Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,632)

Search Parameters:
Keywords = genetic indexes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2929 KiB  
Article
Comparative Performance Analysis of Gene Expression Programming and Linear Regression Models for IRI-Based Pavement Condition Index Prediction
by Mostafa M. Radwan, Majid Faissal Jassim, Samir A. B. Al-Jassim, Mahmoud M. Elnahla and Yasser A. S. Gamal
Eng 2025, 6(8), 183; https://doi.org/10.3390/eng6080183 - 3 Aug 2025
Abstract
Traditional Pavement Condition Index (PCI) assessments are highly resource-intensive, demanding substantial time and labor while generating significant carbon emissions through extensive field operations. To address these sustainability challenges, this research presents an innovative methodology utilizing Gene Expression Programming (GEP) to determine PCI values [...] Read more.
Traditional Pavement Condition Index (PCI) assessments are highly resource-intensive, demanding substantial time and labor while generating significant carbon emissions through extensive field operations. To address these sustainability challenges, this research presents an innovative methodology utilizing Gene Expression Programming (GEP) to determine PCI values based on International Roughness Index (IRI) measurements from Iraqi road networks, offering an environmentally conscious and resource-efficient approach to pavement management. The study incorporated 401 samples of IRI and PCI data through comprehensive visual inspection procedures. The developed GEP model exhibited exceptional predictive performance, with coefficient of determination (R2) values achieving 0.821 for training, 0.858 for validation, and 0.8233 overall, successfully accounting for approximately 82–85% of PCI variance. Prediction accuracy remained robust with Mean Absolute Error (MAE) values of 12–13 units and Root Mean Square Error (RMSE) values of 11.209 and 11.00 for training and validation sets, respectively. The lower validation RMSE suggests effective generalization without overfitting. Strong correlations between predicted and measured values exceeded 0.90, with acceptable relative absolute error values ranging from 0.403 to 0.387, confirming model effectiveness. Comparative analysis reveals GEP outperforms alternative regression methods in generalization capacity, particularly in real-world applications. This sustainable methodology represents a cost-effective alternative to conventional PCI evaluation, significantly reducing environmental impact through decreased field operations, lower fuel consumption, and minimized traffic disruption. By streamlining pavement management while maintaining assessment reliability and accuracy, this approach supports environmentally responsible transportation systems and aligns contemporary sustainability goals in infrastructure management. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

13 pages, 1397 KiB  
Article
RSPH4A-PCDx: An Index to Predict Lung Function Decline in Primary Ciliary Dyskinesia
by Gabriel Román-Ríos, Gabriel Rosario-Ortiz, Marcos J. Ramos-Benitez, Ricardo A. Mosquera and Wilfredo De Jesús-Rojas
Adv. Respir. Med. 2025, 93(4), 27; https://doi.org/10.3390/arm93040027 - 2 Aug 2025
Viewed by 92
Abstract
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous disorder that impairs mucociliary clearance and leads to progressive lung disease. This study aimed to characterize lung function decline in a genetically homogeneous cohort of Puerto Rican patients with RSPH4A-associated PCD and to [...] Read more.
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous disorder that impairs mucociliary clearance and leads to progressive lung disease. This study aimed to characterize lung function decline in a genetically homogeneous cohort of Puerto Rican patients with RSPH4A-associated PCD and to develop a clinical tool to predict lung function decline and support transplant referral decisions. We conducted a retrospective chart review of patients (n = 25) with a confirmed RSPH4A [c.921+3_6delAAGT] genetic variant, collecting longitudinal spirometry data and applying linear regressions to calculate each patient’s individual FEV1 decline. The median FEV1 at diagnosis was 55%, with a median annual decline of −0.75% predicted. Adults exhibited significantly lower lung function compared to pediatric patients, while no difference was seen between males and females. Based on this observed decline, we developed the Predicted Capacity Decline Index (PCDx), an index that estimates the age and time until a patient reaches the 30% FEV1 threshold, the point at which lung transplant referral is typically considered. Our findings underscore the need for early intervention and suggest that genotype-specific tools like the PCDx may enhance clinical decision-making in managing progressive lung disease in PCD. Full article
Show Figures

Figure 1

8 pages, 208 KiB  
Article
Multiple Primary Melanomas: Clinical and Genetic Insights for Risk-Stratified Surveillance in a Tertiary Center
by Marta Cebolla-Verdugo, Francisco Manuel Almazán-Fernández, Francisco Ramos-Pleguezuelos and Ricardo Ruiz-Villaverde
J. Pers. Med. 2025, 15(8), 343; https://doi.org/10.3390/jpm15080343 - 1 Aug 2025
Viewed by 104
Abstract
Background: Patients diagnosed with melanoma are at increased risk of developing multiple primary melanomas (MPMs). Identifying clinical and genetic factors associated with MPM is critical for implementing personalized surveillance strategies. This study aims to describe the clinical, histopathological, and genetic characteristics of patients [...] Read more.
Background: Patients diagnosed with melanoma are at increased risk of developing multiple primary melanomas (MPMs). Identifying clinical and genetic factors associated with MPM is critical for implementing personalized surveillance strategies. This study aims to describe the clinical, histopathological, and genetic characteristics of patients with MPM managed in a tertiary hospital and to contextualize findings within the current literature. Methods: We conducted a retrospective review of patients diagnosed with two or more primary melanomas between 2010 and 2023 at a tertiary dermatology unit. Demographic data, personal and family cancer history, phototype, melanoma characteristics, genetic testing, staging, treatments, and outcomes were collected. These data were compared with findings from the recent literature. Results: Thirteen patients (ten males, three females; median age: 59 years) were found to have a total of 33 melanomas. Most patients had Fitzpatrick phototype II and no immunosuppression. The number of melanomas per patient ranged from two to five. Synchronous lesions were observed in two patients. Common locations included the trunk and extremities. Histologically, 57% were in situ melanomas, and subsequent melanomas were generally thinner than the index lesion. Two patients showed progression to advanced disease. One patient was positive for MC1R mutation; the rest were negative or inconclusive. Additional phenotypic and environmental risk factors were extracted from patient records and are summarized as follows: Ten patients (76.9%) had Fitzpatrick skin phototype II, and three (23.1%) had phototype III. Chronic occupational sun exposure was reported in four patients (30.8%), while five (38.5%) recalled having suffered multiple sunburns during childhood or adolescence. Eight patients (61.5%) presented with a total nevus count exceeding 50, and five (38.5%) exhibited clinically atypical nevi. None of the patients reported use of tanning beds. Conclusions: Our findings are consistent with the existing literature indicating that patients with MPM often present with thinner subsequent melanomas and require long-term dermatologic follow-up. The inclusion of genetic testing and phenotypic risk factors enables stratified surveillance and supports the application of personalized medicine in melanoma management. Full article
18 pages, 929 KiB  
Article
A 30-Year Experience in Fragile X Syndrome Molecular Diagnosis from a Laboratory in Thailand
by Areerat Hnoonual, Oradawan Plong-On, Duangkamol Tangviriyapaiboon, Chariyawan Charalsawadi and Pornprot Limprasert
Int. J. Mol. Sci. 2025, 26(15), 7418; https://doi.org/10.3390/ijms26157418 (registering DOI) - 1 Aug 2025
Viewed by 105
Abstract
Fragile X syndrome (FXS) is the most common form of X-linked intellectual disability (ID). This study aimed to share 30 years of experience in diagnosing FXS and determine its frequency in Thailand. We retrospectively reviewed 1480 unrelated patients (1390 males and 90 females) [...] Read more.
Fragile X syndrome (FXS) is the most common form of X-linked intellectual disability (ID). This study aimed to share 30 years of experience in diagnosing FXS and determine its frequency in Thailand. We retrospectively reviewed 1480 unrelated patients (1390 males and 90 females) with ID, developmental delay, or autism spectrum disorder, or individuals referred for FXS DNA testing at Songklanagarind Hospital, Thailand, over a 30-year period. The samples were analyzed using cytogenetic methods, PCR-based techniques, and/or Southern blot analysis. Full mutations (>200 CGG repeats) were identified in 100 males (7.2%) and three females (3.3%). An intermediate allele was detected in one male, while no premutation was found in the index cases. Two males were suspected to have FMR1 gene deletions. Twelve families underwent prenatal testing during this study. Most families undergoing prenatal FXS diagnosis involved mothers who were premutation carriers and had given birth to children affected by FXS. This study represents the largest series of molecular genetic FXS testing cases reported in Thailand. The frequency of FXS identified in different cohorts of Thai patients across various periods was approximately 7%. This study enhances public awareness of at-risk populations and highlights the importance of prenatal testing and genetic counseling for vulnerable families. Full article
Show Figures

Figure 1

21 pages, 4988 KiB  
Article
Ozone Exposure Induces Prediabetic Symptoms Through Hepatic Glycogen Metabolism and Insulin Resistance
by Yuchai Tian, Xiaoyun Wu, Zhihua Gong, Xiaomin Liang, Huizhen Zhu, Jiyue Zhang, Yangcheng Hu, Bin Li, Pengchong Xu, Kaiyue Guo and Huifeng Yue
Toxics 2025, 13(8), 652; https://doi.org/10.3390/toxics13080652 (registering DOI) - 31 Jul 2025
Viewed by 218
Abstract
(1) Background: Epidemiological studies link ozone (O3) exposure to diabetes risk, but mechanisms and early biomarkers remain unclear. (2) Methods: Female mice exposed to 0.5/1.0 ppm O3 were assessed for glucose tolerance and HOMA (homeostasis model assessment) index. Genes related [...] Read more.
(1) Background: Epidemiological studies link ozone (O3) exposure to diabetes risk, but mechanisms and early biomarkers remain unclear. (2) Methods: Female mice exposed to 0.5/1.0 ppm O3 were assessed for glucose tolerance and HOMA (homeostasis model assessment) index. Genes related to impaired glucose tolerance and insulin resistance were screened through the Comparative Toxicogenomics Database (CTD), and verified using quantitative real-time PCR. In addition, liver histopathological observations and the determination of basic biochemical indicators were conducted, and targeted metabolomics analysis was performed on the liver to verify glycogen levels and gene expression. In vitro validation was conducted with HepG2 and Min6 cell lines. (3) Results: Fasting blood glucose and insulin resistance were elevated following O3 exposure. Given that the liver plays a critical role in glucose metabolism, we further investigated hepatocyte apoptosis and alterations in glycogen metabolism, including reduced glycogen levels and genetic dysregulation. Metabolomics analysis revealed abnormalities in fructose metabolism and glycogen synthesis in the livers of the O3-exposed group. In vitro studies demonstrated that oxidative stress enhances both liver cell apoptosis and insulin resistance in pancreatic islet β cells. (4) Conclusions: O3 triggers prediabetes symptoms via hepatic metabolic dysfunction and hepatocyte apoptosis. The identified metabolites and genes offer potential as early biomarkers and therapeutic targets. Full article
Show Figures

Graphical abstract

27 pages, 1628 KiB  
Article
Reliability Evaluation and Optimization of System with Fractional-Order Damping and Negative Stiffness Device
by Mingzhi Lin, Wei Li, Dongmei Huang and Natasa Trisovic
Fractal Fract. 2025, 9(8), 504; https://doi.org/10.3390/fractalfract9080504 (registering DOI) - 31 Jul 2025
Viewed by 169
Abstract
Research on reliability control for enhancing power systems under random loads holds significant and undeniable importance in maintaining system stability, performance, and safety. The primary challenge lies in determining the reliability index while optimizing system parameters. To effectively address this challenge, we developed [...] Read more.
Research on reliability control for enhancing power systems under random loads holds significant and undeniable importance in maintaining system stability, performance, and safety. The primary challenge lies in determining the reliability index while optimizing system parameters. To effectively address this challenge, we developed a novel intelligent algorithm and conducted an optimal reliability assessment for a Negative Stiffness Device (NSD) seismic isolation structure incorporating fractional-order damping. This algorithm combines the Gaussian Radial Basis Function Neural Network (GRBFNN) with the Particle Swarm Optimization (PSO) algorithm. It takes the reliability function with unknown parameters as the objective function, while using the Backward Kolmogorov (BK) equation, which governs the reliability function and is accompanied by boundary and initial conditions, as the constraint condition. During the operation of this algorithm, the neural network is employed to solve the BK equation, thereby deriving the fitness function in each iteration of the PSO algorithm. Then the PSO algorithm is utilized to obtain the optimal parameters. The unique advantage of this algorithm is its ability to simultaneously achieve the optimization of implicit objectives and the solution of time-dependent BK equations.To evaluate the performance of the proposed algorithm, this study compared it with the algorithm combines the GRBFNN with Genetic Algorithm (GA-GRBFNN)across multiple dimensions, including performance and operational efficiency. The effectiveness of the proposed algorithm has been validated through numerical comparisons and Monte Carlo simulations. The control strategy presented in this paper provides a solid theoretical foundation for improving the reliability performance of mechanical engineering systems and demonstrates significant potential for practical applications. Full article
Show Figures

Figure 1

23 pages, 6098 KiB  
Article
Performance Optimization of Stacked Weld in Hydrogen Production Reactor Based on Response Surface Methodology–Genetic Algorithm
by Yu Liu, Hongtao Gu, Jincheng Zhang, Zhiyi Leng, Ziguang Wang and Shengfang Zhang
Coatings 2025, 15(8), 889; https://doi.org/10.3390/coatings15080889 (registering DOI) - 31 Jul 2025
Viewed by 216
Abstract
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials [...] Read more.
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials to enhance weld performance. Given the varying performance requirements of different weld layers in the stacked weld, a gradient performance optimization method for the stacked weld of hydrogen production reactors based on the response surface methodology (RSM)–genetic algorithm (GA) is proposed. Using tensile strength, the hydrogen embrittlement sensitivity index, fatigue strain strength, creep rate and weld performance evaluation indices, a high-precision regression model for Si and Mo contents and weld performance indices was established through RSM and analysis of variance (ANOVA). A multi-objective optimization mathematical model for gradient improvement of the stacked weld was also established. This model was solved using a GA to obtain the optimal element content combination added to the welding wire and the optimal weld thickness for each weld layer. Finally, submerged arc welding experiments of the stacked weld were conducted according to the optimization results. The results show that the tensile strength of the base layer, filling layer and cover layer of the stacked weld increased by 5.60%, 6.16% and 4.53%, respectively. Hydrogen embrittlement resistance increased by 70.56%, 52.40% and 45.16%, respectively. The fatigue and creep resistance were also improved. The experimental results validate the feasibility and accuracy of the proposed optimization method. Full article
Show Figures

Figure 1

26 pages, 11108 KiB  
Article
Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage
by Priscila Marlys Sá Rivas, Fernando Bonifácio-Anacleto, Ivan Schuster, Carlos Alberto Martinez and Ana Lilia Alzate-Marin
Genes 2025, 16(8), 913; https://doi.org/10.3390/genes16080913 (registering DOI) - 30 Jul 2025
Viewed by 275
Abstract
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to [...] Read more.
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to warming and elevated CO2 on progeny physiology, genetic diversity, and population structure in Stylosanthes capitata, a resilient forage legume native to Brazil. Methods: Maternal plants were cultivated under controlled treatments, including ambient conditions (control), elevated CO2 at 600 ppm (eCO2), elevated temperature at +2 °C (eTE), and their combined exposure (eTEeCO2), within a Trop-T-FACE field facility (Temperature Free-Air Controlled Enhancement and Free-Air Carbon Dioxide Enrichment). Seed traits (seeds per inflorescence, hundred-seed mass, abortion, non-viable seeds, coat color, germination at 32, 40, 71 weeks) and abnormal seedling rates were quantified. Genetic diversity metrics included the average (A) and effective (Ae) number of alleles, observed (Ho) and expected (He) heterozygosity, and inbreeding coefficient (Fis). Population structure was assessed using Principal Coordinates Analysis (PCoA), Analysis of Molecular Variance (AMOVA), number of migrants per generation (Nm), and genetic differentiation index (Fst). Two- and three-way Analysis of Variance (ANOVA) were used to evaluate factor effects. Results: Compared to control conditions, warming increased seeds per inflorescence (+46%), reduced abortion (−42.9%), non-viable seeds (−57%), and altered coat color. The germination speed index (GSI +23.5%) and germination rate (Gr +11%) improved with warming; combined treatments decreased germination time (GT −9.6%). Storage preserved germination traits, with warming enhancing performance over time and reducing abnormal seedlings (−54.5%). Conversely, elevated CO2 shortened GSI in late stages, impairing germination efficiency. Warming reduced Ae (−35%), He (−20%), and raised Fis (maternal 0.50, progeny 0.58), consistent with the species’ mixed mating system; A and Ho were unaffected. Allele frequency shifts suggested selective pressure under eTE. Warming induced slight structure in PCoA, and AMOVA detected 1% (maternal) and 9% (progeny) variation. Fst = 0.06 and Nm = 3.8 imply environmental influence without isolation. Conclusions: Warming significantly shapes seed quality, reproductive success, and genetic diversity in S. capitata. Improved reproduction and germination suggest adaptive advantages, but higher inbreeding and reduced diversity may constrain long-term resilience. The findings underscore the need for genetic monitoring and broader genetic bases in cultivars confronting environmental stressors. Full article
(This article belongs to the Special Issue Genetics and Breeding of Forage)
Show Figures

Figure 1

11 pages, 275 KiB  
Article
Polygenic Score for Body Mass Index Is Associated with Weight Loss and Lipid Outcomes After Metabolic and Bariatric Surgery
by Luana Aldegheri, Chiara Cipullo, Natalia Rosso, Eulalia Catamo, Biagio Casagranda, Pablo Giraudi, Nicolò de Manzini, Silvia Palmisano and Antonietta Robino
Int. J. Mol. Sci. 2025, 26(15), 7337; https://doi.org/10.3390/ijms26157337 - 29 Jul 2025
Viewed by 292
Abstract
Metabolic and bariatric surgery (MBS) is an effective treatment for severe obesity, though individual responses vary widely, partly due to genetic predisposition. This study investigates the association of a body mass index (BMI) polygenic score (PGS) with weight loss and metabolic outcomes following [...] Read more.
Metabolic and bariatric surgery (MBS) is an effective treatment for severe obesity, though individual responses vary widely, partly due to genetic predisposition. This study investigates the association of a body mass index (BMI) polygenic score (PGS) with weight loss and metabolic outcomes following surgery. A cohort of 225 patients undergoing MBS was analyzed at baseline (T0), six (T6), and twelve (T12) months, with anthropometric and biochemical parameters recorded at each time point. Total weight loss (TWL) and excess weight loss (EWL) percentages were calculated. PGS was computed using the LDpred-grid Bayesian method. The mean age was 45.9 ± 9.4 years. Males had a higher baseline prevalence of type 2 diabetes (T2D) and comorbidities (p < 0.001). Linear regression analysis confirmed an association between PGS and baseline BMI (p = 0.012). Moreover, mediation analysis revealed that baseline BMI mediated the effect of the PGS on %TWL at T12, with an indirect effect (p-value = 0.018). In contrast, high-density lipoprotein-cholesterol (HDL-C) at T6 and triglycerides (TG) at T12 showed direct associations with the PGS (p-value = 0.004 and p-value = 0.08, respectively), with no significant mediation by BMI. This study showed a BMI-mediated association of PGS with %TWL and a direct association with lipid changes, suggesting its potential integration into personalized obesity treatment. Full article
(This article belongs to the Special Issue Genetic and Molecular Mechanisms of Obesity)
13 pages, 3645 KiB  
Article
Assessment of Genetic Diversity in Elite Stevia Genotypes Utilizing Distinguishability, Homogeneity and Stability (DHS) Through Morphological Descriptors
by Fellipe Celestino de Castro, Fábio Gelape Faleiro, Renato Fernando Amabile, Jamile da Silva Oliveira, Adriana Lopes da Luz, João Victor Pinheiro Melo, Arlini Rodrigues Fialho, Kelly Cristina dos Santos Soares, Gustavo Barbosa Cobalchini Santos and Lorena Portilho Bruno
Agronomy 2025, 15(8), 1836; https://doi.org/10.3390/agronomy15081836 - 29 Jul 2025
Viewed by 201
Abstract
Stevia rebaudiana Bertoni, a semi-perennial herb from the Asteraceae family, is native to the Paraguay–Brazil border region. The growing industrial interest in this species is due to its natural sweetening properties, such as steviol and its derivatives, which offer sweetness without adding calories. [...] Read more.
Stevia rebaudiana Bertoni, a semi-perennial herb from the Asteraceae family, is native to the Paraguay–Brazil border region. The growing industrial interest in this species is due to its natural sweetening properties, such as steviol and its derivatives, which offer sweetness without adding calories. Morphological traits are crucial for assessing genetic variability and ensuring distinctness, homogeneity, and stability (DHS) for cultivar protection. This study characterized 19 elite Stevia genotypes from Embrapa Cerrados’ Active Germplasm Bank (BAG) using 21 morphological descriptors from Brazil’s Ministry of Agriculture, Livestock, and Supply (MAPA). Genetic distances were calculated using the simple coincidence index complement method, and clustering was performed via the Unweighted Pair-Group Method with Arithmetic Mean (UPGMA). The results showed that 17 of the 21 descriptors (>80%) effectively differentiated the genotypes, revealing significant genetic variability. Dendrogram analysis identified at least four major similarity groups, highlighting the potential of these genotypes for Stevia breeding programs. These findings underscore the suitability of these elite genotypes for developing superior varieties adapted to Cerrado conditions, supporting future cultivation and genetic improvement efforts. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

17 pages, 4466 KiB  
Article
An Oil Debris Analysis Method of Gearbox Condition Monitoring Based on an Improved Multi-Variable Grey Prediction Model
by Bo Wang and Yizhong Wu
Machines 2025, 13(8), 664; https://doi.org/10.3390/machines13080664 - 29 Jul 2025
Viewed by 160
Abstract
Accurate oil debris analysis and wear monitoring of a gearbox are essential to ensure its stable and reliable operation. Element types of wear debris and their changes in the lubrication oil of the gearbox can be monitored by spectral analysis. However, it is [...] Read more.
Accurate oil debris analysis and wear monitoring of a gearbox are essential to ensure its stable and reliable operation. Element types of wear debris and their changes in the lubrication oil of the gearbox can be monitored by spectral analysis. However, it is still difficult to identify wear parts of the gearbox due to the complex composition of elements of wear debris. An improved multi-variable grey prediction model by incorporating a multi-objective genetic algorithm (MOGA-GM(1, N)) is proposed to evaluate weight coefficients of element concentrations of wear debris in the lubrication oil of the gearbox. Moreover, a wear growth rate of each element in the lubrication oil is proposed as an index for oil debris analysis to analyze the multi-variable correlation between the common element of iron (Fe) and other related elements of wear parts of the gearbox. Oil debris analysis of the gearbox is conducted on optimal weight coefficients of related elements to the common element Fe using the MOGA-GM(1, N) model. Wear experiment results verify feasibility of the proposed oil debris analysis method. Full article
Show Figures

Figure 1

10 pages, 345 KiB  
Article
Natural History of Hyperphagia in Patients with Pseudohypoparathyroidism
by Jaclyn Tamaroff and Ashley H. Shoemaker
J. Clin. Med. 2025, 14(15), 5345; https://doi.org/10.3390/jcm14155345 - 29 Jul 2025
Viewed by 217
Abstract
Background/Objectives: Pseudohypoparathyroidism (PHP) is a group of genetic disorders characterized by end-organ resistance to multiple hormones, short stature, brachydactyly, subcutaneous ossifications, obesity, and developmental delays. The tissue specific imprinting of GNAS in the hypothalamus may lead to different eating behavior phenotypes in [...] Read more.
Background/Objectives: Pseudohypoparathyroidism (PHP) is a group of genetic disorders characterized by end-organ resistance to multiple hormones, short stature, brachydactyly, subcutaneous ossifications, obesity, and developmental delays. The tissue specific imprinting of GNAS in the hypothalamus may lead to different eating behavior phenotypes in maternally inherited (PHP1A, PHP1B) vs. paternally inherited (PPHP) variants. In this exploratory study, we aimed to evaluate differences in eating behaviors in a cohort of patients with PHP1A, PPHP and PHP1B. Methods: Assessments included caregiver-reported measures (hyperphagia questionnaire, children’s eating behavior questionnaire, child feeding questionnaire) and self-reported measures (three factor eating behavior questionnaire). Results: A total of 58 patients with PHP1A, 13 patients with PPHP and 10 patients with PHP1B contributed data, along with 124 obese pediatric controls. An increased risk of obesity was found in PHP1A vs. PPHP (adult body mass index (BMI) 39.8 ± 8.7 vs. 30.2 ± 7.4 kg/m2, p = 0.03). Parents reported significantly earlier onset of interest in food in children with PHP1A (2.0 ± 2.3 years) and PHP1B (1.1 ± 1.3 years) compared with controls (5.2 ± 3.2 years, p < 0.001). Measures of hyperphagia, satiety and other feeding behaviors were all similar to controls. The highest hyperphagia questionnaire scores were seen prior to adolescence. In a multi-year, longitudinal assessment of 11 pediatric patients with PHP1A, hyperphagia scores were stable and 25% showed an improvement in symptoms. Conclusion: Patients with PHP1A/1B may have hyperphagia symptoms from a young age but they do not worsen over time. Patients may overeat when allowed access to food, but do not usually have disruptive food seeking behaviors. Early diagnosis can give clinicians the opportunity to provide anticipatory diagnosis on the increased risk of obesity in PHP1A/1B and need for scheduled meals and controlled portions. Further studies with larger cohorts are needed to confirm these findings. Full article
(This article belongs to the Special Issue Research Progress in Pediatric Endocrinology)
Show Figures

Figure 1

26 pages, 2504 KiB  
Article
Phenotypic Profiling of Anchote (Coccinia abyssinica (Lam.) Cogn.) Accessions Through Agro-Morphological and Physiological Markers
by Dejene Bekele Dibaba, Temesgen Magule Olango, Bizuayehu Tesfaye Asfaw, Desta Fikadu Mijena and Meseret Tesema Terfa
Plants 2025, 14(15), 2334; https://doi.org/10.3390/plants14152334 - 28 Jul 2025
Viewed by 196
Abstract
Anchote (Coccinia abyssinica) is a neglected high-potential food and nutrition security tuber crop in Ethiopia. Phenotyping core germplasm collections using agro-morphological and physiological markers is essential for effective crop improvement and utilization. A total of 282 anchote germplasms were profiled using [...] Read more.
Anchote (Coccinia abyssinica) is a neglected high-potential food and nutrition security tuber crop in Ethiopia. Phenotyping core germplasm collections using agro-morphological and physiological markers is essential for effective crop improvement and utilization. A total of 282 anchote germplasms were profiled using six qualitative and twenty-six quantitative agro-morphological and physiological traits. Augmented Block Design was used for the experiment at the Debre Zeit Agricultural Research Center. The chi-square test and Shannon diversity index indicated the presence of substantial phenotypic variation and diversity among the accessions based on the predominant qualitative traits studied. The quantitative agro-morphological and physiological traits showed wider variability and ranges for the accessions. The broad-sense heritability and genetic advance as a percentage of the mean were notably high for quantitative traits such as root yield, vine length, and leaf area index. A significantly positive correlation was observed among agronomically important traits such as root yield and root diameter as well as root yield and leaf area. The principal component analysis for qualitative and quantitative traits found that ten components explained 72.2% of the variation for qualitative traits, whereas nine components accounted for 69.96% of the variation in quantitative traits. The primary contributors to the variations are traits such as root (shape, flesh color, and yield), leaf (color, length, diameter, area) and fruit (length, diameter, and weight). Further, the accessions were grouped into two and three clusters based on qualitative and quantitative traits, respectively, indicating that quantitative characters better differentiated among the accessions. Similarly, the tanglegram showed little similarity between the qualitative and quantitative agro-morphological and physiological traits in clustering the accessions. These findings indicate the presence of sizable trait variation among the accessions that can be exploited as a selection marker to design and facilitate conservation and breeding strategies of anchote. Full article
Show Figures

Figure 1

19 pages, 1940 KiB  
Article
Linkages Between Sorghum bicolor Root System Architectural Traits and Grain Yield Performance Under Combined Drought and Heat Stress Conditions
by Alec Magaisa, Elizabeth Ngadze, Tshifhiwa P. Mamphogoro, Martin P. Moyo and Casper N. Kamutando
Agronomy 2025, 15(8), 1815; https://doi.org/10.3390/agronomy15081815 - 26 Jul 2025
Viewed by 275
Abstract
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two [...] Read more.
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two low-altitude (i.e., <600 masl) locations with a long-term history of averagely very high temperatures in the beginning of the summer season, under two management (i.e., CDHS and well-watered (WW)) regimes. At each location, the genotypes were laid out in the field using a randomized complete block design (RCBD) replicated two times. Root trait data, namely root diameter (RD), number of roots (NR), number of root tips (NRT), total root length (TRL), root depth (RDP), root width (RW), width–depth ratio (WDR), root network area (RNA), root solidity (RS), lower root area (LRA), root perimeter (RP), root volume (RV), surface area (SA), root holes (RH) and root angle (RA) were gathered using the RhizoVision Explorer software during the pre- and post-flowering stage of growth. RSA traits differentially showed significant (p < 0.05) correlations with grain yield (GY) at pre- and post-flowering growth stages and under CDHS and WW conditions also revealing genotypic variation estimates exceeding 50% for all the traits. Regression models varied between pre-flowering (p = 0.013, R2 = 47.15%, R2 Predicted = 29.32%) and post-flowering (p = 0.000, R2 = 85.64%, R2 Predicted = 73.30%) growth stages, indicating post-flowering as the optimal stage to relate root traits to yield performance. RD contributed most to the regression model at post-flowering, explaining 51.79% of the 85.64% total variation. The Smith–Hazel index identified ICSV111IN and ASAREACA12-3-1 as superior pre-release lines, suitable for commercialization as new varieties. The study demonstrated that root traits (in particular, RD, RW, and RP) are linked to crop performance under CDHS conditions and should be incorporated in breeding programs. This approach may accelerate genetic gains not only in sorghum breeding programs, but for other crops, while offering a nature-based breeding strategy for stress adaptation in crops. Full article
Show Figures

Figure 1

14 pages, 1203 KiB  
Article
Evaluation of the Kernel Test Weight and Selection of Identification Indexes of Maize Inbred Lines
by Tao Shen, Jianping Li, Chao Wang, Haihong Fan, Yunxiao Zheng, Yifan Liu, Shuzhen Zhang, Liying Zhu, Xiaoyan Jia, Yongfeng Zhao, Wei Song and Jinjie Guo
Agronomy 2025, 15(8), 1807; https://doi.org/10.3390/agronomy15081807 - 26 Jul 2025
Viewed by 193
Abstract
Kernel test weight (KTW) is one of the important assessment indexes of maize quality grade and one of the important influencing factors of yield. This study analyzed 12 traits related to KTW in 321 maize inbred lines using multivariate methods. The principal component [...] Read more.
Kernel test weight (KTW) is one of the important assessment indexes of maize quality grade and one of the important influencing factors of yield. This study analyzed 12 traits related to KTW in 321 maize inbred lines using multivariate methods. The principal component analysis (PCA) indicated that the four PCs covered 78.176% of the information of the 12 traits in 321 maize inbred lines. Cluster analysis categorized the maize lines into six groups, identifying 16 elite inbred lines with the highest KTW. A stepwise regression model for KWT evaluation was developed using four PCA traits: starch content, amylopectin content, 100-kernel weight, and kernel circumference. The findings of this study serve as a valuable reference point for the genetic improvement of maize germplasm re-sources in kernel test weight and the creation of high kernel test weight maize resources. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

Back to TopTop