Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = geochemical baseline concentrations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8512 KiB  
Article
Geogenic and Anthropogenic Origins of Mercury and Other Potentially Toxic Elements in the Ponce Enriquez Artisanal and Small-Scale Gold Mining District, Southern Ecuador
by Silvia Fornasaro, Paolo Fulignati, Anna Gioncada, Daniel Garces and Maurizio Mulas
Minerals 2025, 15(7), 725; https://doi.org/10.3390/min15070725 - 11 Jul 2025
Viewed by 550
Abstract
Artisanal and small-scale gold mining (ASGM) poses significant environmental challenges globally, particularly due to mercury (Hg) use. As an example, in Ecuador, Hg use still persists, despite its official ban in 2015. This study investigated the geogenic and anthropogenic contributions of potentially toxic [...] Read more.
Artisanal and small-scale gold mining (ASGM) poses significant environmental challenges globally, particularly due to mercury (Hg) use. As an example, in Ecuador, Hg use still persists, despite its official ban in 2015. This study investigated the geogenic and anthropogenic contributions of potentially toxic elements (PTEs) in the Ponce Enriquez Mining District (PEMD), a region characterized by hydrothermally altered basaltic bedrock and Au-mineralized quartz veins. To assess local baseline values and identify PTE-bearing minerals, a comprehensive geochemical, mineralogical, and petrographic analysis was conducted on bedrock and mineralized veins. These findings reveal distinct origins for the studied PTEs, which include Hg, As, Cu, Ni, Cr, Co, Sb, Zn, and V. Specifically, Hg concentrations in stream sediments downstream (up to 50 ppm) far exceed natural bedrock levels (0.03–0.707 ppm), unequivocally indicating significant anthropogenic input from gold amalgamation. Furthermore, copper shows elevated concentration primarily linked to gold extraction. Conversely, other elements like As, Ni, Cr, Co, Sb, Zn, and V are primarily exhibited to be naturally abundant in basalts due to the presence of primary mafic minerals and to hydrothermal alterations, with elevated concentrations particularly seen in sulfides like pyrite and arsenopyrite. To distinguish natural geochemical anomalies from mining-related contamination, especially in volcanic terrains, this study utilizes Upper Continental Crust (UCC) normalization and local bedrock baselines. This multi-faceted approach effectively helped to differentiate basalt subgroups and assess natural concentrations, thereby avoiding misinterpretations of naturally elevated element concentrations as mining-related pollution. Crucially, this work establishes a robust local geochemical baseline for the PEMD area, providing a critical framework for accurate environmental risk assessments and sustainable mineral resource management, and informing national environmental quality standards and remediation efforts in Ecuador. It underscores the necessity of evaluating local geology, including inherent mineralization, when defining environmental baselines and understanding the fate of PTEs in mining-impacted environments. Full article
Show Figures

Figure 1

68 pages, 6774 KiB  
Review
Geobiological and Biochemical Cycling in the Early Cambrian: Insights from Phosphoritic Materials of South Spain
by Ting Huang and David C. Fernández-Remolar
Minerals 2025, 15(3), 203; https://doi.org/10.3390/min15030203 - 20 Feb 2025
Cited by 1 | Viewed by 845
Abstract
In the early Cambrian period, a severe greenhouse effect subjected the Gondwanan continents to accelerated erosion, enriching oceanic waters with essential nutrients, including phosphate, silicon, calcium, magnesium, iron, and trace elements. The nutrient flux, sourced from the volcanic composition of west Gondwana, was [...] Read more.
In the early Cambrian period, a severe greenhouse effect subjected the Gondwanan continents to accelerated erosion, enriching oceanic waters with essential nutrients, including phosphate, silicon, calcium, magnesium, iron, and trace elements. The nutrient flux, sourced from the volcanic composition of west Gondwana, was recorded as sequences of nodular phosphoritic limestones intercalated with chlorite-rich silts, containing ferrous phyllosilicates such as chamosite and chlorite. The abundant and diverse fossil record within these deposits corroborates that the ion supply facilitated robust biogeochemical and nutrient cycling, promoting elevated biological productivity and biodiversity. This paper investigates the early Cambrian nutrient fluxes from the Gondwanan continental region, focusing on the formation of phosphoritic and ferrous facies and the diversity of the fossil record. We estimate and model the biogeochemical cycling within a unique early Cambrian ecosystem located in South Spain, characterized by calcimicrobial reefs interspersed with archaeocyathids that settled atop a tectonically elevated volcano-sedimentary platform. The configuration enclosed a shallow marine lagoon nourished by riverine contributions including ferric and phosphatic complexes. Geochemical analyses revealed varying concentrations of iron (0.14–3.23 wt%), phosphate (0.1–20.0 wt%), and silica (0.27–69.0 wt%) across different facies, with distinct patterns between reef core and lagoonal deposits. Using the Geochemist’s Workbench software and field observations, we estimated that continental andesite weathering rates were approximately 23 times higher than the rates predicted through modeling, delivering, at least, annual fluxes of 0.286 g·cm⁻²·yr⁻¹ for Fe and 0.0146 g·cm⁻²·yr⁻¹ for PO₄³⁻ into the lagoon. The abundant and diverse fossil assemblage, comprising over 20 distinct taxonomic groups dominated by mollusks and small shelly fossils, indicates that this nutrient influx facilitated robust biogeochemical cycling and elevated biological productivity. A carbon budget analysis revealed that while the system produced an estimated 1.49·10¹⁵ g of C over its million-year existence, only about 0.01% was preserved in the rock record. Sulfate-reducing and iron-reducing chemoheterotrophic bacteria played essential roles in organic carbon recycling, with sulfate reduction serving as the dominant degradation pathway, processing approximately 1.55·10¹¹ g of C compared to the 5.94·10⁸ g of C through iron reduction. A stoichiometric analysis based on Redfield ratios suggested significant deviations in the C:P ratios between the different facies and metabolic pathways, ranging from 0.12 to 161.83, reflecting the complex patterns of organic matter preservation and degradation. The formation of phosphorites and ferrous phyllosilicates was primarily controlled by suboxic conditions in the lagoon, where microbial iron reduction destabilized Fe(III)-bearing oxyhydroxide complexes, releasing scavenged phosphate. This analysis of nutrient cycling in the Las Ermitas reef–lagoon system demonstrates how intensified continental weathering and enhanced nutrient fluxes during the early Cambrian created favorable conditions for the development of complex marine ecosystems. The quantified nutrient concentrations, weathering rates, and metabolic patterns established here provide a baseline data for future research addressing the biogeochemical conditions that facilitated the Cambrian explosion and offering new insights into the co-evolution of Earth’s geochemical cycles and early animal communities. Full article
(This article belongs to the Section Biomineralization and Biominerals)
Show Figures

Figure 1

17 pages, 4538 KiB  
Article
Determination of Geochemical Background and Baseline and Research on Geochemical Zoning in the Desert and Sandy Areas of China
by Weiji Wen, Fan Yang, Shuyun Xie, Chengwen Wang, Yuntao Song, Yuepeng Zhang and Weihang Zhou
Appl. Sci. 2024, 14(22), 10612; https://doi.org/10.3390/app142210612 - 18 Nov 2024
Viewed by 1072
Abstract
Resources in deserts and sandy landscapes have potential for development, but existing surveys and sampling have not collected desert soil samples. As such, the geochemical background of these spaces remains unexplored due to the vastness and desolation of deserts. Therefore, researching the geochemical [...] Read more.
Resources in deserts and sandy landscapes have potential for development, but existing surveys and sampling have not collected desert soil samples. As such, the geochemical background of these spaces remains unexplored due to the vastness and desolation of deserts. Therefore, researching the geochemical background values and geochemical baseline values of deserts is of long-term significance. Our research indicates that in addition to macrostructural environmental divisions, microelement geochemistry can also be used for geological unit zoning. In this paper, geochemical background and geochemical baseline values of 61 desert elements were calculated using the iterative method, frequency histograms method, and multifractal concentration-area method. It also analyzes the distribution characteristics of major, trace, and rare earth elements, and divides the 12 desert sand regions into different geochemical zones. This paper determines, for the first time, the geochemical background values of elements in Chinese deserts, filling the gap in the study of desert background values. By combining machine learning methods, different deserts have been divided into three geochemical zones. This research will greatly enhance our ability to interpret the geochemical distribution and evolutionary patterns of desert elements in China, and it has important scientific significance and practical value for desert research. Full article
(This article belongs to the Special Issue New Advances, Challenges, and Illustrations in Applied Geochemistry)
Show Figures

Figure 1

17 pages, 4300 KiB  
Article
Soil Geochemical Mapping of the Sal Island (Cape Verde): Ecological and Human Health Risk Assessment
by Luísa Diniz, Gelson Carlos, Carmelita Miranda, Pedro Dinis, Rosa Marques, Fernando Tavares Rocha, Eduardo Ferreira da Silva, Agostinho Almeida and Marina Cabral Pinto
Land 2024, 13(8), 1139; https://doi.org/10.3390/land13081139 - 25 Jul 2024
Cited by 4 | Viewed by 1481
Abstract
Geochemical mapping is the base of knowledge needed to determine the critical contents of potential toxic elements and the potentially hazardous regions on the planet. This work presents maps of baseline values of chemical elements in the soils of Sal Island (Cape Verde) [...] Read more.
Geochemical mapping is the base of knowledge needed to determine the critical contents of potential toxic elements and the potentially hazardous regions on the planet. This work presents maps of baseline values of chemical elements in the soils of Sal Island (Cape Verde) and the assessment of their ecological and human health risks. According to the results, Ba, Co, Ni, and V baseline values are above the international guidelines for agricultural and residential proposed uses. Arsenic in the soil overlying the Ancient Eruptive Complex shows a high potential ecological risk factor. It is not clear if high As contents in soils have a geogenic or anthropogenic source. Hazard indexes (HI) were calculated for children and adults. For children, HI is higher than 1 for Co, Cr, and Mn, indicating potential non-carcinogenic risk. These elements are present in high content in soils covering Quaternary sediments, the Monte Grande-Pedra Lume Formation, and the Ancient Eruptive Complex, inducing belief in a geogenic source. For the other elements and for adults, there is no potential non-carcinogenic risk. Cancer risk (CR) was calculated for As, Cd, Cr, and Ni exposures for adults and children, and the results are mainly lower than the carcinogenic target risk value, indicating no cancer risk. Only in a few soil samples are CR results slightly higher than the carcinogenic target risk of 1 × 10−4 2 × 10−6 for adults exposed to Cr by inhalation. It is important to emphasize that these results of the health risk associated with exposure are likely to overestimate the bioavailable fractions of the elements in the soil once it is used as aqua regia instead of physiological fluids to digest the soil. However, since measured concentrations of potential toxic elements in soil reveal that they can be harmful to both the environment and human health, regional activities such as agriculture or water exploitation must be controlled by competent authorities. These conclusions highlight the insights and the applicability of soil geochemistry surveys for future policy progress, which are particularly relevant in developing countries like the Cape Verde archipelago. Full article
(This article belongs to the Special Issue Predictive Soil Mapping Contributing to Sustainable Soil Management)
Show Figures

Figure 1

18 pages, 4105 KiB  
Article
Impact of Environmental Conditions on Soil Geochemistry in Southern Kazakhstan
by Anuarbek A. Kakabayev, Botagoz U. Sharipova, Natalia V. Baranovskaya, Javier Rodrigo-Ilarri, María-Elena Rodrigo-Clavero, Giuseppe Lo Papa, Ekaterina A. Bazilevskaya, Svetlana Muratbekova, Nurgul Nurmukhanbetova, Shynar Durmekbayeva, Gaziza B. Toychibekova, Rakhat Kurmanbayev and Aigul Zhumabayeva
Sustainability 2024, 16(15), 6361; https://doi.org/10.3390/su16156361 - 25 Jul 2024
Cited by 1 | Viewed by 2623
Abstract
This study investigated the elemental composition of soils in Kyzylorda and Turkestan (southern Kazakhstan), an area rich in natural resources but facing potential environmental threats from industry and agriculture. The goal was to establish baseline geochemical values and assess soil contamination risks. Soil [...] Read more.
This study investigated the elemental composition of soils in Kyzylorda and Turkestan (southern Kazakhstan), an area rich in natural resources but facing potential environmental threats from industry and agriculture. The goal was to establish baseline geochemical values and assess soil contamination risks. Soil samples were collected from across the region and analyzed using ICP-MS and INAA techniques, providing a comprehensive profile of 72 elements. Statistical analysis revealed significant variations in elemental concentrations, with enrichments observed for specific elements when compared with reference values. Notably, both regions shared a core set of elements including rare earth elements (yttrium series: holmium, erbium, thulium), noble metals (gold, platinum, ruthenium, palladium), and tungsten. Enrichment patterns, however, provided distinct insights. Rare earth element enrichments likely reflect the region’s geology, while elevated radioactive elements necessitate further investigation to understand potential environmental and health risks. Enrichment of iron group elements might be linked to a combination of geological factors and anthropogenic activities like mining or industrial processes. A significantly higher number of elements exceeded background levels in Kyzylorda compared with Turkestan, suggesting greater element accumulation in Kyzylorda’s soil. This difference could be attributed to variations in regional geology or historical anthropogenic activities. The established geochemical baseline for 72 elements and the identified areas of potential contamination will inform land management practices, guide future environmental monitoring efforts, and ultimately contribute to the safeguarding of public health in southern Kazakhstan. Full article
Show Figures

Figure 1

20 pages, 4936 KiB  
Article
Hydrochemical Characteristics and Controlling Factors of the Mingyong River Water of the Meili Snow Mountains, China
by Xiong Zhao, Lihua Wu, Zhiwen Dong, Zichen Zhang, Kunde Wu, Aiying Wei and Yanfang Wang
Sustainability 2024, 16(14), 6174; https://doi.org/10.3390/su16146174 - 19 Jul 2024
Cited by 1 | Viewed by 1375
Abstract
The hydrochemical characteristics of rivers are affected by many natural factors, such as the nature of watershed bedrock, watershed environment, vegetation, and human activities. Examining the hydrochemistry of a river can provide insights into the baseline hydrological conditions, the geochemical environment, and the [...] Read more.
The hydrochemical characteristics of rivers are affected by many natural factors, such as the nature of watershed bedrock, watershed environment, vegetation, and human activities. Examining the hydrochemistry of a river can provide insights into the baseline hydrological conditions, the geochemical environment, and the overall water quality of the river. In order to examine the hydrochemical characteristics and controlling factors of the water in the Mingyong River, a total of 154 water samples were gathered from the glacier meltwater, midstream, and downstream regions. Firstly, the findings revealed that the dominant cations are Ca2+ and Mg2+, while the dominant anions are HCO3 and SO42−. The mass concentration order of cations is Ca2+ > Mg2+ > Na+ > K+, and for anions, it is HCO3 > SO42− > NO3 > Cl. The average concentration of TDS in the river water is 81.69 mg·L−1, with an average EC of 163.63 μs·cm−1 and an average pH of 8.99. Temporal variations in ion concentrations exhibit significant disparities between the glacier melting and accumulation periods. High ion concentration values are primarily observed during the glacier accumulation period, while values decrease during the glacier melting period due to increased precipitation. The river water in the study region is categorized as (HCO3 + SO42−)-(Ca2+ + Mg2+) type. Secondly, the Pearson correlation analysis indicates clear relationships between different parameters, indicating that the major ions were mostly influenced by materials from the Earth’s crust. The primary principal source of solutes in the water of the Mingyong River is rock weathering. The cations and anions present in the river water are derived from the breakdown of carbonate rocks and the dissolving of substances from silicate rocks. However, the influence of carbonate rocks is more significant compared to that of silicate rocks. Finally, the Mingyong River water is suitable for agricultural irrigation with minimal land salinization damage, making it appropriate for agricultural purposes but not suitable for people and animals to drink from directly. Full article
Show Figures

Figure 1

22 pages, 10582 KiB  
Article
Geochemical Signature and Risk Assessment of Potential Toxic Elements in Intensively Cultivated Soils of South-West Punjab, India
by Umakant Chaudhari, Disha Kumari, Tanishka Tyagi, Sunil Mittal and Prafulla Kumar Sahoo
Minerals 2024, 14(6), 576; https://doi.org/10.3390/min14060576 - 30 May 2024
Cited by 2 | Viewed by 1783
Abstract
Soil contamination with potentially toxic elements (PTEs) in the Malwa region belt of Punjab, India, can be a serious concern as a result of intensive agricultural practices and overuse of agrochemicals. The main objectives of the present study were to evaluate the spatial [...] Read more.
Soil contamination with potentially toxic elements (PTEs) in the Malwa region belt of Punjab, India, can be a serious concern as a result of intensive agricultural practices and overuse of agrochemicals. The main objectives of the present study were to evaluate the spatial distribution, geochemical signature, and contamination level/health risk of PTEs in 76 soil samples (0–10 cm) collected from the three districts viz. Muktar, Faridkot, and Moga of Punjab, India. The result shows that PTEs concentrations vary widely in the region, with Fe and Mn distribution patterns being mostly coherent with each other. When compared to the Indian natural soil background values, the average concentration of Pb and Zn were higher than the limit, only Pb exceeded the average values of the world background and upper continental crust (UCC). Spatial autocorrelation plotted with a local indicator of spatial association (LISA) in GeoDa software version 1.18 was used to identify hotspots. A positive spatial autocorrelation (>0.2) was indicated with Moran’s I values for Pb, V, Mn, Cu, and Cr, being highest for Pb. A principal component analysis (PCA) identified the major geo-chemical patterns of Fe-Al-V-Cr and TOC-Mn-Zn-HCO3, which were positively loaded on PC1. This indicates that Fe/Al-oxyhydroxides and organic matter play a dominant role in controlling metal mobility in soils. This can be further substantiated with the Spearman’s rank correlation values. The contamination factor (CF) indicates that only Pb and Zn (15.7% and 3.9% samples, respectively) were under high risk. This could be due to the excessive application of chemical fertilizers. The large range of degree of contamination (Cdeg) values suggests that there are variations in the degree of soil pollution due to PTEs. A little over 3.9% of samples had significant contamination, compared to 72.3% of samples with low contamination and 23.6% of samples with moderate contamination. Human non-carcinogenic and carcinogenic risk levels were investigated. The hazard index (HI) values for adult ranged from 0.00 to 0.2, and values for children ranged from 0.009 to 1.2. These findings suggest that both children and adults are not at potential risk, except in a few locations. Overall, the results of this study provide the current baseline status of toxic elements in agricultural soil. This would be helpful for developing strategies for sustainable management of the soil resources in the region, as well as for future monitoring programs of the soil quality in the Malwa region as a whole, to track any changes in the contamination levels over time. Full article
Show Figures

Graphical abstract

22 pages, 5944 KiB  
Article
Potential Toxic Elements Pollution Status in Zones of Technogenic Impact in Central Regions of Perú
by Pedro Tume, Óscar Cornejo, Verónica Cabezas, Jaume Bech, Núria Roca, Francesc Xavier Ferraro, Javiera Pedreros and Bernardo Sepúlveda
Minerals 2024, 14(6), 546; https://doi.org/10.3390/min14060546 - 25 May 2024
Viewed by 1455
Abstract
Soil is a component of the environment. An environmental policy should identify the sources of trace metals in the soil and their effects on people and living beings. The concentrations of 29 surface soil samples (0–25 cm) were determined using the methods EPA [...] Read more.
Soil is a component of the environment. An environmental policy should identify the sources of trace metals in the soil and their effects on people and living beings. The concentrations of 29 surface soil samples (0–25 cm) were determined using the methods EPA 3050B. The data were analyzed using simple and robust statistical analysis that allowed for determining geochemical baseline values. Principal component and correlation analyses were performed, which, together with a spatial analysis, allowed us to distinguish between geogenic and anthropogenic sources. The degree of soil contamination was evaluated using different ecological indices, and the health risks to children and adults were calculated using formulas proposed by the United States Environmental Protection Agency (USEPA). The median concentrations of the analyzed elements correspond to Al 17,666 (mg/kg), As 8.7 (mg/kg), Ba 61.4 (mg/kg), Cd 0.17 (mg/kg), Cr 11.3 (mg/kg), Cu 20.5 (mg/kg), Fe 25,953 (mg/kg), Hg 0.06 (mg/kg), Mn 499 (mg/kg), Ni 20.8 (mg/kg), Pb 15.9 (mg/kg), and Zn 60.6 (mg/kg). In the principal component analysis, four factors were identified that explain 70.3% of the variability of the elements, which, together with the correlation analysis, suggest that the origin of the elements is mainly geogenic with some possible anthropic contributions. The elements analyzed in the soil with moderate contamination correspond to As, Cd, and Pb, in addition, As is the only element that indicated a value above the limit for carcinogenic risk in children. The estimated geochemical baseline values correspond to Al 34,734 (mg/kg), As 15.3 (mg/kg), Ba 113 (mg/kg), Cd 0.41 (mg/kg), Cr 33.8 (mg/kg), Cu 42.9 (mg/kg), Fe 46,181 (mg/kg), Hg 0.12 (mg/kg), Mn 1015 (mg/kg), Ni 42.2 (mg/kg), Pb 21.6 (mg/kg), and Zn 121 (mg/kg). 89.7% of the total samples are at a low level of contamination. The carcinogenic risk due to As in children represents 3.4% of the total samples, so it is considered insignificant. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

24 pages, 19813 KiB  
Article
Hydrochemical Characterization and Quality Assessment of Groundwater in the Southern Plain of Hebei Province, China
by Longqiang Zhang, Donglin Dong, Situ Lv, Jialun Zhang, Maohua Yan, Guilei Han and Huizhe Li
Water 2023, 15(21), 3791; https://doi.org/10.3390/w15213791 - 29 Oct 2023
Cited by 1 | Viewed by 2324
Abstract
The purpose of this research was to understand the hydrogeochemical characteristics and assess the quality of phreatic and confined groundwater in southern Hebei Province. A total of 107 groundwater samples were collected, representing different aquifer conditions over the study area. Multivariate statistical analysis, [...] Read more.
The purpose of this research was to understand the hydrogeochemical characteristics and assess the quality of phreatic and confined groundwater in southern Hebei Province. A total of 107 groundwater samples were collected, representing different aquifer conditions over the study area. Multivariate statistical analysis, hydrochemical maps, ionic ratio coefficients, geographic information system (GIS) and geochemical simulation were comprehensively and systematically used to reveal the hydrochemical characteristics of groundwater and its controlling mechanism. The results revealed that both phreatic (pH = 7.02–9.08) and confined groundwater (pH = 7.00–10.60) were slightly alkaline. The hydrochemical types were mainly present as the HCO3-Ca-Mg type in the western premontane area and mixed Ca-Mg-SO4-Cl and Na-Cl-SO4 types in the eastern plains. The hydrochemical composition was dominated by water–rock interactions of natural processes, including silicate weathering, dissolution of sulfate minerals (gypsum, anhydrite), and cation-exchange adsorption. Anthropogenic activities were the main factor causing NO3 content in some groundwater samples to exceed the geochemical baseline. The hydrogeochemistry of groundwater in different aquifers was significantly varied. The average contents of TH, TDS, Na+, Ca2+, Mg2+, Cl and SO42− in phreatic aquifers were significantly higher than those in confined aquifers. The Entropy Weighted Water Quality Index (EWQI) results revealed that 17.78% of phreatic and 50% of confined water samples were meeting the purpose of drinking water. The groundwater samples with EWQI values exceeding 100 were mainly situated in the Handan urban area and the eastern region of Xingtai City, which should be avoided for direct utilization and needs to be improved through protection and management measures, to enhance the quality of groundwater. Correlation analysis showed that groundwater quality was significantly dominated by TH, TDS, Na+, Mg2+, Cl and SO42− concentrations. Full article
(This article belongs to the Topic Urban Hydrogeology Research)
Show Figures

Figure 1

24 pages, 18224 KiB  
Article
Multi-Parameter Statistical Analysis of K, Th, and U Concentrations in Eastern Senegal: Implications for the Interpretation of Airborne Radiometrics
by Aïssata Thiam, David Baratoux, Makhoudia Fall, Gayane Faye and Gbele Ouattara
Geosciences 2023, 13(9), 263; https://doi.org/10.3390/geosciences13090263 - 30 Aug 2023
Cited by 3 | Viewed by 2168
Abstract
In geological mapping, maps of K, Th, and U concentrations provided by airborne radiometric surveys are widely used to delineate geological units in tropical regions from the few rare outcrops. Indeed, thanks to their specific geochemical properties and behaviors, K, Th, and U [...] Read more.
In geological mapping, maps of K, Th, and U concentrations provided by airborne radiometric surveys are widely used to delineate geological units in tropical regions from the few rare outcrops. Indeed, thanks to their specific geochemical properties and behaviors, K, Th, and U allow us to trace geological processes. However, the combination of the concentrations of these radioelements does not allow us to determine the lithology in a unique way. We examined the potential of delineating the statistical parameters of K, Th, and U concentrations for geological mapping using the purpose airborne radiometric data in eastern Senegal. The mean, standard deviation, skewness, and kurtosis were calculated and mapped at a baseline of 3000 m. We noted the narrow dispersion of skewness and kurtosis values away from the expected curve for the log-normal distribution, implying that log-normal distributions dominate at the scale of analysis. The higher moments (kurtosis and skewness) varied more over shorter distances than lower order moments (mean and standard deviation). Mixtures of log-normal distributions across some lithological contacts with large differences in statistical parameters may account for this behavior. The area covered by the airborne radiometric data was classified into eight units according to the statistical parameters. The eight clusters do not show obvious correlations with geological units, but they may be interpreted in terms of the superposition of lithology and recent superficial processes (erosion and weathering). Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

26 pages, 4823 KiB  
Article
Investigation into the Affect of Chemometrics and Spectral Data Preprocessing Approaches upon Laser-Induced Breakdown Spectroscopy Quantification Accuracy Based on MarSCoDe Laboratory Model and MarSDEEP Equipment
by Ziyi Liu, Luning Li, Weiming Xu, Xuesen Xu, Zhicheng Cui, Liangchen Jia, Wenhao Lv, Zhihui Shen and Rong Shu
Remote Sens. 2023, 15(13), 3311; https://doi.org/10.3390/rs15133311 - 28 Jun 2023
Cited by 5 | Viewed by 2571
Abstract
As part of China’s Tianwen-1 Mars mission, the Mars Surface Composition Detector (MarSCoDe) instrument on the Zhurong rover adopts laser-induced breakdown spectroscopy (LIBS) to perform chemical component detection of the materials on the Martian surface. However, it has always been a challenging issue [...] Read more.
As part of China’s Tianwen-1 Mars mission, the Mars Surface Composition Detector (MarSCoDe) instrument on the Zhurong rover adopts laser-induced breakdown spectroscopy (LIBS) to perform chemical component detection of the materials on the Martian surface. However, it has always been a challenging issue to achieve high accuracy in LIBS quantification. This study investigated the effect of chemometrics and spectral data preprocessing approaches on LIBS quantification accuracy based on different chemometrics algorithms and diverse preprocessing methods. A total of 2340 LIBS spectra were collected from 39 kinds of geochemical samples by a laboratory duplicate model of the MarSCoDe instrument. The samples and the MarSCoDe laboratory model were placed in a simulated Martian atmosphere environment based on equipment called the Mars-Simulated Detection Environment Experiment Platform (MarSDEEP). To quantify the concentration of MgO in the samples, we employed two common LIBS chemometrics; i.e., partial least squares (PLS) and a back-propagation neural network (BPNN). Meanwhile, in addition to necessary routine preprocessing such as dark subtraction, we used five specific preprocessing approaches, namely intensity normalization, baseline removal, Mg-peak wavelength correction, Mg-peak feature engineering, and concentration range reduction. The results indicated that the performance of the BPNN was better than that of the PLS and that the preprocessing of Mg-peak wavelength correction had the most prominent effect to improve the quantification accuracy. The results of this study are expected to provide inspiration for the processing and analysis of the in situ LIBS data acquired by MarSCoDe on Mars. Full article
(This article belongs to the Special Issue Laser and Optical Remote Sensing for Planetary Exploration)
Show Figures

Figure 1

15 pages, 4719 KiB  
Article
Environmental and Volcanic Implications of Volatile Output in the Atmosphere of Vulcano Island Detected Using SO2 Plume (2021–23)
by Fabio Vita, Benedetto Schiavo, Claudio Inguaggiato, Salvatore Inguaggiato and Agnes Mazot
Remote Sens. 2023, 15(12), 3086; https://doi.org/10.3390/rs15123086 - 13 Jun 2023
Cited by 4 | Viewed by 1766
Abstract
The volatiles released by the volcanic structures of the world contribute to natural environmental pollution both during the passive and active degassing stages. The Island of Vulcano is characterized by solfataric degassing mainly localized in the summit part (Fossa crater) and in the [...] Read more.
The volatiles released by the volcanic structures of the world contribute to natural environmental pollution both during the passive and active degassing stages. The Island of Vulcano is characterized by solfataric degassing mainly localized in the summit part (Fossa crater) and in the peripheral part in the Levante Bay. The normal solfataric degassing (high-temperature fumarolic area of the summit and boiling fluids emitted in the Levante Bay area), established after the last explosive eruption of 1888–90, is periodically interrupted by geochemical crises characterized by anomalous degassing that are attributable to increased volcanic inputs, which determine a sharp increase in the degassing rate. In this work, we have used the data acquired from the INGV (Istituto Nazionale di Geofisica e Vulcanologia) geochemical monitoring networks to identify, evaluate, and monitor the geochemical variations of the extensive parameters, such as the SO2 flux from the volcanic plume (solfataric cloud) and the CO2 flux from the soil in the summit area outside the fumaroles areas. The increase in the flux of volatiles started in June–July 2021 and reached its maximum in November of the same year. In particular, the mean monthly flux of SO2 plume of 22 tons day−1 (t d−1) and of CO2 from the soil of 1570 grams per square meter per day (g m2 d−1) increased during this event up to 89 t d−1 and 11,596 g m2 d−1, respectively, in November 2021. The average annual baseline value of SO2 output was estimated at 7700 t d−1 during normal solfataric activity. Instead, this outgassing increased to 18,000 and 24,000 t d−1 in 2021 and 2022, respectively, indicating that the system is still in an anomalous phase of outgassing and shows no signs of returning to the pre-crisis baseline values. In fact, in the first quarter of 2023, the SO2 output shows average values comparable to those emitted in 2022. Finally, the dispersion maps of SO2 on the island of Vulcano have been produced and have indicated that the areas close to the fumarolic source are characterized by concentrations of SO2 in the atmosphere higher than those permitted by European legislation (40 μg m−3 for 24 h of exposition) on human health. Full article
Show Figures

Figure 1

14 pages, 2202 KiB  
Article
National-Scale Geochemical Baseline and Anomalies of Chromium in Papua New Guinea
by Yuhao Zhao, Conrad Kumul, Tiangang Wang, Nathan Mosusu, Zhongyou Yao, Yiping Zhu, Bimin Zhang and Xueqiu Wang
Minerals 2023, 13(2), 205; https://doi.org/10.3390/min13020205 - 31 Jan 2023
Cited by 6 | Viewed by 4139
Abstract
Papua New Guinea (PNG) is located at the convergence edge of the Pacific Plate and the Indo-Australian Plate, consisting of three units. There are three chromium mineralization types in PNG. Based on national-scale geochemical mapping in PNG during 2015–2018, 1399 samples of stream [...] Read more.
Papua New Guinea (PNG) is located at the convergence edge of the Pacific Plate and the Indo-Australian Plate, consisting of three units. There are three chromium mineralization types in PNG. Based on national-scale geochemical mapping in PNG during 2015–2018, 1399 samples of stream sediments were collected from Highland Region, Papua Peninsula, and New Guinea Islands. This paper preliminarily studied chromium’s geochemical background, spatial distribution characteristics, and geochemical anomalies. The chromium concentration ranged from 3 ppm to 74,600 ppm, with a median value of 145 ppm, which was higher than the upper crustal abundance of chromium and the chromium geochemical baseline of Europe, Australia, North America, and China. In terms of stream sediment samples in different tectonic units, as mafic–ultramafic magmatic rocks are widely developed, the median chromium values of the New Guinea Orogen, including the Papuan Fold Belt, the New Guinea Thrust Belt, the Finisterre Terrane, the Aure Fold Belt, the Eastern Fold Belt, and the Eastern Papuan Composite Terrane, were higher than the value of the Melanesian Arc. The ophiolitic complexes, such as the April ophiolite, the Marum ophiolite, and the Papua ultramafic belt, significantly correlated with the higher chromium concentration. Eleven chromium high anomalies with mineralization potential were delineated, including three laterite and podiform prospecting areas and eight placer prospecting areas. Based on the chromium–nickel integrated anomaly map, comprehensive exploration and exploitation of nickel and chromium can be carried out in 1 and 11 high anomaly areas related to lateritic mineralization. Full article
(This article belongs to the Special Issue Critical Metal Minerals)
Show Figures

Figure 1

14 pages, 3669 KiB  
Article
Temporal Variations of Sediment Provenance in a Karst Watershed, China
by Mi Tian, Xueqiu Wang, Yu Qiao, Dongsheng Liu, Qinghua Chi, Hanliang Liu, Wei Wang and Baoyun Zhang
Appl. Sci. 2023, 13(2), 771; https://doi.org/10.3390/app13020771 - 5 Jan 2023
Cited by 3 | Viewed by 1593
Abstract
The environmental quality of the sediments in karst areas is a common concern, and it is of great significance to analyze the sources of the sediments. This study investigates the sources and its temporal variations of catchment sediments in a typical small karst [...] Read more.
The environmental quality of the sediments in karst areas is a common concern, and it is of great significance to analyze the sources of the sediments. This study investigates the sources and its temporal variations of catchment sediments in a typical small karst watershed area. Toxic metal concentrations in the catchment area were monitored via three geochemical baseline projects in China. The sediment identification fingerprint tool (SIFT) was used to establish a geochemical model for tracing the main source contributions and its temporal variations of catchment sediments over the past 28 years (1992–2019). The catchment sediments in the small karst catchment area were mainly sourced from the background lithologies, among which limestone contributed the most, followed by dolomite, sand-shale, and mudstone; however, the anthropogenic lead–zinc tailings contributed the least. The contributions and temporal variations of each source were closely related to the lithology, topography, and landform, as well as the change in land-use and vegetation cover and the degree of rocky desertification. Moreover, the implementation of vegetation restoration and control of rocky desertification decreased the contributions of the upstream geological bodies, and the toxic metal content of the catchment sediment decreased accordingly. This study is of great significance for environmental governance in karst areas. Full article
Show Figures

Figure 1

29 pages, 8491 KiB  
Article
Source Apportionment of Chemical Elements and Their Geochemical Baseline Values in Surface Water of the Parauapebas River Basin, Southeast Amazon, Brazil
by Leandro Silva Quaresma, Gessica da Silva e Silva, Prafulla Kumar Sahoo, Gabriel Negreiros Salomão and Roberto Dall’Agnol
Minerals 2022, 12(12), 1579; https://doi.org/10.3390/min12121579 - 9 Dec 2022
Cited by 7 | Viewed by 2754
Abstract
The present work aims to evaluate the chemical quality and establish the geochemical baseline values of elements in the surface waters of the Parauapebas River basin (PRB), which is one of the major subbasins in the Itacaiúnas River watershed (IRW) located in the [...] Read more.
The present work aims to evaluate the chemical quality and establish the geochemical baseline values of elements in the surface waters of the Parauapebas River basin (PRB), which is one of the major subbasins in the Itacaiúnas River watershed (IRW) located in the Brazilian Amazon. A total of 327 surface water samples were collected during the rainy and dry seasons in 2017. Results indicate that waters are slightly acidic to alkaline (pH 6 to 8), and there was a strong influence of the seasonal variation on water quality, with higher values of turbidity, Fe, Al, Mn, TDS, etc. in the rainy season. Two geochemical baseline types for the PRB were defined, i.e., ‘conservative baseline’ (CB), represented by the cumulative frequency curve, and the ‘environmental baseline’ (EB), comprising the sum of natural and diffuse anthropogenic contributions, represented by the 98th percentile. Except Fe, Mn and Al, the CB and EB values of various trace elements (Ba, Co, Cr, Cu, Ni, Rb, Sn, Sr, Ti, V and Zn) were lower than the recommended limits of CONAMA 357/05—class 2. The principal component analysis (PCA) identified the major geochemical association (Al-Ti-Cu-Cr-Ni-V), which is an imprint of the local geological setting. Ni and Cr showed enrichment at sites where mafic and ultramafic rocks are concentrated, while Cu concentration is mainly associated with the north and south mineralization belts. High concentrations of Fe and Mn are characteristic of the waters of this region and this is mostly influenced by specific land use activities and intense weathering/erosion of catchment materials. At the upper Parauapebas, anthropogenic contributions associated with soil use and occupation were also important along with the geogenic effects. The obtained results regarding sources of contaminants in some microbasins can be taken as a starting point for future studies on the environmental quality of the region’s water resources. Full article
(This article belongs to the Special Issue Concentration and Distribution of Heavy Metals in Soils, Volume II)
Show Figures

Figure 1

Back to TopTop