluids. The study provides insights into clay mineral evolution with different diagenetic conditions, which can be useful to evaluate diagenetic impact on reservoir qualities. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

24 pages, 12345 KB  
Article
Numerical Investigation of Evolution of Reservoir Characteristics and Geochemical Reactions of Compressed Air Energy Storage in Aquifers
by Bingbo Xu and Keni Zhang
Sustainability 2026, 18(1), 4; https://doi.org/10.3390/su18010004 - 19 Dec 2025
Viewed by 336
Abstract
Compressed air energy storage in aquifers presents a promising approach for large-scale energy storage, yet its implementation is complicated by geochemical reactions, such as pyrite oxidation, which can impact reservoir integrity and operational efficiency. This study numerically investigates the evolution of reservoir characteristics [...] Read more.
Compressed air energy storage in aquifers presents a promising approach for large-scale energy storage, yet its implementation is complicated by geochemical reactions, such as pyrite oxidation, which can impact reservoir integrity and operational efficiency. This study numerically investigates the evolution of reservoir characteristics and geochemical processes during CAESA operations to address these challenges. Using the TOUGHREACT simulator, we developed one-dimensional and two-dimensional reactive transport models based on the Pittsfield aquifer field test parameters to simulate coupled thermal-hydrological–chemical processes under varying injection rates, temperatures, reservoir depths, and operational cycles. The results demonstrate that higher injection rates induce greater near-well pressure buildup and extended thermal zones, while deeper reservoirs exhibit abrupt declines in pressure and gas saturation due to formation constraints. Geochemical analyses reveal that pyrite oxidation dominates, leading to oxygen depletion, groundwater acidification (pH reduction), and secondary mineral precipitation, such as goethite and hematite. These findings underscore the critical interplay between operational parameters and geochemical reactions, highlighting the need for optimized design to ensure long-term stability and efficiency of aquifer-based energy storage systems. Full article
Show Figures

Figure 1

26 pages, 6998 KB  
Article
Protolysis Reaction on Pyrophyllite Surface Molecular Models: A DFT Study
by María Bentabol, Carlos Pérez del Valle, Alfonso Hernández-Laguna and F. Javier Huertas
Molecules 2025, 30(23), 4530; https://doi.org/10.3390/molecules30234530 - 24 Nov 2025
Viewed by 479
Abstract
Understanding the mechanisms of mineral dissolution at the atomic scale is crucial for interpreting geochemical processes in soils and sediments, particularly those involving clay minerals. This study addresses the dissolution of pyrophyllite, a model dioctahedral phyllosilicate, under acidic conditions by employing Density Functional [...] Read more.
Understanding the mechanisms of mineral dissolution at the atomic scale is crucial for interpreting geochemical processes in soils and sediments, particularly those involving clay minerals. This study addresses the dissolution of pyrophyllite, a model dioctahedral phyllosilicate, under acidic conditions by employing Density Functional Theory (DFT) to simulate protolysis reactions at four distinct edge surfaces ({100}, {010}, {110}, and {130}). Molecular cluster models were constructed for each edge, and the interactions of protons and hydronium ions with various oxygen sites were systematically analyzed. The results demonstrate that bridge oxygens, especially those coordinated to one silicon and two aluminum atoms, are the most reactive sites, undergoing significant bond breaking and structural distortion upon protonation, while hydroxyl groups mainly accommodate structural changes without initiating dissolution. The {110} edge was found to be the least reactive, whereas the {100}, {010}, and {130} edges exhibited the highest reactivity. Hydronium ions produced similar or greater structural changes compared to protons, with water molecules forming hydrogen bonds with the resulting structures. These findings confirm that protonation of bridge oxygens is the rate-limiting step in phyllosilicate dissolution, and that octahedral cations are released preferentially over tetrahedral ones. These findings are consistent with the conclusions drawn from the dissolution experiments. This study provides atomistic information on the dissolution mechanisms of clay minerals at a scale that exceeds the capabilities of dissolution experiments, emphasizing the importance of edge reactivity relative to extensive basal surfaces and the role of water in proton transfer and facilitating protolysis reactions. Full article
(This article belongs to the Special Issue Advances in Density Functional Theory (DFT) Calculation)
Show Figures

Figure 1

18 pages, 4561 KB  
Article
Screening and Evaluation of Sorbents for the Detection of Oil Field VOC Microseepage
by Vera Solovyeva, Maxim Orlov, Vyacheslav Grokhovsky, Roman Borisov, Anastasiya Kanateva, Galina Petukhova, Ivan Pytskii, Ibrahim Atwah and Mohammed Abu Alreesh
Processes 2025, 13(11), 3703; https://doi.org/10.3390/pr13113703 - 17 Nov 2025
Viewed by 531
Abstract
Geochemical exploration offers a cost-effective means of identifying subsurface oil and gas accumulations through the detection of volatile organic compounds (VOCs), which serve as markers of underlying hydrocarbon systems. These indicators may appear as visible macroseeps or as subtle microseepage, detectable only through [...] Read more.
Geochemical exploration offers a cost-effective means of identifying subsurface oil and gas accumulations through the detection of volatile organic compounds (VOCs), which serve as markers of underlying hydrocarbon systems. These indicators may appear as visible macroseeps or as subtle microseepage, detectable only through advanced analytical methods. A widely used approach involves deploying specialized sorbent materials a few meters below the surface to capture VOCs, followed by gas chromatography–mass spectrometry (GC-MS) for analysis. Given the range of available adsorbents, selecting materials with optimal performance is critical. We developed a laboratory method to evaluate the adsorption affinity of various commercial and custom-made sorbents toward hydrocarbon mixtures, including nitrogen-, oxygen-, and sulfur-containing derivatives. Using natural crude oil in a simulated microseepage setup, we screened a library of sorbents to identify those most effective for capturing oil-related markers. The complexity of the VOC mixtures required advanced separation, for which we employed two-dimensional high-resolution gas chromatography with time-of-flight mass spectrometry (HR-GCxGC-TOF-MS). The screening revealed clear differences in sorbent performance based on analyte diversity and concentration, assessed through thermal desorption/HR-GCxGC-MS and BET surface area analysis. Two custom sorbents, composed of carbon nanomaterials, outperformed a commercial benchmark in both adsorption capacity and analyte diversity, making them strong candidates for future field deployment in surface geochemical exploration. Full article
Show Figures

Figure 1

Back to TopTop