Congenital Hyperinsulinism India Association: An Approach to Address the Challenges and Opportunities of a Rare Disease
Abstract
:1. Introduction
1.1. Scenario of Genetic Diseases in India
1.2. Congenital Hyperinsulinism
1.3. Indian Organisations for CHI
1.4. Global Organisations for CHI
- ○
- Congenital Hyperinsulinism International (https://congenitalhi.org)–Congenital Hyperinsulinism International is a grass-root level organisation founded in 2005 by the concerned parents of children with hyperinsulinism. It is a global organisation supported in its work by a scientific advisory team comprising eleven leading hyperinsulinism world specialists. It remains dedicated to increasing awareness; providing education, information, and support to those living with the disease; advocating on behalf of the patients for better treatments and access to care; and improving the lives of the babies, children, and adults affected by the disorder. It also supports medical research for improved therapies, potential cures, and timely diagnosis.
- ○
- Congenital Hyperinsulinism Charity UK (CHC-UK).
- ○
- There are also family support groups reported in Germany, Spain, and various other countries.
- Congenital Hyperinsulinism India Association (CHIA) https://www.hyperinsulinism-india.org/ (accessed on 10 November 2024)
- Congenital Hyperinsulinism India (CHIA)—Vision
- ○
- To raise awareness of Congenital Hyperinsulinism as a rare genetic disorder among the public and healthcare professionals across India and contribute towards a better quality of life for the children and their families.
- Congenital Hyperinsulinism India Association (CHIA)—Mission
- ○
- Offer prompt genetic testing for clinically and biochemically confirmed cases of CHI at the CAP (College of American Pathologists)- and NABL (National Accreditation Board for Testing and Calibration Laboratories)-accredited genetic centre in India to provide quick turn-around of results.
- ○
- Generate a national database and registry of patients for collaborative research, improving access to diagnostics and treatment.
- ○
- Formulate a parent support group and CHI-India Association consortium to raise awareness amongst families (with different vernacular regional languages) and healthcare professionals through national conferences and seminars, as well as government supported programmes.
- ○
- Design patient information leaflets (in different vernacular regional languages) to provide uniform and adequate care as well as ease of access to information.
- ○
- Identify and support potential centres of excellence in the country to expedite the diagnostic services in terms of genetic evaluation and imaging, as well as treatment modalities.
- ○
- Foster genomic collaborations with international organisations, as well as genetic centres (US and UK), to promote research collaborations in identifying and characterising novel functional gene mutations.
- ○
- Promote clinical trials for newer investigations and treatment modalities so children and families in India can obtain access to newer therapies.
2. Discussion
2.1. CHIA Patient Registry
2.2. CHIA—Healthcare Professionals’ Consortium
2.3. CHIA—Parent Support Group
2.4. CHIA—Information Leaflets
2.5. CHIA—Genetic Analysis and Genomic Collaborations
2.6. CHIA–Centres of Excellence
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AHRQ | Agency for Healthcare Research and Quality |
CAP | College of American Pathologists |
CHI | Congenital Hyperinsulinism |
CHIA | Congenital Hyperinsulinism India Association |
CSIR | Council of Scientific and Industrial Research |
DBT | Department of Biotechnology |
DST | Department of Science and Technology |
GDP | Gross Domestic Product |
GDPR | General Data Protection Regulations |
IAP | Indian Association of Pediatrics |
ICMR | Indian Council of Medical Research |
ISPAE | Indian Society of Pediatric and Adolescent Endocrinologists |
MDRF | Madras Diabetes Research Foundation |
NABL | National Accreditation Board for Testing and Calibration Laboratories |
NNF | National Neonatology Forum |
NPRD | National Policy for Rare Diseases |
References
- Technical Group on Population Projections. Population projections for India and states 2011–2036. In Census of India 2011; National Commission on Population Ministry of Health & Family Welfare Nirman Bhawan: New Delhi, India, 2020. [Google Scholar]
- Majumder, P.P. The human genetic history of South Asia. Curr. Biol. 2010, 20, R184–R187. [Google Scholar] [CrossRef] [PubMed]
- Tamang, R.; Singh, L.; Thangaraj, K. Complex genetic origin of Indian populations and its implications. J. Biosci. 2012, 37, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Habib, I. A People’s History of India 1—Prehistory, 10th ed.; Tulika Books: New Delhi, India, 2015. [Google Scholar]
- Habib, I. A People’s History of India 2—The Indus Civilization, 9th ed.; Tulika Books: New Delhi, India, 2017. [Google Scholar]
- Yau, D.; Laver, T.W.; Dastamani, A.; Senniappan, S.; Houghton, J.A.L.; Shaikh, G.; Cheetham, T.; Mushtaq, T.; Kapoor, R.R.; Randell, T.; et al. Using referral rates for genetic testing to determine the incidence of a rare disease: The minimal incidence of congenital hyperinsulinism in the UK is 1 in 28,389. PLoS ONE 2020, 15, e0228417. [Google Scholar] [CrossRef]
- Juyal, G.; Mondal, M.; Luisi, P.; Laayouni, H.; Sood, A.; Midha, V.; Heutink, P.; Bertranpetit, J.; Thelma, B.K.; Casals, F. Population and genomic lessons from genetic analysis of two Indian populations. Hum. Genet. 2014, 133, 1273–1287. [Google Scholar] [CrossRef]
- Tripathi, M.; Tripathi, P.; Chauhan, U.K.; Herrera, R.J.; Agrawal, S. Alu polymorphic insertions reveal genetic structure of North Indian populations. Hum. Biol. 2008, 80, 483–499. [Google Scholar] [CrossRef]
- Bittles, A.H. Endogamy, consanguinity and community genetics. J. Genet. 2002, 81, 91–98. [Google Scholar] [CrossRef]
- Ministry of Finance. Economic Survey 2021–2022; Government of India: New Delhi, India, 2022.
- World Health Organization. World Health Organization Global Health Expenditure Database. Available online: http://apps.who.int/nha/database (accessed on 7 April 2023).
- Balarajan, Y.; Selvaraj, S.; Subramanian, S. Health care and equity in India. Lancet 2011, 377, 505–515. [Google Scholar] [CrossRef]
- Jindal, A.K. Universal health coverage: The way forward. Indian J. Public Health 2014, 58, 161–167. [Google Scholar] [CrossRef]
- Suresh, S.; Thangavel, G.; Sujatha, J.; Indrani, S. Methodological issues in setting up a surveillance system for birth defects in India. Natl. Med. J. India 2005, 18, 259–262. [Google Scholar]
- Phadke, S.R. Malformation syndromes in India. In Genetic Disorders in Indian Subcontinent; Kumar, D., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 155–166. [Google Scholar]
- Aggarwal, S.; Phadke, S.R. Medical genetics and genomic medicine in India: Current status and opportunities ahead. Mol. Genet. Genom. Med. 2015, 3, 160–171. [Google Scholar] [CrossRef]
- Thank you for sharing. Nat. Biotechnol. 2020, 38, 1005. [CrossRef]
- De Leon, D.D.; Stanley, C.A. Congenital Hypoglycemia Disorders: New Aspects of Etiology, Diagnosis, Treatment and Outcomes: Highlights of the Proceedings of the Congenital Hypoglycemia Disorders Symposium, Philadelphia April 2016. Pediatr. Diabetes 2016, 18, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, I.; Raskin, J.; Arnoux, J.-B.; De Leon, D.D.; Weinzimer, S.A.; Hammer, M.; Kendall, D.M.; Thornton, P.S. Congenital hyperinsulinism in infancy and childhood: Challenges, unmet needs and the perspective of patients and families. Orphanet J. Rare Dis. 2022, 17, 61, Erratum in Orphanet J. Rare Dis. 2022, 17, 205. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Ackermann, A.M.; Boodhansingh, K.E.; Bhatti, T.R.; Liu, C.; Schug, J.; Doliba, N.; Han, B.; Cosgrove, K.E.; Banerjee, I.; et al. Functional and Metabolomic Consequences of KATP Channel Inactivation in Human Islets. Diabetes 2017, 66, 1901–1913. [Google Scholar] [CrossRef]
- UNICEF India. Newborn and Child Health. Available online: https://www.unicef.org/india/what-we-do/newborn-and-child-health (accessed on 16 July 2023).
- Muukkonen, L.; Männistö, J.; Jääskeläinen, J.; Hannonen, R.; Huopio, H. The effect of hypoglycaemia on neurocognitive outcome in children and adolescents with transient or persistent congenital hyperinsulinism. Dev. Med. Child Neurol. 2019, 61, 451–457. [Google Scholar] [CrossRef]
- Shah, P.; Rahman, S.A.; Demirbilek, H.; Güemes, M.; Hussain, K. Hyperinsulinaemic hypoglycaemia in children and adults. Lancet Diabetes Endocrinol. 2017, 5, 729–742. [Google Scholar] [CrossRef]
- Sharma, R.; Roy, K.; Satapathy, A.K.; Kumar, A.; Nanda, P.M.; Damle, N.; Houghton, J.A.L.; Flanagan, S.E.; Radha, V.; Mohan, V.; et al. Molecular Characterization and Management of Congenital Hyperinsulinism: A Tertiary Centre Experience. Indian Pediatr. 2022, 59, 105–109. [Google Scholar] [CrossRef]
- Nestorowicz, A.; Inagaki, N.; Gonoi, T.; Schoor, K.P.; Wilson, B.A.; Glaser, B.; Landau, H.; Stanley, C.A.; Thornton, P.S.; Seino, S.; et al. A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2, is associated with familial hyperinsulinism. Diabetes 1997, 46, 1743–1748. [Google Scholar] [CrossRef]
- Jahnavi, S.; Poovazhagi, V.; Kanthimathi, S.; Balamurugan, K.; Bodhini, D.; Yadav, J.; Jain, V.; Khadgawat, R.; Sikdar, M.; Bhavatharini, A.; et al. NovelABCC8(SUR1) Gene mutations in Asian Indian children with Congenital Hyperinsulinemic Hypoglycemia. Ann. Hum. Genet. 2014, 78, 311–319. [Google Scholar] [CrossRef]
- Thomas, P.M.; Cote, G.J.; Wohllk, N.; Haddad, B.; Mathew, P.M.; Rabl, W.; Aguilar-Bryan, L.; Gagel, R.F.; Bryan, J. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 1995, 268, 426–429. [Google Scholar] [CrossRef]
- Babenko, A.P.; Polak, M.; Cavé, H.; Busiah, K.; Czernichow, P.; Scharfmann, R.; Bryan, J.; Aguilar-Bryan, L.; Vaxillaire, M.; Froguel, P. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N. Engl. J. Med. 2006, 355, 456–466. [Google Scholar] [CrossRef]
- Shah, I.A.; Rashid, R.; Bhat, A.; Rashid, H.; Bashir, R.; Asrar, M.M.; Wani, I.A.; Charoo, B.A.; Radha, V.; Mohan, V.; et al. A novel mutation in the KCNJ11 gene (p.Val36Glu), predisposes to congenital hyperinsulinemia. Gene 2023, 878, 147576. [Google Scholar] [CrossRef]
- Roy, K.; Satapathy, A.K.; Houhton, J.A.L.; Flanagan, S.E.; Radha, V.; Mohan, V.; Sharma, R.; Jain, V. Congenital Hyperinsulinemic Hypoglycemia and Hyperammonemia due to Pathogenic Variants in GLUD1. Indian J. Pediatr. 2019, 86, 1051–1053. [Google Scholar] [CrossRef]
- Li, C.; Chen, P.; Palladino, A.; Narayan, S.; Russell, L.K.; Sayed, S.; Xiong, G.; Chen, J.; Stokes, D.; Butt, Y.M.; et al. Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J. Biol. Chem. 2010, 285, 31806–31818. [Google Scholar] [CrossRef] [PubMed]
- Glaser, B.; Kesavan, P.; Heyman, M.; Davis, E.; Cuesta, A.; Buchs, A.; Stanley, C.A.; Thornton, P.S.; Permutt, M.A.; Matschinsky, F.M.; et al. Familial hyperinsulinism caused by an activating glucokinase mutation. N. Engl. J. Med. 1998, 338, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Heslegrave, A.J.; Kapoor, R.R.; Eaton, S.; Chadefaux, B.; Akcay, T.; Simsek, E.; E Flanagan, S.; Ellard, S.; Hussain, K. Leucine-sensitive hyperinsulinaemic hypoglycaemia in patients with loss of function mutations in 3-Hydroxyacyl-CoA Dehydrogenase. Orphanet J. Rare Dis. 2012, 7, 25. [Google Scholar] [CrossRef]
- Molven, A.; Matre, G.E.; Duran, M.; Wanders, R.J.; Rishaug, U.; Njølstad, P.R.; Jellum, E.; Søvik, O. Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation. Diabetes 2004, 53, 221–227. [Google Scholar] [CrossRef]
- Clayton, P.T.; Eaton, S.; Aynsley-Green, A.; Edginton, M.; Hussain, K.; Krywawych, S.; Datta, V.; Malingré, H.E.; Berger, R.; Berg, I.E.V.D. Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of β-oxidation in insulin secretion. J. Clin. Investig. 2001, 108, 457–465. [Google Scholar] [CrossRef]
- Verdecchia, F.; Akcan, N.; Dastamani, A.; Morgan, K.; Semple, R.K.; Shah, P. Unusual glycemic presentations in a child with a novel heterozygous intragenic INSR deletion. Horm. Res. Paediatr. 2020, 93, 396–401. [Google Scholar] [CrossRef]
- Sethi, A.; Foulds, N.; Ehtisham, S.; Ahmed, S.H.; Houghton, J.; Colclough, K.; Didi, M.; Flanagan, S.E.; Senniappan, S. Heterozygous Insulin Receptor (INSR) Mutation Associated with Neonatal Hyperinsulinemic Hypoglycaemia and Familial Diabetes Mellitus: Case Series. J. Clin. Res. Pediatr. Endocrinol. 2020, 12, 420–426. [Google Scholar] [CrossRef]
- Ferrara, C.T.; Boodhansingh, K.E.; Paradies, E.; Giuseppe, F.; Steinkrauss, L.J.; Topor, L.S.; Quintos, J.B.; Ganguly, A.; De Leon, D.D.; Palmieri, F.; et al. Novel Hypoglycemia Phenotype in Congenital Hyperinsulinism Due to Dominant Mutations of Uncoupling Protein 2. J. Clin. Endocrinol. Metab. 2017, 102, 942–949, Erratum in J. Clin. Endocrinol. Metab. 2018, 103, 2076. [Google Scholar] [CrossRef]
- González-Barroso, M.M.; Giurgea, I.; Bouillaud, F.; Anedda, A.; Bellanné-Chantelot, C.; Hubert, L.; de Keyzer, Y.; de Lonlay, P.; Ricquier, D. Mutations in UCP2 in congenital hyperinsulinism reveal a role for regulation of insulin secretion. PLoS ONE 2008, 3, e3850. [Google Scholar] [CrossRef]
- Tung, J.Y.-L.; Boodhansingh, K.; Stanley, C.A.; De León, D.D. Clinical heterogeneity of hyperinsulinism due to HNF1A and HNF4A mutations. Pediatr. Diabetes 2018, 19, 910–916. [Google Scholar] [CrossRef]
- McGlacken-Byrne, S.M.; Mohammad, J.K.; Conlon, N.; Gubaeva, D.; Siersbæk, J.; Schou, A.J.; Demirbilek, H.; Dastamani, A.; Houghton, J.A.L.; Brusgaard, K.; et al. Clinical and genetic heterogeneity of HNF4A/HNF1A mutations in a multicentre paediatric cohort with hyperinsulinaemic hypoglycaemia. Eur. J. Endocrinol. 2022, 186, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Dusatkova, P.; Pruhova, S.; Sumnik, Z.; Kolouskova, S.; Obermannova, B.; Cinek, O.; Lebl, J. HNF1A mutation presenting with fetal macrosomia and hypoglycemia in childhood prior to onset of overt diabetes. J. Pediatr. Endocrinol. Metab. 2011, 24, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Pingul, M.M.; Hughes, N.; Wu, A.; Stanley, C.A.; Gruppuso, P.A. Hepatocyte nuclear factor 4α gene mutation associated with familial neonatal hyperinsulinism and maturity-onset diabetes of the young. J. Pediatr. 2011, 158, 852–854. [Google Scholar] [CrossRef]
- E Flanagan, S.; Kapoor, R.R.; Mali, G.; Cody, D.; Murphy, N.; Schwahn, B.; Siahanidou, T.; Banerjee, I.; Akcay, T.; Rubio-Cabezas, O.; et al. Diazoxide-responsive hyperinsulinemic hypoglycemia caused by HNF4A gene mutations. Eur. J. Endocrinol. 2010, 162, 987–992. [Google Scholar] [CrossRef]
- Pearson, E.R.; Boj, S.F.; Steele, A.M.; Barrett, T.; Stals, K.; Shield, J.P.; Ellard, S.; Ferrer, J.; Hattersley, A.T. Macrosomia and hyperinsulinaemic hypoglycaemia in patients with heterozygous mutations in the HNF4A gene. PLoS Med. 2007, 4, e118. [Google Scholar] [CrossRef]
- Pinney, S.E.; Ganapathy, K.; Bradfield, J.; Stokes, D.; Sasson, A.; Mackiewicz, K.; Boodhansingh, K.; Hughes, N.; Becker, S.; Givler, S.; et al. Dominant form of congenital hyperinsulinism maps to HK1 region on 10q. Horm. Res. Paediatr. 2013, 80, 18–27. [Google Scholar] [CrossRef]
- Torekov, S.S.; Iepsen, E.; Christiansen, M.; Linneberg, A.; Pedersen, O.; Holst, J.J.; Kanters, J.K.; Hansen, T. KCNQ1 long QT syndrome patients have hyperinsulinemia and symptomatic hypoglycemia. Diabetes 2014, 63, 1315–1325. [Google Scholar] [CrossRef]
- Kostopoulou, E.; Dastamani, A.; Güemes, M.; Clement, E.; Caiulo, S.; Shanmugananda, P.; Dattani, M.; Gilbert, C.; A Hurst, J.; Shah, P. Syndromic Forms of Hyperinsulinaemic Hypoglycaemia—A 15-year follow-up Study. Clin. Endocrinol. 2021, 94, 399–412. [Google Scholar] [CrossRef]
- Giri, D.; Vignola, M.L.; Gualtieri, A.; Scagliotti, V.; McNamara, P.; Peak, M.; Didi, M.; Gaston-Massuet, C.; Senniappan, S. Novel FOXA2 mutation causes Hyperinsulinism, Hypopituitarism with Craniofacial and Endoderm-derived organ abnormalities. Hum. Mol. Genet. 2017, 26, 4315–4326. [Google Scholar] [CrossRef] [PubMed]
- Ocansey, S.; Pullen, D.; Atkinson, P.; Clarke, A.; Hadonou, M.; Crosby, C.; Short, J.; Lloyd, I.C.; Smedley, D.; Assunta, A.; et al. Biallelic DNAJC3 variants in a neuroendocrine developmental disorder with insulin dysregulation. Clin. Dysmorphol. 2022, 31, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Gϋemes, M.; Rahman, S.A.; Kapoor, R.R.; Flanagan, S.; Houghton, J.A.L.; Misra, S.; Oliver, N.; Dattani, M.T.; Shah, P. Hyperinsulinemic hypoglycemia in children and adolescents: Recent advances in understanding of pathophysiology and management. Rev. Endocr. Metab. Disord. 2020, 21, 577–597. [Google Scholar] [CrossRef] [PubMed]
- Hewat, T.I.; Johnson, M.B.; Flanagan, S.E. Congenital Hyperinsulinism: Current Laboratory-Based Approaches to the Genetic Diagnosis of a Heterogeneous Disease. Front. Endocrinol. 2022, 13, 873254. [Google Scholar] [CrossRef]
- Galcheva, S.; Demirbilek, H.; Al-Khawaga, S.; Hussain, K. The Genetic and Molecular Mechanisms of Congenital Hyperinsulinism. Front. Endocrinol. 2019, 10, 111. [Google Scholar] [CrossRef]
- Kapoor, R.R.; Flanagan, S.E.; Arya, V.B.; Hamilton-Shield, J.P.; Ellard, S.; Hussain, K. Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. Eur. J. Endocrinol. 2013, 168, 557–564. [Google Scholar] [CrossRef]
- Snider, K.E.; Becker, S.; Boyajian, L.; Shyng, S.-L.; MacMullen, C.; Hughes, N.; Ganapathy, K.; Bhatti, T.; Stanley, C.A.; Ganguly, A. Genotype and phenotype correlations in 417 children with congenital hyperinsulinism. J. Clin. Endocrinol. Metab. 2013, 98, E355–E363. [Google Scholar] [CrossRef]
- Aftab, S.; Gubaeva, D.; Houghton, J.A.L.; Dastamani, A.; Sotiridou, E.; Gilbert, C.; Flanagan, S.E.; Tiulpakov, A.; Melikyan, M.; Shah, P. Spectrum of neuro-developmental disorders in children with congenital hyperinsulinism due to activating mutations in GLUD1. Endocr. Connect. 2023, 12, e220008. [Google Scholar] [CrossRef]
- Banerjee, I.; Salomon-Estebanez, M.; Shah, P.; Nicholson, J.; Cosgrove, K.E.; Dunne, M.J. Therapies and outcomes of congenital hy-perinsulinism-induced hypoglycaemia. Diabet. Med. 2019, 36, 9–21. [Google Scholar]
- Roženková, K.; Güemes, M.; Shah, P.; Hussain, K. The Diagnosis and Management of Hyperinsulinaemic Hypoglycaemia. J. Clin. Res. Pediatr. Endocrinol. 2015, 7, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Welters, A.; Lerch, C.; Kummer, S.; Marquard, J.; Salgin, B.; Mayatepek, E.; Meissner, T. Long-term medical treatment in congenital hyperinsulinism: A descriptive analysis in a large cohort of patients from different clinical centers. Orphanet J. Rare Dis. 2015, 10, 150. [Google Scholar] [CrossRef]
- Fékété, C.; de Lonlay, P.; Jaubert, F.; Rahier, J.; Brunelle, F.; Saudubray, J. The surgical management of congenital hyperinsulinemic hypoglycemia in infancy. J. Pediatr. Surg. 2004, 39, 267–269. [Google Scholar] [CrossRef]
- Welters, A.; Meissner, T.; Grulich-Henn, J.; Fröhlich-Reiterer, E.; Warncke, K.; Mohnike, K.; Blankenstein, O.; Menzel, U.; Datz, N.; Bollow, E.; et al. Characterization of diabetes following pancreatic surgery in patients with congenital hyperinsulinism. Orphanet J. Rare Dis. 2018, 13, 230. [Google Scholar] [CrossRef] [PubMed]
- Rajasimha, H.K.; Shirol, P.B.; Ramamoorthy, P.; Hegde, M.; Barde, S.; Chandru, V.; Ravinandan, M.E.; Ramchandran, R.; Haldar, K.; Lin, J.C.; et al. Organization for rare diseases India (ORDI)—Addressing the challenges and opportunities for the Indian rare diseases’ community. Genet. Res. 2014, 96, e009. [Google Scholar] [CrossRef]
- Ministry of Health and Family Welfare. National Policy for Rare Diseases, 2021; Government of India: New Delhi, India, 2021.
- Gliklich, R.E.; Dreyer, N.A.; Leavy, M.B. (Eds.) Registries for Evaluating Patient Outcomes: A User’s Guide, 4th ed.; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2020.
- Richesson, R.; Vehik, K. Patient registries: Utility, validity and inference. Adv. Exp. Med. Biol. 2010, 686, 87–104. [Google Scholar] [CrossRef]
- Boulanger, V.; Schlemmer, M.; Rossov, S.; Seebald, A.; Gavin, P. Establishing Patient Registries for Rare Diseases: Rationale and Challenges. Pharm. Med. 2020, 34, 185–190. [Google Scholar] [CrossRef]
- der Weide, M.C.J.-V.; Gaasterland, C.M.W.; Roes, K.C.B.; Pontes, C.; Vives, R.; Sancho, A.; Nikolakopoulos, S.; Vermeulen, E.; van der Lee, J.H. Rare disease registries: Potential applications towards impact on development of new drug treatments. Orphanet J. Rare Dis. 2018, 13, 154. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research; Center for Biologics Evaluation and Research; Oncology Center of Excellence. Real-World Data: Assessing Registries to Support Regulatory Decision-Making for Drug and Biological Products Guidance for Industry; U.S. Food and Drug Administration: Rockville, MD, USA, 2021.
- Wu, J.; Wang, C.; Toh, S.; Pisa, F.E.; Bauer, L. Use of real-world evidence in regulatory decisions for rare diseases in the United States—Current status and future directions. Pharmacoepidemiol. Drug Saf. 2020, 29, 1213–1218. [Google Scholar] [CrossRef]
- Caplan, P.A.; Lefkowitz, B.; Spector, L. Health care consortia: A mechanism for increasing access for the medically indigent. Henry Ford. Hosp. Med. J. 1992, 40, 50–55. [Google Scholar]
- Zeutenhorst, R. Parent Support Groups and Well-Being: Investigating the Benefits of Parent Support Groups for Families of Children with Special Needs. Master’s Thesis, DORDT University, Sioux Center, IA, USA, 2017. [Google Scholar]
- Law, M.; King, S.; Stewart, D.; King, G. The perceived effects of parent-led support groups for parents of children with disabilities. Phys. Occup. Ther. Pediatr. 2001, 21, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Poplas-Susič, T.; Klemenc-Ketis, Z.; Kersnik, J. Usefulness of the patient information leaflet (PIL) and information on medicines from professionals: A patients’ view. A qualitative study. Slov. Med. J. 2014, 83, 368–375. [Google Scholar]
- Nathan, J.P.; Zerilli, T.; Cicero, L.A.; Rosenberg, J.M. Patients′ use and perception of medication information leaflets. Ann. Pharmacother. 2007, 41, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Gupta, U.; Sharma, S.; Sheth, P.D.; Jha, J.; Chaudhury, R.R. Improving medicine usage through patient information leaflets in India. Trop. Dr. 2005, 35, 164–166. [Google Scholar] [CrossRef]
- Vinker, S.; Eliyahu, V.; Yaphe, J. The effect of drug information leaflets on patient behavior. Isr. Med. Assoc. J. 2007, 9, 383–386. [Google Scholar]
- Schwappach, D.L.; Mülders, V.; Simic, D.; Wilm, S.; Thürmann, P.A. Is less more? Patients’ preferences for drug information leaflets. Pharmacoepidemiol. Drug Saf. 2011, 20, 987–995. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contractor, J.B.; Radha, V.; Shah, K.; Singh, P.; Tadepalli, S.; Nimbalkar, S.; Mohan, V.; Shah, P. Congenital Hyperinsulinism India Association: An Approach to Address the Challenges and Opportunities of a Rare Disease. Med. Sci. 2025, 13, 37. https://doi.org/10.3390/medsci13020037
Contractor JB, Radha V, Shah K, Singh P, Tadepalli S, Nimbalkar S, Mohan V, Shah P. Congenital Hyperinsulinism India Association: An Approach to Address the Challenges and Opportunities of a Rare Disease. Medical Sciences. 2025; 13(2):37. https://doi.org/10.3390/medsci13020037
Chicago/Turabian StyleContractor, Jaikumar B., Venkatesan Radha, Krati Shah, Praveen Singh, Sunil Tadepalli, Somashekhar Nimbalkar, Viswanathan Mohan, and Pratik Shah. 2025. "Congenital Hyperinsulinism India Association: An Approach to Address the Challenges and Opportunities of a Rare Disease" Medical Sciences 13, no. 2: 37. https://doi.org/10.3390/medsci13020037
APA StyleContractor, J. B., Radha, V., Shah, K., Singh, P., Tadepalli, S., Nimbalkar, S., Mohan, V., & Shah, P. (2025). Congenital Hyperinsulinism India Association: An Approach to Address the Challenges and Opportunities of a Rare Disease. Medical Sciences, 13(2), 37. https://doi.org/10.3390/medsci13020037