Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = genome organisation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 1807 KiB  
Review
Thriving or Withering? Plant Molecular Cytogenetics in the First Quarter of the 21st Century
by Elzbieta Wolny, Luis A. J. Mur, Nobuko Ohmido, Zujun Yin, Kai Wang and Robert Hasterok
Int. J. Mol. Sci. 2025, 26(14), 7013; https://doi.org/10.3390/ijms26147013 - 21 Jul 2025
Viewed by 371
Abstract
Nearly four decades have passed since fluorescence in situ hybridisation was first applied in plants to support molecular cytogenetic analyses across a wide range of species. Subsequent advances in DNA sequencing, bioinformatic analysis, and microscopy, together with the immunolocalisation of various nuclear components, [...] Read more.
Nearly four decades have passed since fluorescence in situ hybridisation was first applied in plants to support molecular cytogenetic analyses across a wide range of species. Subsequent advances in DNA sequencing, bioinformatic analysis, and microscopy, together with the immunolocalisation of various nuclear components, have provided unprecedented insights into the cytomolecular organisation of the nuclear genome in both model and non-model plants, with crop species being perhaps the most significant. The ready availability of sequenced genomes is now facilitating the application of state-of-the-art cytomolecular techniques across diverse plant species. However, these same advances in genomics also pose a challenge to the future of plant molecular cytogenetics, as DNA sequence analysis is increasingly perceived as offering comparable insights into genome organisation. This perception persists despite the continued relevance of FISH-based approaches for the physical anchoring of genome assemblies to chromosomes. Furthermore, cytogenetic approaches cannot currently rival purely genomic methods in terms of throughput, standardisation, and automation. This review highlights the latest key topics in plant cytomolecular research, with particular emphasis on chromosome identification and karyotype evolution, chromatin and interphase nuclear organisation, chromosome structure, hybridisation and polyploidy, and cytogenetics-assisted crop improvement. In doing so, it underscores the distinctive contributions that cytogenetic techniques continue to offer in genomic research. Additionally, we critically assess future directions and emerging opportunities in the field, including those related to CRISPR/Cas-based live-cell imaging and chromosome engineering, as well as AI-assisted image analysis and karyotyping. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Figure 1

23 pages, 2623 KiB  
Article
Chromosome-Contiguous Ancylostoma duodenale Reference Genome from a Single Archived Specimen Elucidates Human Hookworm Biology and Host–Parasite Interactions
by Neil D. Young, Yuanting Zheng, Sunita B. Sumanam, Tao Wang, Jiangning Song, Bill C. H. Chang and Robin B. Gasser
Int. J. Mol. Sci. 2025, 26(12), 5576; https://doi.org/10.3390/ijms26125576 - 11 Jun 2025
Viewed by 533
Abstract
Soil-transmitted helminths (STHs) are parasitic nematodes that infect humans, particularly in tropical and subtropical regions, where they contribute substantially to neglected tropical diseases (NTDs). Among them, hookworms (Ancylostoma duodenale, Necator americanus and Ancylostoma ceylanicum) cause substantial morbidity, leading to anaemia, [...] Read more.
Soil-transmitted helminths (STHs) are parasitic nematodes that infect humans, particularly in tropical and subtropical regions, where they contribute substantially to neglected tropical diseases (NTDs). Among them, hookworms (Ancylostoma duodenale, Necator americanus and Ancylostoma ceylanicum) cause substantial morbidity, leading to anaemia, malnutrition, and developmental impairment. Despite the global impact of hookworm disease, genomic research on A. duodenale has lagged behind that of other hookworms, limiting comparative and molecular biological investigations. Here, we report the first chromosome-level reference genome of A. duodenale, assembled from a single adult specimen archived in ethanol at −20 °C for more than 27 years. Using third-generation sequencing (PacBio Revio, Menlo Park, CA, USA, Oxford Nanopore, Oxford, UK), Hi-C scaffolding, and advanced computational tools, we produced a high-quality 319 Mb genome, filling a critical gap in hookworm genomics. Comparative analyses with N. americanus and the related, free-living nematode Caenorhabditis elegans provided new insights into genome organisation, synteny, and specific adaptations. While A. duodenale exhibited strong chromosomal synteny with N. americanus, its limited synteny with C. elegans highlights its distinct parasitic adaptations. We identified 20,015 protein-coding genes, including conserved single-copy orthologues (SCOs) linked to host–pathogen interactions, immune evasion and essential biological processes. The first comprehensive secretome analysis of A. duodenale revealed a diverse repertoire of excretory/secretory (ES) proteins, including immunomodulatory candidates predicted to interact with host structural and immune-related proteins. This study advances hookworm genomics, establishes a basis for the sequencing of archival specimens, and provides fundamental insights into the molecular biology of A. duodenale. The genomic resource for this hookworm species creates new opportunities for diagnostic, therapeutic, and vaccine development within a One Health framework. It complements recent epidemiological work and aligns with the WHO NTD roadmap (2021–2030) and Sustainable Development Goal 3.3. Full article
(This article belongs to the Special Issue Parasite Biology and Host-Parasite Interactions: 2nd Edition)
Show Figures

Figure 1

44 pages, 2372 KiB  
Review
Development of New Live-Attenuated Vaccine Candidates Lacking Antibody-Dependent Enhancement (ADE) Against Dengue
by Brandon E. K. Tan, Seng Kong Tham and Chit Laa Poh
Vaccines 2025, 13(5), 532; https://doi.org/10.3390/vaccines13050532 - 16 May 2025
Viewed by 2572
Abstract
Dengue virus (DENV) threatens public health, especially in regions with tropical and subtropical climates. In 2024, the World Health Organisation reported 3.4 million confirmed dengue cases, with 16,000 severe cases and 3000 dengue-associated fatalities. The first licensed dengue vaccine, CYD-TDV (Dengvaxia®,Sanofi-Pasteur, [...] Read more.
Dengue virus (DENV) threatens public health, especially in regions with tropical and subtropical climates. In 2024, the World Health Organisation reported 3.4 million confirmed dengue cases, with 16,000 severe cases and 3000 dengue-associated fatalities. The first licensed dengue vaccine, CYD-TDV (Dengvaxia®,Sanofi-Pasteur, Paris, France), is recommended by the WHO only for individuals aged 9–45 years with a prior history of dengue infection. However, being vaccinated with Dengvaxia® increases the risk of developing severe dengue infections in seronegative individuals. Recently, a second licensed dengue vaccine, Qdenga®,Takeda, Singen, Germany), was approved and recommended by the WHO to be administered only in highly dengue-endemic countries, as it was not shown to elicit a robust immune response against DENV-3 and DENV-4 serotypes in dengue seronegative individuals. Due to an imbalance in immune response against all four DENV serotypes, there is a higher risk of developing the antibody-dependent enhancement (ADE) effect, which could lead to severe dengue. This review has identified mutations throughout the DENV genome that were demonstrated to attenuate the virulence of DENV in either in vitro or in vivo studies. Several amino acid residues within the DENV prM and E proteins were identified to play important roles in ADE and modifying these ADE-linked residues is important in the rational design of novel live-attenuated dengue vaccine candidates. This review provides current insights to guide the development of a novel live-attenuated tetravalent dengue vaccine candidate that is effective against all DENV serotypes and safe from ADE. The efficacy and safety of the live-attenuated vaccine candidate should be further validated in in vivo studies. Full article
Show Figures

Figure 1

11 pages, 580 KiB  
Review
Congenital Hyperinsulinism India Association: An Approach to Address the Challenges and Opportunities of a Rare Disease
by Jaikumar B. Contractor, Venkatesan Radha, Krati Shah, Praveen Singh, Sunil Tadepalli, Somashekhar Nimbalkar, Viswanathan Mohan and Pratik Shah
Med. Sci. 2025, 13(2), 37; https://doi.org/10.3390/medsci13020037 - 1 Apr 2025
Cited by 1 | Viewed by 767
Abstract
India’s population complexity presents varied challenges in genetic research, and while facilities have gained traction in tier-1 and -2 cities, reliance on international collaborations often delays such investigations. COVID-19 further exacerbated the issues with such sample sharing. Congenital Hyperinsulinism (CHI) is a rare [...] Read more.
India’s population complexity presents varied challenges in genetic research, and while facilities have gained traction in tier-1 and -2 cities, reliance on international collaborations often delays such investigations. COVID-19 further exacerbated the issues with such sample sharing. Congenital Hyperinsulinism (CHI) is a rare genetic disorder of pancreatic β-cells causing hypoglycaemia in children due to abnormal insulin secretion. Given India’s high birth rate and consanguineous populations, annual CHI cases are estimated to be around up to 10,000, with up to 50% having unexplained genetic causes. Diffuse or atypical lesions in such patients often necessitate near-total-pancreatectomy, risking pancreatic exocrine insufficiency and diabetes, requiring lifelong therapy. Also, novel genetic variations complicate accurate diagnosis, risk assessment, and counselling, emphasising the need for rapid genetic assessment to prevent neurological injuries and inform treatment decisions. Despite significant efforts at many institutes, there are no dedicated organisations for CHI in India. With the implementation of the National Policy for Rare Diseases 2021, we plan to form a non-profit organisation, “Congenital Hyperinsulinism India Association (CHIA)”, comprising paediatric endocrinologists, paediatricians, geneticists, and independent researchers. The aims of this association are to generate a national database registry of patients, formulate a parent support group and CHIA consortium, design patient information leaflets, as well as foster genomic collaborations and promote clinical trials. Such steps will help sensitise the health authorities and policy makers, urging them to improve the allocation of health budgets for rare diseases, as well as empower patients and their families, contributing towards a better quality of life. Full article
(This article belongs to the Section Endocrinology and Metabolic Diseases)
Show Figures

Figure 1

17 pages, 2296 KiB  
Article
Subgenomic RNA and Limited Cross-Reactive Neutralising Antibodies Point to Potential Improvements in SARS-CoV-2 Clinical Handling
by Carlos Davina-Nunez, Sonia Perez-Castro, Jorge Julio Cabrera-Alvargonzalez, Elena Gonzalez-Alonso, Sergio Silva-Bea, Miriam Rodriguez-Perez, Maria del Pilar Figueroa-Lamas, Alexandre Perez-Gonzalez, Victor del Campo, Almudena Rojas, Joaquin Mendoza and Benito Regueiro-Garcia
Int. J. Mol. Sci. 2025, 26(7), 2948; https://doi.org/10.3390/ijms26072948 - 24 Mar 2025
Viewed by 592
Abstract
The current clinical management of SARS-CoV-2 disease control and immunity may be not optimal anymore. Reverse transcription polymerase chain reaction (RT-PCR) of genomic viral RNA is broadly used for diagnosis, even though the virus may still be detectable when it is already non-infectious. [...] Read more.
The current clinical management of SARS-CoV-2 disease control and immunity may be not optimal anymore. Reverse transcription polymerase chain reaction (RT-PCR) of genomic viral RNA is broadly used for diagnosis, even though the virus may still be detectable when it is already non-infectious. Regarding serology, commercial assays mostly still rely on ancestral spike detection despite significant changes in the genetic sequence of the current circulating variants. We followed a group of 105 non-vaccinated individuals, measuring their viral shedding until negativity and antibody response up to six months. The mean viral detection period until a negative RT-PCR result was 2.2 weeks when using subgenomic RNA-E as a detection target, and 5.2 weeks when using genomic RNA as a detection target. Our neutralising antibody results suggest that, when challenged against a variant different from the variant of first exposure, commercial immunoassays are suboptimal at predicting the neutralising capacity of sera. Additionally, anti-Alpha and anti-Delta antibodies showed very low cross-reactivity between variants. This study provides insights into viral shedding and immune response in pre-Omicron variants like Alpha and Delta, which have been understudied in the published literature. These conclusions point to potential improvements in the clinical management of SARS-CoV-2 cases in order to organise vaccination campaigns and select monoclonal antibody treatments. Full article
Show Figures

Figure 1

19 pages, 1541 KiB  
Review
Thyroid Hormones and Brain Development: A Focus on the Role of Mitochondria as Regulators of Developmental Time
by Filip Vujovic and Ramin M Farahani
Cells 2025, 14(3), 150; https://doi.org/10.3390/cells14030150 - 21 Jan 2025
Cited by 1 | Viewed by 2507
Abstract
Thyroid hormones (THs) regulate metabolism in a homeostatic state in an adult organism. During the prenatal period, prior to the establishment of homeostatic mechanisms, THs assume additional functions as key regulators of brain development. Here, we focus on reviewing the role of THs [...] Read more.
Thyroid hormones (THs) regulate metabolism in a homeostatic state in an adult organism. During the prenatal period, prior to the establishment of homeostatic mechanisms, THs assume additional functions as key regulators of brain development. Here, we focus on reviewing the role of THs in orchestrating cellular dynamics in a developing brain. The evidence from the reviewed scientific literature suggests that the developmental roles of the hormones are predominantly mediated by non-genomic mitochondrial effects of THs due to attenuation of genomic effects of THs that antagonise non-genomic impacts. We argue that the key function of TH signalling during brain development is to orchestrate the tempo of self-organisation of neural progenitor cells. Further, evidence is provided that major neurodevelopmental consequences of hypothyroidism stem from an altered tempo of cellular self-organisation. Full article
Show Figures

Figure 1

18 pages, 9775 KiB  
Article
Divergent Contribution of Cytoplasmic Actins to Nuclear Structure of Lung Cancer Cells
by Galina Shagieva, Vera Dugina, Anton Burakov, Yulia Levuschkina, Dmitry Kudlay, Sergei Boichuk, Natalia Khromova, Maria Vasileva and Pavel Kopnin
Int. J. Mol. Sci. 2024, 25(24), 13607; https://doi.org/10.3390/ijms252413607 - 19 Dec 2024
Viewed by 1225
Abstract
A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences [...] Read more.
A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences nuclear stiffness and cellular behaviour. The downregulation of β-actin resulted in an increase in nuclear area, accompanied by a decrease in A-type lamins and an enhancement in lamin B2. In contrast, the suppression of γ-actin led to upregulation of the lamin A/B ratio through an increase in A-type lamins. Histone H3 post-translational modifications display distinct patterns in response to decreased actin isoform expression. The level of dimethylated H3K9me2 declined while acetylated H3K9ac increased in β-actin-depleted A549 cells. In contrast, the inhibition of γ-actin expression resulted in a reduction in H3K9ac. Based on our observations, we propose that β-actin plays a role in chromatin compaction and deactivation, and is involved in the elevation of nuclear stiffness through the control of the lamins ratio. The non-muscle γ-actin is presumably responsible for chromatin decondensation and activation. The identification of novel functions for actin isoforms offers insights into the mechanisms through which they influence cell fate during development and cancer progression. Full article
Show Figures

Figure 1

11 pages, 564 KiB  
Opinion
The Newborn Screening Programme Revisited: An Expert Opinion on the Challenges of Rett Syndrome
by Jatinder Singh and Paramala Santosh
Genes 2024, 15(12), 1570; https://doi.org/10.3390/genes15121570 - 5 Dec 2024
Cited by 1 | Viewed by 1469
Abstract
Genomic sequencing has the potential to revolutionise newborn screening (NBS) programmes. In 2024, Genomics England began to recruit for the Generation Study (GS), which uses whole genome sequencing (WGS) to detect genetic changes in 500 genes in more than 200 rare conditions. Ultimately, [...] Read more.
Genomic sequencing has the potential to revolutionise newborn screening (NBS) programmes. In 2024, Genomics England began to recruit for the Generation Study (GS), which uses whole genome sequencing (WGS) to detect genetic changes in 500 genes in more than 200 rare conditions. Ultimately, its purpose is to facilitate the earlier identification of rare conditions and thereby improve health-related outcomes for individuals. The adoption of rare conditions into the GS was guided by four criteria: (1) the gene causing the condition can be reliably detected; (2) if undiagnosed, the rare condition would have a serious impact; (3) early or presymptomatic testing would substantially improve outcomes; and (4) interventions for conditions screened are accessible to all. Rett syndrome (RTT, OMIM 312750), a paediatric neurodevelopment disorder, was not included in the list of rare conditions in the GS. In this opinion article, we revisit the GS and discuss RTT from the perspective of these four criteria. We begin with an introduction to the GS and then summarise key points about the four principles, presenting challenges and opportunities for individuals with RTT. We provide insight into how data could be collected during the presymptomatic phase, which could facilitate early diagnosis and improve our understanding of the prodromal stage of RTT. Although many features of RTT present a departure from criteria adopted by the GS, advances in RTT research, combined with advocacy from parent-based organisations, could facilitate its entry into future newborn screening programmes. Full article
(This article belongs to the Special Issue Genetics and Therapy of Neurodevelopmental Disorders)
Show Figures

Figure 1

21 pages, 3273 KiB  
Article
Proteins Associated with Salinity Adaptation of the Dinoflagellates: Diversity and Potential Involvement in Species Evolution
by Nataliia V. Annenkova
Diversity 2024, 16(12), 739; https://doi.org/10.3390/d16120739 - 29 Nov 2024
Viewed by 798
Abstract
Protists inhabit marine, brackish and fresh waters. The salt barrier plays an important role in the origin of their diversity. Salinity tolerance differs among species and sometimes even among different strains of the same species, indicating local adaptation. Dinoflagellates from the Apocalathium genus [...] Read more.
Protists inhabit marine, brackish and fresh waters. The salt barrier plays an important role in the origin of their diversity. Salinity tolerance differs among species and sometimes even among different strains of the same species, indicating local adaptation. Dinoflagellates from the Apocalathium genus are represented by at least four species, which originated via rapid and recent radiation. Water salinity was suggested as one of the key factors for this radiation. A previous study found RNA transcripts, which belong exclusively to saline strains of Apocalathium, and were absent in its freshwater strains. In the present paper, the diversity of these transcripts and their orthologs from marine and freshwater protists were analysed using bioinformatic approaches. First, it was found that these specific transcripts translated to the proteins, which are important for osmoregulation (e.g., transport of various compounds including glycine betaine, regulation of microtubule organisation, post transcriptional modifications). This supports the idea that speciation within Apocalathium resulted in the loss of osmoregulatory genes by freshwater species. Second, protein distribution was not highly species specific, because their orthologs were found in different dinoflagellates and were relatively common in other phototrophic protists, though the sequences were highly variable. Proteins from 13 orthogroups were absent or very rare in studied freshwater genomes and transcriptomes. They could play a specific role in protists salinity tolerance. Third, detailed phylogenetic analyses of betaine-like transporter and chloride transmembrane transporters, which probably are one of the key proteins associated with salinity tolerance, revealed high levels of multiple and variable copies that were not eliminated from the genome during the evolution. The expression of their genes could be important in the adaptation of dinoflagellates to salinity changes, as it was already shown for some other protists. Full article
(This article belongs to the Special Issue Emerging Pollution: Effects on Aquatic Environments and Biodiversity)
Show Figures

Figure 1

12 pages, 1749 KiB  
Article
Facilitation of Evolution by Plasticity Scales with Phenotypic Complexity
by Mikhail Burtsev, Konstantin Anokhin and Patrick Bateson
Animals 2024, 14(19), 2804; https://doi.org/10.3390/ani14192804 - 28 Sep 2024
Viewed by 2488
Abstract
Developmental plasticity enables organisms to cope with new environmental challenges. If deploying such plasticity is costly in terms of time or energy, the same adaptive behaviour could subsequently evolve through piecemeal genomic reorganisation that replaces the requirement to acquire that adaptation by individual [...] Read more.
Developmental plasticity enables organisms to cope with new environmental challenges. If deploying such plasticity is costly in terms of time or energy, the same adaptive behaviour could subsequently evolve through piecemeal genomic reorganisation that replaces the requirement to acquire that adaptation by individual plasticity. Here, we report a new dimension to the way in which plasticity can drive evolutionary change, leading to an ever-greater complexity in biological organisation. Plasticity dramatically accelerates the evolutionary accumulation of adaptive systems in model organisms with relatively low rates of mutation. The effect of plasticity on the evolutionary growth of complexity is even greater when the number of elements needed to construct a functional system is increased. These results suggest that, as the difficulty of challenges from the environment becomes greater, plasticity exerts an ever more powerful role in meeting those challenges and in opening up new avenues for the subsequent evolution of complex adaptations. Full article
(This article belongs to the Special Issue Animal Ontogeny, Plasticity and Ecology)
Show Figures

Figure 1

17 pages, 1864 KiB  
Article
Antimicrobial Resistance and Phylogenetic Relatedness of Salmonella Serovars in Indigenous Poultry and Their Drinking Water Sources in North Central Nigeria
by Nancy M. Sati, Roderick M. Card, Lisa Barco, Maryam Muhammad, Pam D. Luka, Thomas Chisnall, Idowu O. Fagbamila, Giulia Cento, Nnaemeka E. Nnadi, Clovice Kankya, Innocent B. Rwego, Kokas Ikwap, Lawrence Mugisha, Joseph Erume and Frank N. Mwiine
Microorganisms 2024, 12(8), 1529; https://doi.org/10.3390/microorganisms12081529 - 26 Jul 2024
Cited by 1 | Viewed by 1732
Abstract
There is scant information on Salmonella in indigenous poultry in Nigeria. We investigated the occurrence and characterized Salmonella serovars in indigenous poultry and their drinking water sources to enhance the monitoring of the infection in poultry and to promote public health. We collected [...] Read more.
There is scant information on Salmonella in indigenous poultry in Nigeria. We investigated the occurrence and characterized Salmonella serovars in indigenous poultry and their drinking water sources to enhance the monitoring of the infection in poultry and to promote public health. We collected 1208 samples, poultry droppings (n = 1108), and water (n = 100) across 15 markets in North Central Nigeria. Salmonella spp. were isolated following World Organisation for Animal Health guidelines. Salmonella spp., confirmed through invA gene detection by a polymerase chain reaction assay, were 6.8% (75/1108) droppings and 3% (3/100) water. Susceptibility testing against 13 antimicrobials showed 60.3% (47/78) susceptibility to all the antimicrobials tested while 14.1% (11/78) were multidrug resistant. Serotyping and whole-genome sequencing were carried out on 44 of the isolates, and 23 different serovars were identified. Genomes of serovars Luedinghausen, Laredo, Widemarsh, and Lansing are being documented in Africa for the first time. Twenty (20) antimicrobial resistance (AMR) gene markers encoding for resistance to aminoglycosides, tetracyclines, sulphonamides, quinolones, trimethoprim, penicillins and phenicols were found. Phylogenetic cluster analysis showed close relatedness among isolates from different sources. This study shows both low Salmonella prevalence and AMR, but since uncommon serovars are circulating, continuous monitoring is recommended so as to ensure food safety and poultry health. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

19 pages, 732 KiB  
Case Report
Detection of SARS-CoV-2 Delta Variant (B.1.617.2) in Domestic Dogs and Zoo Tigers in England and Jersey during 2021
by Amanda H. Seekings, Rebecca Shipley, Alexander M. P. Byrne, Shweta Shukla, Megan Golding, Joan Amaya-Cuesta, Hooman Goharriz, Ana Gómez Vitores, Fabian Z. X. Lean, Joe James, Alejandro Núñez, Alistair Breed, Andrew Frost, Jörg Balzer, Ian H. Brown, Sharon M. Brookes and Lorraine M. McElhinney
Viruses 2024, 16(4), 617; https://doi.org/10.3390/v16040617 - 16 Apr 2024
Viewed by 2765
Abstract
Reverse zoonotic transmission events of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described since the start of the pandemic, and the World Organisation for Animal Health (WOAH) designated the detection of SARS-CoV-2 in animals a reportable disease. Eighteen domestic and zoo [...] Read more.
Reverse zoonotic transmission events of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been described since the start of the pandemic, and the World Organisation for Animal Health (WOAH) designated the detection of SARS-CoV-2 in animals a reportable disease. Eighteen domestic and zoo animals in Great Britain and Jersey were tested by APHA for SARS-CoV-2 during 2020–2023. One domestic cat (Felis catus), three domestic dogs (Canis lupus familiaris), and three Amur tigers (Panthera tigris altaica) from a zoo were confirmed positive during 2020–2021 and reported to the WOAH. All seven positive animals were linked with known SARS-CoV-2 positive human contacts. Characterisation of the SARS-CoV-2 variants by genome sequencing indicated that the cat was infected with an early SARS-CoV-2 lineage. The three dogs and three tigers were infected with the SARS-CoV-2 Delta variant of concern (B.1.617.2). The role of non-human species in the onward transmission and emergence of new variants of SARS-CoV-2 remain poorly defined. Continued surveillance of SARS-CoV-2 in relevant domestic and captive animal species with high levels of human contact is important to monitor transmission at the human−animal interface and to assess their role as potential animal reservoirs. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

4 pages, 193 KiB  
Conference Report
Newborn Screening Today and Tomorrow: A Brief Report from the International Primary Immunodeficiencies Congress
by Leire Solis, Samya Van Coillie, James R. Bonham, Fabian Hauck, Lennart Hammarström, Frank J. T. Staal, Bruce Lim, Martine Pergent and Johan Prévot
Int. J. Neonatal Screen. 2024, 10(2), 30; https://doi.org/10.3390/ijns10020030 - 5 Apr 2024
Cited by 2 | Viewed by 1793
Abstract
This article presents the report of the session on “Newborn Screening for Primary Immunodeficiencies—Now What?” organised during the International Primary Immunodeficiency Congress (IPIC) held in November 2023. This clinical conference was organised by the International Patient Organisation for Primary Immunodeficiencies (IPOPI), the global [...] Read more.
This article presents the report of the session on “Newborn Screening for Primary Immunodeficiencies—Now What?” organised during the International Primary Immunodeficiency Congress (IPIC) held in November 2023. This clinical conference was organised by the International Patient Organisation for Primary Immunodeficiencies (IPOPI), the global patient organisation advocating for primary immunodeficiencies (PIDs) in patients. The session aimed at exploring the advances in newborn screening (NBS) for severe combined immunodeficiency, starting with the common practice and inserting the discussion into the wider perspective of genomics whilst taking into consideration the ethical aspects of screening as well as incorporating families and the public into the discussions, so as to ensure that NBS for treatable rare disorders continues to be one of the major public health advances of the 20th century. Full article
16 pages, 14072 KiB  
Article
PluMu—A Mu-like Bacteriophage Infecting Actinobacillus pleuropneumoniae
by Lee Julia Bartsch, Roberto Fernandez Crespo, Yunfei Wang, Michael A. Skinner, Andrew N. Rycroft, William Cooley, David J. Everest, Yanwen Li, Janine T. Bossé and Paul R. Langford
Appl. Microbiol. 2024, 4(1), 520-535; https://doi.org/10.3390/applmicrobiol4010037 - 17 Mar 2024
Viewed by 1764
Abstract
Actinobacillus pleuropneumoniae is the causative agent of pleuropneumonia, an economically important lung disease in pigs. In draft genomes of two Cypriot clinical A. pleuropneumoniae isolates (MIDG3457 and MIDG3459), we previously identified single genomic regions with homology to Mu-like bacteriophage and presented preliminary evidence [...] Read more.
Actinobacillus pleuropneumoniae is the causative agent of pleuropneumonia, an economically important lung disease in pigs. In draft genomes of two Cypriot clinical A. pleuropneumoniae isolates (MIDG3457 and MIDG3459), we previously identified single genomic regions with homology to Mu-like bacteriophage and presented preliminary evidence of active phage. Here, updated Phastest genomic analysis identified two loci in both MIDG3457 and MIDG3459 that were predicted to encode proteins with high homology to, and whose organisation was characteristic of, Mu-like phages. Phylogenetically, the closest matches were with Mannheimia Vb and Glaesserella SuMu phages. Phastest scored the loci as “complete”, indicating they produced active phage. PCR amplification of the Mu-like phage c and tail genes from DNase-treated polyethylene glycol 8000 (PEG)-precipitated supernatants of MIDG3457 and MIDG3459 (grown in either Brain Heart Infusion-NAD or Grace’s Insect Medium-NAD broth) indicated the presence of intact virions. The phages from MIDG3457 and MIDG3459 were named PluMu 3457-1, 3457-2, and PluMu 3459-1 and PluMu 3459-2, respectively. Transmission electron microscopy (TEM) of the PEG-precipitated supernatants of broth-grown MIDG3459 identified virions with icosahedral heads and tails, consistent with other Mu-like phages. We conclude that MIDG3459 produces an active Mu-like phage. Full article
Show Figures

Figure 1

17 pages, 1260 KiB  
Review
CDKN2A/B Homozygous Deletions in Astrocytomas: A Literature Review
by Alexander Yuile, Laveniya Satgunaseelan, Joe Q. Wei, Michael Rodriguez, Michael Back, Nick Pavlakis, Amanda Hudson, Marina Kastelan, Helen R. Wheeler and Adrian Lee
Curr. Issues Mol. Biol. 2023, 45(7), 5276-5292; https://doi.org/10.3390/cimb45070335 - 22 Jun 2023
Cited by 18 | Viewed by 7214
Abstract
Genomic alterations of CDKN2A and CDKN2B in astrocytomas have been an evolving area of study for decades. Most recently, there has been considerable interest in the effect of CDKN2A and/or CDKN2B (CDKN2A/B) homozygous deletions (HD) on the prognosis of isocitrate dehydrogenase [...] Read more.
Genomic alterations of CDKN2A and CDKN2B in astrocytomas have been an evolving area of study for decades. Most recently, there has been considerable interest in the effect of CDKN2A and/or CDKN2B (CDKN2A/B) homozygous deletions (HD) on the prognosis of isocitrate dehydrogenase (IDH)-mutant astrocytomas. This is highlighted by the adoption of CDKN2A/B HD as an essential criterion for astrocytoma and IDH-mutant central nervous system (CNS) WHO grade 4 in the fifth edition of the World Health Organisation (WHO) Classification of Central Nervous System Tumours (2021). The CDKN2A and CDKN2B genes are located on the short arm of chromosome 9. CDKN2A encodes for two proteins, p14 and p16, and CDKN2B encodes for p15. These proteins regulate cell growth and angiogenesis. Interpreting the impact of CDKN2A/B alterations on astrocytoma prognosis is complicated by recent changes in tumour classification and a lack of uniform standards for testing CDKN2A/B. While the prognostic impact of CDKN2A/B HD is established, the role of different CDKN2A/B alterations—heterozygous deletions (HeD), point mutations, and promoter methylation—is less clear. Consequently, how these alternations should be incorporated into patient management remains controversial. To this end, we reviewed the literature on different CDKN2A/B alterations in IDH-mutant astrocytomas and their impact on diagnosis and management. We also provided a historical review of the changing impact of CDKN2A/B alterations as glioma classification has evolved over time. Through this historical context, we demonstrate that CDKN2A/B HD is an important negative prognostic marker in IDH-mutant astrocytomas; however, the historical data is challenging to interpret given changes in tumour classification over time, variation in the quality of evidence, and variations in the techniques used to identify CDKN2A/B deletions. Therefore, future prospective studies using uniform classification and detection techniques are required to improve the clinical interpretation of this molecular marker. Full article
(This article belongs to the Special Issue Linking Genomic Changes with Cancer in the NGS Era)
Show Figures

Figure 1

Back to TopTop