Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = genetically engineered vaccine platforms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3913 KB  
Article
Isolation of Porcine Adenovirus Serotype 5 and Construction of Recombinant Virus as a Vector Platform for Vaccine Development
by Qianhua He, Jun Wu, Zhilong Bian, Yuan Sun and Jingyun Ma
Viruses 2025, 17(9), 1270; https://doi.org/10.3390/v17091270 - 19 Sep 2025
Viewed by 472
Abstract
Porcine adenovirus serotype 5 (PAdV-5) is an emerging viral vector platform for veterinary vaccines; however, its genomic plasticity and essential replication elements remain incompletely characterized. This study reports the isolation and reverse genetic manipulation of a novel PAdV-5 strain (GD84) from diarrheic piglets [...] Read more.
Porcine adenovirus serotype 5 (PAdV-5) is an emerging viral vector platform for veterinary vaccines; however, its genomic plasticity and essential replication elements remain incompletely characterized. This study reports the isolation and reverse genetic manipulation of a novel PAdV-5 strain (GD84) from diarrheic piglets in China. PCR screening of 167 clinical samples revealed a PAdV-5 detection rate of 38.3% (64/167), with successful isolation on ST cells after three blind passages. The complete GD84 genome is 32,620 bp in length and exhibited 99.0% nucleotide identity to the contemporary strain Ino5, but only 97.0% to the prototype HNF-70. It features an atypical GC content of 51.0% and divergent structural genes—most notably the hexon gene (89% identity to HNF-70)—suggesting altered immunogenicity. Using Red/ET recombineering, we established a rapid (less than 3 weeks) reverse genetics platform and generated four E3-modified recombinants: ΔE3-All-eGFP, ΔE3-12.5K-eGFP, ΔE3-12.5K+ORF4-eGFP, and E3-Insert-eGFP. Crucially, the ΔE3-All-eGFP construct (complete E3 deletion) failed to be rescued, while constructs preserving the 12.5K open reading frame (ORF) yielded replication-competent viruses with sustained eGFP expression over three serial passages and titers over 107.0 TCID50/mL. Fluorescence intensity was inversely correlated with genome size, as the full-length E3-Insert-eGFP virus showed reduced expression compared with the ΔE3 variants. Our work identifies the 12.5K ORF as essential for PAdV-5 replication and provides an optimized vaccine engineering platform that balances genomic payload capacity with replicative fitness. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

17 pages, 2547 KB  
Article
A Host Cell Vector Model for Analyzing Viral Protective Antigens and Host Immunity
by Sun-Min Ahn, Jin-Ha Song, Seung-Eun Son, Ho-Won Kim, Gun Kim, Seung-Min Hong, Kang-Seuk Choi and Hyuk-Joon Kwon
Int. J. Mol. Sci. 2025, 26(15), 7492; https://doi.org/10.3390/ijms26157492 - 2 Aug 2025
Viewed by 1028
Abstract
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to [...] Read more.
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to establish a genetically matched host–cell system to evaluate antigen-specific immune responses and identify conserved CD8+ T cell epitopes in avian influenza viruses. To this end, we developed an MHC class I genotype (B21)-matched host (Lohmann VALO SPF chicken) and cell vector (DF-1 cell line) model. DF-1 cells were engineered to express the hemagglutinin (HA) gene of clade 2.3.4.4b H5N1 either transiently or stably, and to stably express the matrix 1 (M1) and nucleoprotein (NP) genes of A/chicken/South Korea/SL20/2020 (H9N2, Y280-lineage). Following prime-boost immunization with HA-expressing DF-1 cells, only live cells induced strong hemagglutination inhibition (HI) and virus-neutralizing (VN) antibody titers in haplotype-matched chickens. Importantly, immunization with DF-1 cells transiently expressing NP induced stronger IFN-γ production than those expressing M1, demonstrating the platform’s potential for differentiating antigen-specific cellular responses. CD8+ T cell epitope mapping by mass spectrometry identified one distinct MHC class I-bound peptide from each of the HA-, M1-, and NP-expressing DF-1 cell lines. Notably, the identified HA epitope was conserved in 97.6% of H5-subtype IAVs, and the NP epitope in 98.5% of pan-subtype IAVs. These findings highlight the platform’s utility for antigen dissection and rational vaccine design. While limited by MHC compatibility, this approach enables identification of naturally presented epitopes and provides insight into conserved, functionally constrained viral targets. Full article
(This article belongs to the Special Issue Molecular Research on Immune Response to Virus Infection and Vaccines)
Show Figures

Graphical abstract

26 pages, 2227 KB  
Article
Beyond the Hype: Stakeholder Perceptions of Nanotechnology and Genetic Engineering for Sustainable Food Production
by Madison D. Horgan, Christopher L. Cummings, Jennifer Kuzma, Michael Dahlstrom, Ilaria Cimadori, Maude Cuchiara, Colin Larter, Nick Loschin and Khara D. Grieger
Sustainability 2025, 17(15), 6795; https://doi.org/10.3390/su17156795 - 25 Jul 2025
Viewed by 1193
Abstract
Ensuring sustainable food systems is an urgent global priority as populations grow and environmental pressures mount. Technological innovations such as genetic engineering (GE) and nanotechnology (nano) have been promoted as promising pathways for achieving greater sustainability in agriculture and food production. Yet, the [...] Read more.
Ensuring sustainable food systems is an urgent global priority as populations grow and environmental pressures mount. Technological innovations such as genetic engineering (GE) and nanotechnology (nano) have been promoted as promising pathways for achieving greater sustainability in agriculture and food production. Yet, the sustainability of these technologies is not defined by technical performance alone; it hinges on how they are perceived by key stakeholders and how well they align with broader societal values. This study addresses the critical question of how expert stakeholders evaluate the sustainability of GE and nano-based food and agriculture (agrifood) products. Using a multi-method online platform, we engaged 42 experts across academia, government, industry, and NGOs in the United States to assess six real-world case studies—three using GE and three using nano—across ten different dimensions of sustainability. We show that nano-based products were consistently rated more favorably than their GE counterparts in terms of environmental, economic, and social sustainability, as well as across ethical and societal dimensions. Like prior studies, our results reveal that stakeholders see meaningful distinctions between nanotechnology and biotechnology, likely due to underlying value-based concerns about animal welfare, perceived naturalness, or corporate control of agrifood systems. The fruit coating and flu vaccine—both nano-enabled—received the most positive ratings, while GE mustard greens and salmon were the most polarizing. These results underscore the importance of incorporating stakeholder perspectives in technology assessment and innovation governance. These results also suggest that responsible innovation efforts in agrifood systems should prioritize communication, addressing meaningful societal needs, and the contextual understanding of societal values to build trust and legitimacy. Full article
(This article belongs to the Special Issue Food Science and Engineering for Sustainability)
Show Figures

Figure 1

67 pages, 4242 KB  
Review
Bioengineering Outer-Membrane Vesicles for Vaccine Development: Strategies, Advances, and Perspectives
by Ayesha Zahid, Hazrat Ismail, Jennifer C. Wilson and I. Darren Grice
Vaccines 2025, 13(7), 767; https://doi.org/10.3390/vaccines13070767 - 20 Jul 2025
Cited by 1 | Viewed by 4510
Abstract
Outer-membrane vesicles (OMVs), naturally secreted by Gram-negative bacteria, have gained recognition as a versatile platform for the development of next-generation vaccines. OMVs are essential contributors to bacterial pathogenesis, horizontal gene transfer, cellular communication, the maintenance of bacterial fitness, and quorum sensing. Their intrinsic [...] Read more.
Outer-membrane vesicles (OMVs), naturally secreted by Gram-negative bacteria, have gained recognition as a versatile platform for the development of next-generation vaccines. OMVs are essential contributors to bacterial pathogenesis, horizontal gene transfer, cellular communication, the maintenance of bacterial fitness, and quorum sensing. Their intrinsic immunogenicity, adjuvant properties, and scalability establish OMVs as potent tools for combating infectious diseases and cancer. Recent advancements in genetic engineering and biotechnology have further expanded the utility of OMVs, enabling the incorporation of multiple epitopes and antigens from diverse pathogens. These developments address critical challenges such as antigenic variability and co-infections, offering broader immune coverage and cost-effective solutions. This review explores the unique structural and immunological properties of OMVs, emphasizing their capacity to elicit robust immune responses. It critically examines established and emerging engineering strategies, including the genetic engineering of surface-displayed antigens, surface conjugation, glycoengineering, nanoparticle-based OMV engineering, hybrid OMVs, and in situ OMV production, among others. Furthermore, recent advancements in preclinical research on OMV-based vaccines, including synthetic OMVs, OMV-based nanorobots, and nanodiscs, as well as emerging isolation and purification methods, are discussed. Lastly, future directions are proposed, highlighting the potential integration of synthetic biology techniques to accelerate research on OMV engineering. Full article
(This article belongs to the Special Issue Bioengineering Strategies for Developing Vaccines)
Show Figures

Graphical abstract

29 pages, 7767 KB  
Article
Therapeutic Efficacy of CD34-Derived Allogeneic Dendritic Cells Engineered to Express CD93, CD40L, and CXCL13 in Humanized Mouse Models of Pancreatic Cancer
by Sara Huerta-Yepez, Jose D. Gonzalez, Neha Sheik, Senay Beraki, Elango Kathirvel, Ariel Rodriguez-Frandsen, Po-Chun Chen, Tiran Sargsyan, Saleemulla Mahammad, Mark R. Dybul, Lu Chen, Francois Binette and Anahid Jewett
Vaccines 2025, 13(7), 749; https://doi.org/10.3390/vaccines13070749 - 12 Jul 2025
Cited by 1 | Viewed by 1834
Abstract
Background/Objectives: Pancreatic cancer remains the fourth leading cause of cancer-related deaths. While peripheral blood-derived mature dendritic cell (mDC) vaccines have shown potential in eliciting anti-tumor immune responses, clinical efficacy has been limited. This study aimed to enhance the potency and scalability of [...] Read more.
Background/Objectives: Pancreatic cancer remains the fourth leading cause of cancer-related deaths. While peripheral blood-derived mature dendritic cell (mDC) vaccines have shown potential in eliciting anti-tumor immune responses, clinical efficacy has been limited. This study aimed to enhance the potency and scalability of DC-based immunotherapy by developing an allogeneic DC platform derived from CD34+ hematopoietic stem cells (HSCs), genetically engineered to overexpress CD93, CD40L, and CXCL13, followed by maturation and tumor antigen pulsing. Methods: Engineered DCs were generated from CD34+ HSCs and matured in vitro after lentiviral transduction of CD93, CD40L, and CXCL13. Tumor lysates were used for antigen pulsing. A scrambled-sequence control DC was used for comparison. In vitro assays were performed to assess T cell activation and tumor cell killing. In vivo efficacy was evaluated using orthotopic pancreatic tumors in BLT and PBMC-humanized NSG mice established with the MiaPaca-2 (MP2) cell line. Results: Engineered DCs significantly enhanced T cell activation and tumor-specific cytotoxicity in vitro compared to control DCs. Antigen pulsing further amplified immune activation. In vivo, treated humanized mice showed increased CD4+, CD8+, and NK cell frequencies in peripheral blood and within tumors, correlating with reduced tumor burden. Conclusions: Our data shows that the antigen-pulsed, engineered DCs have the potency to activate immune cells, which leads to a significant reduction in pancreatic tumors and therefore could potentially provide an effective therapeutic opportunity for the treatment of pancreatic cancer and other solid tumors. Full article
(This article belongs to the Section Vaccination Against Cancer and Chronic Diseases)
Show Figures

Graphical abstract

13 pages, 1764 KB  
Article
Surface Display of Avian H5 and H9 Hemagglutinin Antigens on Non-Genetically Modified Lactobacillus Cells for Bivalent Oral AIV Vaccine Development
by Fuyi Liu, Jingbo Chang, Jingqi Huang, Yuping Liao, Xiaonan Deng, Tingting Guo, Jian Kong and Wentao Kong
Microorganisms 2025, 13(7), 1649; https://doi.org/10.3390/microorganisms13071649 - 11 Jul 2025
Viewed by 812
Abstract
A novel bivalent oral vaccine candidate against H5N1 and H9N2 avian influenza virus (AIV) was developed using Lactobacillus surface display technology without genetic modification. The hemagglutinin subunit 1 (HA1) antigens from both subtypes were fused to the surface layer-binding domain of Lactobacillus crispatus [...] Read more.
A novel bivalent oral vaccine candidate against H5N1 and H9N2 avian influenza virus (AIV) was developed using Lactobacillus surface display technology without genetic modification. The hemagglutinin subunit 1 (HA1) antigens from both subtypes were fused to the surface layer-binding domain of Lactobacillus crispatus K313, expressed in Escherichia coli, and purified. Wild-type Lactobacillus johnsonii H31, isolated from chicken intestine, served as a delivery vehicle by adsorbing and stably displaying the HA1 proteins on its surface. This approach eliminates the need for bacterial engineering while utilizing lactobacilli’s natural capacity to protect surface-displayed antigens, as evidenced by HA1’s protease resistance. Mouse immunization studies demonstrated induction of strong systemic IgG and mucosal IgA responses against both H5N1 and H9N2 HA1. The system offers several advantages, including safety through non-GMO probiotics, potential for multivalent vaccine expansion, and intrinsic antigen protection by lactobacilli. These findings suggest this platform could enable development of cost-effective, multivalent AIV vaccines. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

20 pages, 6090 KB  
Review
Rotavirus Reverse Genetics Systems and Oral Vaccine Delivery Vectors for Mucosal Vaccination
by Jun Wang, Songkang Qin, Kuanhao Li, Xin Yin, Dongbo Sun and Jitao Chang
Microorganisms 2025, 13(7), 1579; https://doi.org/10.3390/microorganisms13071579 - 4 Jul 2025
Viewed by 1466
Abstract
Mucosal immunization represents a promising strategy for preventing enteric infections. Rotavirus (RV), a leading gastrointestinal pathogen distinguished by its remarkable stability and segmented double-stranded RNA genome, has been engineered into a versatile oral vaccine vector through advanced reverse genetics systems. The clinical efficacy [...] Read more.
Mucosal immunization represents a promising strategy for preventing enteric infections. Rotavirus (RV), a leading gastrointestinal pathogen distinguished by its remarkable stability and segmented double-stranded RNA genome, has been engineered into a versatile oral vaccine vector through advanced reverse genetics systems. The clinical efficacy of live-attenuated RV vaccines highlights their unique capacity to concurrently induce mucosal IgA responses and systemic neutralizing antibodies, positioning them as a multiple action vector for multiple immune protection. In this review, we summarize the RV colonization of the intestine and stimulation of intestinal immunity, as well as recent advancements in RV reverse genetics, and focus on their application in the rational design of a multivalent mucosal vaccine vector targeting enteric pathogens considering the advantages and challenges of RV as a vector. We further propose molecular strategies to overcome genetic instability in recombinant RV vectors, including the codon optimization of heterologous inserts. These insights provide a theoretical foundation for developing next-generation mucosal immunization platforms with enhanced safety, stability, and cross-protective efficacy. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

30 pages, 3281 KB  
Review
The Bioengineering of Insect Cell Lines for Biotherapeutics and Vaccine Production: An Updated Review
by Michał Sułek and Agnieszka Szuster-Ciesielska
Vaccines 2025, 13(6), 556; https://doi.org/10.3390/vaccines13060556 - 23 May 2025
Cited by 3 | Viewed by 6020
Abstract
Insect cell lines are a cornerstone of recombinant protein production, providing a versatile platform for biopharmaceutical and research applications. In the early 20th century, scientists first attempted to culture insect cells in vitro, developing continuous cell lines to produce the first insect cell-derived [...] Read more.
Insect cell lines are a cornerstone of recombinant protein production, providing a versatile platform for biopharmaceutical and research applications. In the early 20th century, scientists first attempted to culture insect cells in vitro, developing continuous cell lines to produce the first insect cell-derived recombinant protein, IFN-β. Initial successes, along with advancements in the use of insect cells for recombinant protein manufacturing, primarily relied on baculovirus expression vector systems (BEVSs), which enable heterologous gene expression in infected cells. Today, growing attention is focused on baculovirus-free systems based on the transfection of insect cells with plasmid DNA. This approach simplifies the final product purification process and facilitates the development of stable monoclonal cell lines that produce recombinant proteins or protein complexes, particularly virus-like particles (VLPs). Thanks to advancements in genetic engineering and the application of adaptive laboratory evolution (ALE) methods, significant strides have been made in overcoming many limitations associated with insect cell BEVSs, ultimately enhancing the reliability, yield, and quality of the biomanufacturing process. Our manuscript discusses the history of developing insect cell lines, presents various recombinant protein production systems utilizing these cells, and summarizes modifications aimed at improving insect cell lines for recombinant protein biomanufacturing. Finally, we explore their implications in pharmaceutical production, particularly on Nuvaxovid®/Covovax, which is the latest approved vaccine developed using insect cell BEVSs for protection against SARS-CoV-2. Full article
Show Figures

Figure 1

20 pages, 986 KB  
Review
Past, Present, and Future of Viral Vector Vaccine Platforms: A Comprehensive Review
by Justin Tang, Md Al Amin and Jian L. Campian
Vaccines 2025, 13(5), 524; https://doi.org/10.3390/vaccines13050524 - 15 May 2025
Cited by 5 | Viewed by 6375
Abstract
Over the past several decades, viral vector-based vaccines have emerged as some of the most versatile and potent platforms in modern vaccinology. Their capacity to deliver genetic material encoding target antigens directly into host cells enables strong cellular and humoral immune responses, often [...] Read more.
Over the past several decades, viral vector-based vaccines have emerged as some of the most versatile and potent platforms in modern vaccinology. Their capacity to deliver genetic material encoding target antigens directly into host cells enables strong cellular and humoral immune responses, often superior to what traditional inactivated or subunit vaccines can achieve. This has accelerated their application to a wide array of pathogens and disease targets, from well-established threats like HIV and malaria to emerging infections such as Ebola, Zika, and SARS-CoV-2. The COVID-19 pandemic further highlighted the agility of viral vector platforms, with several adenovirus-based vaccines quickly authorized and deployed on a global scale. Despite these advances, significant challenges remain. One major hurdle is pre-existing immunity against commonly used vector backbones, which can blunt vaccine immunogenicity. Rare but serious adverse events, including vector-associated inflammatory responses and conditions like vaccine-induced immune thrombotic thrombocytopenia (VITT), have raised important safety considerations. Additionally, scaling up manufacturing, ensuring consistency in large-scale production, meeting rigorous regulatory standards, and maintaining equitable global access to these vaccines present profound logistical and ethical dilemmas. In response to these challenges, the field is evolving rapidly. Sophisticated engineering strategies, such as integrase-defective lentiviral vectors, insect-specific flaviviruses, chimeric capsids to evade neutralizing antibodies, and plug-and-play self-amplifying RNA approaches, seek to bolster safety, enhance immunogenicity, circumvent pre-existing immunity, and streamline production. Lessons learned from the COVID-19 pandemic and prior outbreaks are guiding the development of platform-based approaches designed for rapid deployment during future public health emergencies. This review provides an exhaustive, in-depth examination of the historical evolution, immunobiological principles, current platforms, manufacturing complexities, regulatory frameworks, known safety issues, and future directions for viral vector-based vaccines. Full article
(This article belongs to the Special Issue Strategies of Viral Vectors for Vaccine Development)
Show Figures

Figure 1

30 pages, 4721 KB  
Article
Hypervesiculation Meets Sec-Targeting: Enhancing Heterologous Protein Loading in Salmonella Typhi Outer Membrane Vesicles for Delivery and Immune Response
by Ignacio Fuentes, Francisco Parra, Diego Rojas, Andrés Silva, Jan Nevermann, María Carolina Otero, Fernando Gil, Iván L. Calderón and Juan A. Fuentes
Int. J. Mol. Sci. 2025, 26(9), 4223; https://doi.org/10.3390/ijms26094223 - 29 Apr 2025
Cited by 4 | Viewed by 1852
Abstract
Salmonella enterica serovar Typhi (S. Typhi) produces outer membrane vesicles (OMVs) that remain comparatively underexplored as potential biotechnological tools. Here, we investigated how hypervesiculating S. Typhi mutants (ΔtolR and ΔdegS) can be engineered to load and deliver the fluorescent [...] Read more.
Salmonella enterica serovar Typhi (S. Typhi) produces outer membrane vesicles (OMVs) that remain comparatively underexplored as potential biotechnological tools. Here, we investigated how hypervesiculating S. Typhi mutants (ΔtolR and ΔdegS) can be engineered to load and deliver the fluorescent reporter protein mCherry, targeting human epithelial cells and the murine immune system. Deletions in tolR and degS led to distinct OMV phenotypes characterized by higher vesicle production and altered cargo composition, underscoring the impact of disrupted membrane integrity and envelope stress on OMV biogenesis. By fusing mCherry with the S. Typhi OmpA signal peptide (SPompA), we achieved robust and functionally intact intravesicular packaging in all strains. Flow cytometry and confocal microscopy revealed that the ΔtolR mutant exhibited particularly high cargo loading in the OMV fraction and pronounced mCherry delivery to epithelial cells, highlighting the potential of hypervesiculation to enhance OMV-based protein transport. However, immunization studies in mice showed that wild-type OMVs, despite carrying less mCherry than their hypervesiculating counterparts, induced the strongest anti-mCherry IgG responses. These findings indicate that, at least under these conditions, antigen loading alone is not sufficient to fully determine immunogenicity. Instead, the intrinsic composition or adjuvant-like properties of OMVs play a pivotal role in driving robust immune activation. Our results establish S. Typhi OMVs, especially when genetically modified with a Sec-dependent targeting signal (SPompA), as versatile platforms for heterologous protein delivery. Although hypervesiculation facilitates increased protein encapsulation and delivery to epithelial cells, native OMVs appear to better preserve and/or present antigens for effective immunogenic responses in vivo. These insights set the stage for further optimization of S. Typhi OMVs in vaccine development and protein therapeutics, where balancing cargo loading with immunostimulatory features may be key to achieving maximal efficacy. Full article
(This article belongs to the Collection Feature Papers in Molecular Microbiology)
Show Figures

Graphical abstract

26 pages, 387 KB  
Review
In Vitro Culture, Genetic Transformation and the Production of Biopharmaceuticals in Microalgae
by Aneta Gerszberg, Ludmiła Kolek and Katarzyna Hnatuszko-Konka
Int. J. Mol. Sci. 2025, 26(8), 3890; https://doi.org/10.3390/ijms26083890 - 20 Apr 2025
Cited by 1 | Viewed by 1926
Abstract
Microalgae represent a promising platform for the synthesis of recombinant proteins, particularly in the context of biopharmaceutical applications. Their unique combination of eukaryotic cellular machinery and prokaryotic-like simplicity offers several advantages, including the ability to perform complex post-translational modifications, rapid growth rates, and [...] Read more.
Microalgae represent a promising platform for the synthesis of recombinant proteins, particularly in the context of biopharmaceutical applications. Their unique combination of eukaryotic cellular machinery and prokaryotic-like simplicity offers several advantages, including the ability to perform complex post-translational modifications, rapid growth rates, and cost-effective culture conditions. Advances in genome sequencing, genetic engineering tools, and omics technologies have significantly enhanced the feasibility and efficiency of using microalgae for therapeutic protein production. These advancements, coupled with the development of well-established transformation methods and optimized vectors, have enabled the successful expression of various biopharmaceuticals, ranging from vaccines to enzymes. Here, the main stages and current status of the production of exogenic recombinant proteins dedicated to human therapy are presented. Full article
(This article belongs to the Special Issue Advances in Research of Algae, Cyanobacteria, and Phytoplankton)
16 pages, 2487 KB  
Article
Oral Delivery of Lactococcus lactis Expressing Full-Length S Protein via Alginate–Chitosan Capsules Induces Immune Protection Against PEDV Infection in Mice
by Miaoyan Yang, Denglong Xie, Wei Ji, Shu Jeffrey Zhu and Yongqi Zhou
Vaccines 2025, 13(4), 421; https://doi.org/10.3390/vaccines13040421 - 17 Apr 2025
Viewed by 1831
Abstract
Background/Objectives: Porcine epidemic diarrhea (PED) is a highly contagious enteric infectious disease that causes severe morbidity and mortality in piglets, posing significant economic losses to the swine industry worldwide. Oral vaccines based on Lactococcus lactis offer a promising approach due to their [...] Read more.
Background/Objectives: Porcine epidemic diarrhea (PED) is a highly contagious enteric infectious disease that causes severe morbidity and mortality in piglets, posing significant economic losses to the swine industry worldwide. Oral vaccines based on Lactococcus lactis offer a promising approach due to their safety and genetic manipulability. This study aims to develop and evaluate an oral L. lactis-based vaccine expressing the full-length PEDV S protein. Methods: A recombinant L. lactis strain expressing the PEDV S protein was constructed and encapsulated in alginate–chitosan microcapsules. Vaccine stability was tested in simulated digestive fluids, and mice were orally immunized. Immune responses were evaluated by measuring specific antibodies, cytokines, and lymphocyte proliferation. Results: The recombinant L. lactis NZ3900/pNZ8149-S strain successfully expressed the full-length PEDV S protein and maintained stable plasmid inheritance. Oral immunization in mice induced detectable PEDV-specific immune responses. Both encapsulated and non-encapsulated vaccines stimulated the production of IgG and sIgA antibodies, as well as cytokines associated with Th1 and Th2 responses. Notably, encapsulation with alginate–chitosan significantly enhanced bacterial survival in digestive conditions and further amplified immune responses, including higher antibody titers, elevated levels of IFN-γ, IL-4, and IL-10, and greater lymphocyte proliferation, indicating improved immune memory. Conclusions: The oral L. lactis NZ3900/pNZ8149-S vaccine expressing the PEDV S protein effectively induced systemic and mucosal immunity in mice. Encapsulation with alginate–chitosan further enhanced its immunogenicity and stability in gastrointestinal conditions. These results suggest that both the engineered L. lactis strain and the encapsulation strategy contribute to the development of a promising oral vaccine platform for controlling PEDV in swine populations. Full article
Show Figures

Graphical abstract

22 pages, 884 KB  
Review
Immune Responses Elicited by Outer Membrane Vesicles of Gram-Negative Bacteria: Important Players in Vaccine Development
by Branko Velimirov and Branko Alexander Velimirov
Life 2024, 14(12), 1584; https://doi.org/10.3390/life14121584 - 2 Dec 2024
Cited by 2 | Viewed by 3872
Abstract
The attractiveness of OMVs derived from Gram-negative bacteria lies in the fact that they have two biomembranes sandwiching a peptidoglycan layer. It is well known that the envelope of OMVs consists of the outer bacterial membrane [OM] and not of the inner one [...] Read more.
The attractiveness of OMVs derived from Gram-negative bacteria lies in the fact that they have two biomembranes sandwiching a peptidoglycan layer. It is well known that the envelope of OMVs consists of the outer bacterial membrane [OM] and not of the inner one [IM] of the source bacterium. This implies that all outer membranous molecules found in the OM act as antigens. However, under specific conditions, some of the inner membrane proteins can be exported into the outer membrane layer and perform as antigens. A key information was that the used purification procedures for OMVs, the induction methods to increase the production of OMVs as well as the specific mutant strains obtained via genetic engineering affect the composition of potential antigens on the surface and in the lumen of the OMVs. The available literature allowed us to list the major antigens that could be defined on OMVs. The functions of the antigens within the source bacterium are discussed for a better understanding of the various available hypotheses on the biogenesis of vesicle formation. Also, the impacts of OMV antigens on the immune system using animal models are assessed. Furthermore, information on the pathways of OMVs entering the host cell is presented. An example of a bacterial infection that causes epidemic diseases, namely via Neisseria meningitidis, is used to demonstrate that OMVs derived from this pathogen elicit protective immune responses when administered as a vaccine. Furthermore, information on OMV vaccines under development is presented. The assembled knowledge allowed us to formulate a number of reasons why OMVs are attractive as vaccine platforms, as their undesirable side effects remain small, and to provide an outlook on the potential use of OMVs as a vaccine platform. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

44 pages, 4889 KB  
Review
The Immune System—A Double-Edged Sword for Adenovirus-Based Therapies
by Rebecca Wallace, Carly M. Bliss and Alan L. Parker
Viruses 2024, 16(6), 973; https://doi.org/10.3390/v16060973 - 17 Jun 2024
Cited by 9 | Viewed by 5172
Abstract
Pathogenic adenovirus (Ad) infections are widespread but typically mild and transient, except in the immunocompromised. As vectors for gene therapy, vaccine, and oncology applications, Ad-based platforms offer advantages, including ease of genetic manipulation, scale of production, and well-established safety profiles, making them attractive [...] Read more.
Pathogenic adenovirus (Ad) infections are widespread but typically mild and transient, except in the immunocompromised. As vectors for gene therapy, vaccine, and oncology applications, Ad-based platforms offer advantages, including ease of genetic manipulation, scale of production, and well-established safety profiles, making them attractive tools for therapeutic development. However, the immune system often poses a significant challenge that must be overcome for adenovirus-based therapies to be truly efficacious. Both pre-existing anti-Ad immunity in the population as well as the rapid development of an immune response against engineered adenoviral vectors can have detrimental effects on the downstream impact of an adenovirus-based therapeutic. This review focuses on the different challenges posed, including pre-existing natural immunity and anti-vector immunity induced by a therapeutic, in the context of innate and adaptive immune responses. We summarise different approaches developed with the aim of tackling these problems, as well as their outcomes and potential future applications. Full article
(This article belongs to the Special Issue 15th International Adenovirus Meeting)
Show Figures

Figure 1

16 pages, 4219 KB  
Article
Development and Validation of a Plaque Assay to Determine the Titer of a Recombinant Live-Attenuated Viral Vaccine for SARS-CoV-2
by Einat Toister, Lilach Cherry, Edith Lupu, Arik Monash, Eyal Dor, Lilach Levin, Meni Girshengorn, Niva Natan, Shira Chapman, Shlomo Shmaya, Eyal Epstein, Yaakov Adar, Ran Zichel, Yakir Ophir and Eran Diamant
Vaccines 2024, 12(4), 374; https://doi.org/10.3390/vaccines12040374 - 1 Apr 2024
Cited by 1 | Viewed by 5792
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in more than seven million deaths worldwide. To reduce viral spread, the Israel Institute for Biological Research (IIBR) developed and produced a new rVSV-SARS-CoV-2-S vaccine candidate (BriLife®) [...] Read more.
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in more than seven million deaths worldwide. To reduce viral spread, the Israel Institute for Biological Research (IIBR) developed and produced a new rVSV-SARS-CoV-2-S vaccine candidate (BriLife®) based on a platform of a genetically engineered vesicular stomatitis virus (VSV) vector that expresses the spike protein of SARS-CoV-2 instead of the VSV-G protein on the virus surface. Quantifying the virus titer to evaluate vaccine potency requires a reliable validated assay that meets all the stringent pharmacopeial requirements of a bioanalytical method. Here, for the first time, we present the development and extensive validation of a quantitative plaque assay using Vero E6 cells for the determination of the concentration of the rVSV-SARS-CoV-2-S viral vector. Three different vaccine preparations with varying titers (DP_low, DP_high, and QC sample) were tested according to a strict validation protocol. The newly developed plaque assay was found to be highly specific, accurate, precise, and robust. The mean deviations from the predetermined titers for the DP_low, DP_high, and QC preparations were 0.01, 0.02, and 0.09 log10, respectively. Moreover, the mean %CV values for intra-assay precision were 18.7%, 12.0%, and 6.0%, respectively. The virus titers did not deviate from the established values between cell passages 5 and 19, and no correlation was found between titer and passage. The validation results presented herein indicate that the newly developed plaque assay can be used to determine the concentration of the BriLife® vaccine, suggesting that the current protocol is a reliable methodology for validating plaque assays for other viral vaccines. Full article
Show Figures

Figure 1

Back to TopTop