Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (188)

Search Parameters:
Keywords = generalized frequency division multiplexing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1006 KB  
Article
Using Neural Networks to Generate A Basis for OFDM Acoustic Signal Decomposition in Non-Stationary Underwater Media to Provide for Reliability and Energy Efficiency
by Aleksandr Yu. Rodionov, Lyubov G. Statsenko, Andrey A. Chusov, Denis A. Kuzin and Mariia. M. Smirnova
Acoustics 2026, 8(1), 10; https://doi.org/10.3390/acoustics8010010 - 2 Feb 2026
Viewed by 23
Abstract
The high peak-to-average power ratio (PAPR) in classical high-speed digital data transmission systems with orthogonal frequency division multiplexing (OFDM) limits energy efficiency and communication range. This paper proposes a method for randomizing OFDM signals via frequency coding using synthesized pseudorandom sequences with improved [...] Read more.
The high peak-to-average power ratio (PAPR) in classical high-speed digital data transmission systems with orthogonal frequency division multiplexing (OFDM) limits energy efficiency and communication range. This paper proposes a method for randomizing OFDM signals via frequency coding using synthesized pseudorandom sequences with improved autocorrelation properties, obtained through machine learning, to minimize PAPR in complex, non-stationary hydroacoustic channels for communicating with underwater robotic systems. A neural network architecture was developed and trained to generate codes of up to 150 elements long based on an analysis of patterns in previously found best short sequences. The obtained class of OFDM signals does not require regular and accurate estimation of channel parameters while remaining resistant to various types of impulse noise, Doppler shifts, and significant multipath interference typical of the underwater environment. The attained spectral efficiency values (up to 0.5 bits/s/Hz) are relatively high for existing hydroacoustic communication systems. It has been shown that the peak power of such multi-frequency information transmission systems can be effectively reduced by an average of 5–10 dB, which allows for an increase in the communication range compared to classical OFDM methods in non-stationary hydrological conditions at acceptable bit error rates (from 10−2 to 10−3 and less). The effectiveness of the proposed methods of randomization with synthesized codes and frequency coding for OFDM signals was confirmed by field experiments at sea on the shelf, over distances of up to 4.2 km, with sea waves of up to 2–3 Beaufort units and mutual movement of the transmitter and receiver. Full article
13 pages, 2801 KB  
Article
Performance Evaluation of a Hybrid Analog Radio-over-Fiber and 2 × 2 MIMO Over-the-Air Link
by Luiz Augusto Melo Pereira, Matheus Sêda Borsato Cunha, Felipe Batista Faro Pinto, Juliano Silveira Ferreira, Luciano Leonel Mendes and Arismar Cerqueira Sodré
Electronics 2026, 15(3), 629; https://doi.org/10.3390/electronics15030629 - 2 Feb 2026
Viewed by 99
Abstract
This work presents the design and experimental validation of a 2 × 2 MIMO communication system assisted by a directly modulated analog radio-over-fiber (A-RoF) fronthaul, targeting low-complexity connectivity solutions for underserved/remote regions. The study details the complete end-to-end architecture, including a wireless access [...] Read more.
This work presents the design and experimental validation of a 2 × 2 MIMO communication system assisted by a directly modulated analog radio-over-fiber (A-RoF) fronthaul, targeting low-complexity connectivity solutions for underserved/remote regions. The study details the complete end-to-end architecture, including a wireless access segment to complement the 20-km optical fronthaul link. The system is implemented on an software defined radio (SDR) platform using GNU Radio 3.7.11, running on Ubuntu 18.04 with kernel 4.15.0-213-generic. It also employs adaptive modulation driven by real-time signal-to-noise ratio (SNR) estimation to keep bit error rate (BER) close to zero while maximizing throughput. Performance is characterized over 20 km of single-mode fiber (SMF) using coarse wavelength division multiplexing (WDM) and assessed through root mean square error vector magnitude (EVMRMS), throughput, and spectral integrity. The results identify an optimum radio-frequency drive region around 16 dBm enabling high-order modulation (e.g., 256-QAM), whereas RF input powers above approximately 10 dBm increase EVMRMS due to nonlinearity in the RF front-end/low-noise amplifier (LNA) and direct modulation stage, forcing the adaptive scheme to reduce modulation order and throughput. Over the optical-power sweep, when the incident optical power exceeds approximately 8 dBm, the system reaches ∼130 Mbps (24-MHz channel) with EVMRMS approaching ∼1%, highlighting the need for careful joint tuning of RF drive, optical launch power, and wavelength allocation across transceivers. Finally, the integrated access link employs diplexers for transmitter/receiver separation in a 2 × 2 configuration with 2.8 m antenna separation and low channel correlation, demonstrating a 10 m proof-of-concept range and enabling end-to-end spectrum/EVM/throughput observations across the full communication chain. Full article
Show Figures

Figure 1

16 pages, 1078 KB  
Article
Differential Reflecting Frequency Modulation with QAM for RIS-Based Communications
by Yajun Fan, Le Zhao, Wencai Yan and Haihua Ma
Sensors 2026, 26(3), 802; https://doi.org/10.3390/s26030802 - 25 Jan 2026
Viewed by 215
Abstract
Reconfigurable intelligent surface (RIS)-aided index modulation (IM) shows great potential for next-generation wireless communications. Nevertheless, obtaining channel state information (CSI) for RIS-based IM incurs high pilot overhead, particularly for multi-domain IM. In this paper, we integrate orthogonal frequency division multiplexing into RIS-aided differential [...] Read more.
Reconfigurable intelligent surface (RIS)-aided index modulation (IM) shows great potential for next-generation wireless communications. Nevertheless, obtaining channel state information (CSI) for RIS-based IM incurs high pilot overhead, particularly for multi-domain IM. In this paper, we integrate orthogonal frequency division multiplexing into RIS-aided differential reflecting modulation (DRM) communications, introducing the differential reflecting frequency modulation (DRFM) system. In DRFM, information bits are jointly conveyed through the activation permutations of reflecting patterns, grouped carriers, and constellation symbols. The transmitter combines the differentially coded reflecting-time block and the time–frequency block using the Kronecker product. This allows DRFM to operate without relying on CSI at the transmitter, RIS, or receiver. Moreover, we design a novel high-rate quadrature amplitude modulation (QAM) scheme for DRFM. Compared to PSK-based DRFM, this QAM scheme can boost either the throughput or the performance of DRFM. Simulation results illustrate the superiority of the DRFM system, along with an acceptable SNR penalty, compared to non-differential modulation with coherent detection. At the same spectral efficiency, the proposed QAM-aided DRFM outperforms schemes using traditional PSK, amplitude phase shift keying (APSK), and star-QAM constellation modulations. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

32 pages, 1010 KB  
Article
A Quantum OFDM Framework for Next-Generation Video Transmission over Noisy Channels
by Udara Jayasinghe and Anil Fernando
Electronics 2026, 15(2), 284; https://doi.org/10.3390/electronics15020284 - 8 Jan 2026
Viewed by 184
Abstract
Quantum communication presents new opportunities for overcoming the limitations of classical wireless systems, particularly those associated with noise, fading, and interference. Building upon the principles of classical orthogonal frequency division multi-plexing (OFDM), this work proposes a quantum OFDM architecture tailored for video transmission. [...] Read more.
Quantum communication presents new opportunities for overcoming the limitations of classical wireless systems, particularly those associated with noise, fading, and interference. Building upon the principles of classical orthogonal frequency division multi-plexing (OFDM), this work proposes a quantum OFDM architecture tailored for video transmission. In the proposed system, video sequences are first compressed using the versatile video coding (VVC) standard with different group of pictures (GOP) sizes. Each GOP size is processed through a channel encoder and mapped to multi-qubit states with various qubit configurations. The quantum-encoded data is converted from serial-to-parallel form and passed through the quantum Fourier transform (QFT) to generate mutually orthogonal quantum subcarriers. Following reserialization, a cyclic prefix is appended to mitigate inter-symbol interference within the quantum channel. At the receiver, the cyclic prefix is removed, and the signal is restored to parallel before the inverse QFT (IQFT) recovers the original quantum subcarriers. Quantum decoding, classical channel decoding, and VVC reconstruction are then employed to recover the videos. Experimental evaluations across different GOP sizes and channel conditions demonstrate that quantum OFDM provides superior resilience to channel noise and improved perceptual quality compared to classical OFDM, achieving peak signal-to-noise ratio (PSNR) up to 47.60 dB, structural similarity index measure (SSIM) up to 0.9987, and video multi-method assessment fusion (VMAF) up to 96.40. Notably, the eight-qubit encoding scheme consistently achieves the highest SNR gains across all channels, underscoring the potential of quantum OFDM as a foundation for future high-quality video transmission. Full article
Show Figures

Figure 1

25 pages, 1283 KB  
Article
Achieving Enhanced Spectral Efficiency for Constant Envelope Transmission in CP-OFDMA Framework
by Zhuhong Zhu, Yiming Zhu, Xiaodong Xu, Wenjin Wang, Li Chai and Yi Zheng
Sensors 2025, 25(23), 7257; https://doi.org/10.3390/s25237257 - 28 Nov 2025
Viewed by 662
Abstract
Orthogonal frequency-division multiplexing (OFDM) has been adopted as the baseline waveform for sixth-generation (6G) networks owing to its robustness and high spectral efficiency. However, its inherently high peak-to-average power ratio (PAPR) limits power amplifier efficiency and causes nonlinear distortion, particularly in power- and [...] Read more.
Orthogonal frequency-division multiplexing (OFDM) has been adopted as the baseline waveform for sixth-generation (6G) networks owing to its robustness and high spectral efficiency. However, its inherently high peak-to-average power ratio (PAPR) limits power amplifier efficiency and causes nonlinear distortion, particularly in power- and cost-constrained 6G scenarios. To address these challenges, we propose a constant-envelope cyclic-prefix OFDM (CE-CP-OFDM) transceiver under the CP-OFDMA framework, which achieves high spectral efficiency while maintaining low PAPR. Specifically, we introduce a spectrally efficient subcarrier mapping scheme with partial frequency overlap and establish a multiuser received signal model under frequency-selective fading channels. Subsequently, to minimize channel estimation error, we develop an optimal multiuser CE pilot design by exploiting frequency-domain phase shifts and generalized discrete Fourier transform-based time-domain sequences. For large-scale multiuser scenarios, a joint delay–frequency-domain channel estimation method is proposed, complemented by a low-complexity linear minimum mean square error (LMMSE) estimator in the delay domain. To mitigate inter-symbol and multiple-access interference, we further design an iterative frequency-domain LMMSE (FD-LMMSE) equalizer based on the multiuser joint received-signal model. Numerical results demonstrate that the proposed CE-CP-OFDM transceiver achieves superior bit-error-rate performance compared with conventional waveforms while maintaining high spectral efficiency. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

18 pages, 2214 KB  
Article
AI-Native PHY-Layer in 6G Orchestrated Spectrum-Aware Networks
by Partemie-Marian Mutescu, Adrian-Ioan Petrariu, Eugen Coca, Cristian Patachia-Sultanoiu, Razvan Marius Mihai and Alexandru Lavric
Sensors 2025, 25(23), 7206; https://doi.org/10.3390/s25237206 - 26 Nov 2025
Viewed by 794
Abstract
The evolution from fifth generation (5G) to sixth generation (6G) networks demands a paradigm shift from AI-assisted functionalities to AI-native orchestration, where intelligence is intrinsic to the radio access network (RAN). This work introduces two AI-based enablers for PHY-layer awareness: (i) a waveform [...] Read more.
The evolution from fifth generation (5G) to sixth generation (6G) networks demands a paradigm shift from AI-assisted functionalities to AI-native orchestration, where intelligence is intrinsic to the radio access network (RAN). This work introduces two AI-based enablers for PHY-layer awareness: (i) a waveform classifier that distinguishes orthogonal frequency-division multiplexing (OFDM) and orthogonal time frequency space (OTFS) signals directly from in-phase/quadrature (IQ) samples, and (ii) a numerology detector that estimates subcarrier spacing, fast Fourier transform (FFT) size, slot duration, and cyclic prefix type without relying on higher-layer signaling. Experimental evaluations demonstrate high accuracy, with waveform classification achieving 99.5% accuracy and numerology detection exceeding 99% for most parameters, enabling robust joint inference of waveform and numerology features. The obtained results confirm the feasibility of AI-native spectrum awareness, paving the way toward self-optimizing, context-aware, and adaptive 6G wireless systems. Full article
(This article belongs to the Special Issue Feature Papers in Communications Section 2025–2026)
Show Figures

Figure 1

38 pages, 23830 KB  
Article
Improving Audio Steganography Transmission over Various Wireless Channels
by Azhar A. Hamdi, Asmaa A. Eyssa, Mahmoud I. Abdalla, Mohammed ElAffendi, Ali Abdullah S. AlQahtani, Abdelhamied A. Ateya and Rania A. Elsayed
J. Sens. Actuator Netw. 2025, 14(6), 106; https://doi.org/10.3390/jsan14060106 - 30 Oct 2025
Viewed by 1502
Abstract
Ensuring the security and privacy of confidential data during transmission is a critical challenge, necessitating advanced techniques to protect against unwarranted disclosures. Steganography, a concealment technique, enables secret information to be embedded in seemingly harmless carriers such as images, audio, and video. This [...] Read more.
Ensuring the security and privacy of confidential data during transmission is a critical challenge, necessitating advanced techniques to protect against unwarranted disclosures. Steganography, a concealment technique, enables secret information to be embedded in seemingly harmless carriers such as images, audio, and video. This work proposes two secure audio steganography models based on the least significant bit (LSB) and discrete wavelet transform (DWT) techniques for concealing different types of multimedia data (i.e., text, image, and audio) in audio files, representing an enhancement of current research that tends to focus on embedding a single type of multimedia data. The first model (secured model (1)) focuses on high embedding capacity, while the second model (secured model (2)) focuses on improved security. The performance of the two proposed secure models was tested under various conditions. The models’ robustness was greatly enhanced using convolutional encoding with binary phase shift keying (BPSK). Experimental results indicated that the correlation coefficient (Cr) of the extracted secret audio in secured model (1) increased by 18.88% and by 16.18% in secured model (2) compared to existing methods. In addition, the Cr of the extracted secret image in secured model (1) was improved by 0.1% compared to existing methods. The peak signal-to-noise ratio (PSNR) of the steganography audio of secured model (1) was improved by 49.95% and 14.44% compared to secured model (2) and previous work, respectively. Furthermore, both models were evaluated in an orthogonal frequency division multiplexing (OFDM) system over various wireless channels, i.e., Additive White Gaussian Noise (AWGN), fading, and SUI-6 channels. In order to enhance the system performance, OFDM was combined with differential phase shift keying (DPSK) modulation and convolutional coding. The results demonstrate that secured model (1) is highly immune to noise generated by wireless channels and is the optimum technique for secure audio steganography on noisy communication channels. Full article
Show Figures

Figure 1

19 pages, 4452 KB  
Article
A New Low PAPR Modulation Scheme for 6G: Offset Rotation Interpolation Modulation
by Yu Xin, Jian Hua and Guanghui Yu
Electronics 2025, 14(20), 4031; https://doi.org/10.3390/electronics14204031 - 14 Oct 2025
Viewed by 700
Abstract
The article proposes a novel modulation scheme with a low peak-to-average ratio (PAPR), referred to as offset rotation interpolation modulation (ORIM), which is particularly suitable for low-power consumption and enhanced coverage scenarios in the sixth generation (6G) of wireless communication. ORIM comprises three [...] Read more.
The article proposes a novel modulation scheme with a low peak-to-average ratio (PAPR), referred to as offset rotation interpolation modulation (ORIM), which is particularly suitable for low-power consumption and enhanced coverage scenarios in the sixth generation (6G) of wireless communication. ORIM comprises three modulation schemes: I-QPSK, I-BPSK, and I-π/2 BPSK. They are derived from cyclic offsetting, phase rotation, and interpolation, and applied to QPSK, BPSK, and π/2 BPSK, respectively. Simulation results in discrete Fourier transform-spread-orthogonal frequency division multiplexing (DFT-s-OFDM) systems demonstrate that ORIM achieves a lower peak-to-average power ratio (PAPR) than the π/2-BPSK scheme specified in the 5G New Radio (NR) protocol, without incurring any performance degradation in terms of block error rate (BLER). Moreover, with the addition of frequency domain spectrum shaping (FDSS), I-π/2 BPSK demonstrates superior performance over π/2-BPSK in both PAPR and BLER metrics under the TDL-A channel conditions. In addition, the complexity of modulation at the transmitting end or demodulation at the receiving end of ORIM is of the same order of magnitude as that of π/2 BPSK, thereby achieving a certain level of overall performance improvement. Full article
Show Figures

Figure 1

28 pages, 1078 KB  
Article
Performance Analysis of OCDM in ISAC Scenario
by Pengfei Xu, Mao Li, Tao Zhan, Fengkui Gong, Yue Xiao and Xia Lei
Sensors 2025, 25(17), 5481; https://doi.org/10.3390/s25175481 - 3 Sep 2025
Viewed by 1100
Abstract
The rapid evolution of communication systems, exemplified by the Internet of Things (IoT), demands increasingly stringent reliability in both communication and sensing. While Orthogonal Frequency Division Multiplexing (OFDM) struggles to meet the challenges posed by complex scenarios, Orthogonal Chirp Division Multiplexing (OCDM) has [...] Read more.
The rapid evolution of communication systems, exemplified by the Internet of Things (IoT), demands increasingly stringent reliability in both communication and sensing. While Orthogonal Frequency Division Multiplexing (OFDM) struggles to meet the challenges posed by complex scenarios, Orthogonal Chirp Division Multiplexing (OCDM) has gained attention for its robustness and spectral efficiency in Integrated Sensing and Communication (ISAC) systems. However, its sensing mechanism remains insufficiently explored. This paper presents a theoretical analysis of the communication and sensing performance of OCDM waveforms within the ISAC framework. Specifically, a closed-form BER expression under equalization is derived, alongside the ambiguity function and detection performance evaluation under matched filter (MF) and Generalized Likelihood Ratio Test (GLRT) detectors with a constant false alarm rate (CFAR) criterion. Simulation results demonstrate that OCDM offers comparable sensing performance to OFDM while achieving superior communication robustness in complex environments. Full article
(This article belongs to the Special Issue Feature Papers in Communications Section 2025–2026)
Show Figures

Figure 1

17 pages, 2946 KB  
Article
Generalized Frequency Division Multiplexing—Based Direct Mapping—Multiple-Input Multiple-Output Mobile Electroencephalography Communication Technique
by Chin-Feng Lin and Kun-Yu Chen
Appl. Sci. 2025, 15(17), 9451; https://doi.org/10.3390/app15179451 - 28 Aug 2025
Viewed by 690
Abstract
Electroencephalography (EEG) communication technology with ultra-low power consumption, high transmission data rates, and low latency plays a significant role in mHealth, telemedicine, and Internet of Medical Things (IoMT). In this paper, generalized frequency division multiplexing (GFDM)-based direct mapping (DM) multi-input—multi-output (MIMO) mobile EEG [...] Read more.
Electroencephalography (EEG) communication technology with ultra-low power consumption, high transmission data rates, and low latency plays a significant role in mHealth, telemedicine, and Internet of Medical Things (IoMT). In this paper, generalized frequency division multiplexing (GFDM)-based direct mapping (DM) multi-input—multi-output (MIMO) mobile EEG communication technology (MECT) is proposed for implementation with the above-mentioned applications. The (2000, 1000) low-density parity-check (LDPC) code, four-quadrature amplitude modulation (4-QAM), a power assignment mechanism, and the 3rd Generation Partnership Project (3GPP) cluster delay line (CDL) channel model D were integrated into the proposed EEGCT. The transmission bit error rates (BERs), mean square errors (MSEs), and Pearson-correlation coefficients (PCCs) of the original and received EEG signals were evaluated. Simulation results show that, with a signal to noise ratio (SNR) of 14.51 dB, with a channel estimation error (CEE) of 5%, the BER, MSE, and PCC of the original and received EEG signals were 9.9777 × 10−8, 1.440 × 10−5 and 0.999999998, respectively, whereas, with an SNR of 15.0004 dB and a CEE of 10%, they were 9.9777 × 10−8, 1.4368 × 10−5, and 0.999999997622151, respectively. As the BER value, and PS saving are 9.9777 × 10−8, and 40%, respectively. With the CEE changes from 0% to 5%, and 5% to 10%, the N0 values of the proposed MECT decrease by approximately 0.0022 and 0.002, respectively. The MECT has excellent EEG signal transmission performance. Full article
(This article belongs to the Special Issue Communication Technology for Smart Mobility Systems)
Show Figures

Figure 1

16 pages, 1205 KB  
Article
Design and Simulation of Cross-Medium Two-Hop Relaying Free-Space Optical Communication System Based on Multiple Diversity and Multiplexing Technologies
by Min Guo, Pengxiang Wang and Yan Wu
Photonics 2025, 12(9), 867; https://doi.org/10.3390/photonics12090867 - 28 Aug 2025
Viewed by 1029
Abstract
To address the issues of link mismatch and channel impairment in wireless optical communication across atmospheric-oceanic media, this paper proposes a two-hop relay transmission architecture based on the multiple-input multiple-output (MIMO)-enhanced multi-level hybrid multiplexing. The system implements decode-and-forward operations via maritime buoy/ship relays, [...] Read more.
To address the issues of link mismatch and channel impairment in wireless optical communication across atmospheric-oceanic media, this paper proposes a two-hop relay transmission architecture based on the multiple-input multiple-output (MIMO)-enhanced multi-level hybrid multiplexing. The system implements decode-and-forward operations via maritime buoy/ship relays, achieving physical layer isolation between atmospheric and oceanic channels. The transmitter employs coherent orthogonal frequency division multiplexing technology with quadrature amplitude modulation to achieve frequency division multiplexing of baseband signals, combines with orthogonal polarization modulation to generate polarization-multiplexed signal beams, and finally realizes multi-dimensional signal transmission through MIMO spatial diversity. To cope with cross-medium environmental interference, a composite channel model is established, which includes atmospheric turbulence (Gamma–Gamma model), rain attenuation, and oceanic chlorophyll absorption and scattering effects. Simulation results show that the multi-level hybrid multiplexing method can significantly improve the data transmission rate of the system. Since the system adopts three channels of polarization-state data, the data transmission rate is increased by 200%; the two-hop relay method can effectively improve the communication performance of cross-medium optical communication and fundamentally solve the problem of light transmission in cross-medium planes; the use of MIMO technology has a compensating effect on the impacts of both atmospheric and marine environments, and as the number of light beams increases, the system performance can be further improved. This research provides technical implementation schemes and reference data for the design of high-capacity optical communication systems across air-sea media. Full article
(This article belongs to the Special Issue Emerging Technologies for 6G Space Optical Communication Networks)
Show Figures

Figure 1

27 pages, 3770 KB  
Article
Precision Time Interval Generator Based on CMOS Counters and Integration with IoT Timing Systems
by Nebojša Andrijević, Zoran Lovreković, Vladan Radivojević, Svetlana Živković Radeta and Hadžib Salkić
Electronics 2025, 14(16), 3201; https://doi.org/10.3390/electronics14163201 - 12 Aug 2025
Viewed by 1797
Abstract
Precise time interval generation is a cornerstone of modern measurement, automation, and distributed control systems, particularly within Internet of Things (IoT) architectures. This paper presents the design, implementation, and evaluation of a low-cost and high-precision time interval generator based on Complementary Metal-Oxide Semiconductor [...] Read more.
Precise time interval generation is a cornerstone of modern measurement, automation, and distributed control systems, particularly within Internet of Things (IoT) architectures. This paper presents the design, implementation, and evaluation of a low-cost and high-precision time interval generator based on Complementary Metal-Oxide Semiconductor (CMOS) logic counters (Integrated Circuit (IC) IC 7493 and IC 4017) and inverter-based crystal oscillators (IC 74LS04). The proposed system enables frequency division from 1 MHz down to 1 Hz through a cascade of binary and Johnson counters, enhanced with digitally controlled multiplexers for output signal selection. Unlike conventional timing systems relying on expensive Field-Programmable Gate Array (FPGA) or Global Navigation Satellite System (GNSS)-based synchronization, this approach offers a robust, locally controlled reference clock suitable for IoT nodes without network access. The hardware is integrated with Arduino and ESP32 microcontrollers via General-Purpose Input/Output (GPIO) level interfacing, supporting real-time timestamping, deterministic task execution, and microsecond-level synchronization. The system was validated through Python-based simulations incorporating Gaussian jitter models, as well as real-time experimental measurements using Arduino’s micros() function. Results demonstrated stable pulse generation with timing deviations consistently below ±3 µs across various frequency modes. A comparative analysis confirms the advantages of this CMOS-based timing solution over Real-Time Clock (RTC), Network Time Protocol (NTP), and Global Positioning System (GPS)-based methods in terms of local autonomy, cost, and integration simplicity. This work provides a practical and scalable time reference architecture for educational, industrial, and distributed applications, establishing a new bridge between classical digital circuit design and modern Internet of Things (IoT) timing requirements. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

13 pages, 2005 KB  
Article
Automatic Classification of 5G Waveform-Modulated Signals Using Deep Residual Networks
by Haithem Ben Chikha, Alaa Alaerjan and Randa Jabeur
Sensors 2025, 25(15), 4682; https://doi.org/10.3390/s25154682 - 29 Jul 2025
Cited by 2 | Viewed by 1185
Abstract
Modulation identification plays a crucial role in contemporary wireless communication systems, especially within 5G and future-generation networks that utilize a variety of multicarrier waveforms. This study introduces an innovative algorithm for automatic modulation classification (AMC) built on a deep residual network (DRN) architecture. [...] Read more.
Modulation identification plays a crucial role in contemporary wireless communication systems, especially within 5G and future-generation networks that utilize a variety of multicarrier waveforms. This study introduces an innovative algorithm for automatic modulation classification (AMC) built on a deep residual network (DRN) architecture. The approach is tailored to accurately identify advanced 5G waveform types such as Orthogonal Frequency-Division Multiplexing (OFDM), Filtered OFDM (FOFDM), Filter Bank Multicarrier (FBMC), Universal Filtered Multicarrier (UFMC), and Weighted Overlap and Add OFDM (WOLA), using both 16-QAM and 64-QAM modulation schemes. To our knowledge, this is the first application of deep learning in the classification of such a diverse set of complex 5G waveforms. The proposed model combines the deep learning capabilities of DRNs for feature extraction with Principal Component Analysis (PCA) for dimensionality reduction and feature refinement. A detailed performance evaluation is conducted using metrics like classification recall, precision, accuracy, and F-measure. When compared with traditional machine learning approaches reported in recent studies, our DRN-based method shows significantly improved classification accuracy and robustness. These results highlight the effectiveness of deep residual networks in improving adaptive signal processing and enabling automatic modulation recognition in future wireless communication technologies. Full article
(This article belongs to the Special Issue AI-Based 5G/6G Communications)
Show Figures

Figure 1

20 pages, 1609 KB  
Article
Research on Networking Protocols for Large-Scale Mobile Ultraviolet Communication Networks
by Leitao Wang, Zhiyong Xu, Jingyuan Wang, Jiyong Zhao, Yang Su, Cheng Li and Jianhua Li
Photonics 2025, 12(7), 710; https://doi.org/10.3390/photonics12070710 - 14 Jul 2025
Cited by 1 | Viewed by 621
Abstract
Ultraviolet (UV) communication, characterized by non-line-of-sight (NLOS) scattering, holds substantial potential for enabling communication networking in unmanned aerial vehicle (UAV) formations within strong electromagnetic interference environments. This paper proposes a networking protocol for large-scale mobile ultraviolet communication networks (LSM-UVCN). In large-scale networks, the [...] Read more.
Ultraviolet (UV) communication, characterized by non-line-of-sight (NLOS) scattering, holds substantial potential for enabling communication networking in unmanned aerial vehicle (UAV) formations within strong electromagnetic interference environments. This paper proposes a networking protocol for large-scale mobile ultraviolet communication networks (LSM-UVCN). In large-scale networks, the proposed protocol establishes multiple non-interfering transmission paths based on a connection matrix simultaneously, ensuring reliable space division multiplexing (SDM) and optimizing the utilization of network channel resources. To address frequent network topology changes in mobile scenarios, the protocol employs periodic maintenance of the connection matrix, significantly reducing the adverse impacts of node mobility on network performance. Simulation results demonstrate that the proposed protocol achieves superior performance in large-scale mobile UV communication networks. By dynamically adjusting the connection matrix update frequency, it adapts to varying node mobility intensities, effectively minimizing control overhead and data loss rates while enhancing network throughput. This work underscores the protocol’s adaptability to dynamic network environments, providing a robust solution for high-reliability communication requirements in complex electromagnetic scenarios, particularly for UAV swarm applications. The integration of SDM and adaptive matrix maintenance highlights its scalability and efficiency, positioning it as a viable technology for next-generation wireless communication systems in challenging operational conditions. Full article
(This article belongs to the Special Issue Free-Space Optical Communication and Networking Technology)
Show Figures

Figure 1

14 pages, 1981 KB  
Article
A Sparse Bayesian Technique to Learn the Frequency-Domain Active Regressors in OFDM Wireless Systems
by Carlos Crespo-Cadenas, María José Madero-Ayora, Juan A. Becerra, Elías Marqués-Valderrama and Sergio Cruces
Sensors 2025, 25(14), 4266; https://doi.org/10.3390/s25144266 - 9 Jul 2025
Viewed by 648
Abstract
Digital predistortion and nonlinear behavioral modeling of power amplifiers (PA) have been the subject of intensive research in the time domain (TD), in contrast with the limited number of works conducted in the frequency domain (FD). However, the adoption of orthogonal frequency division [...] Read more.
Digital predistortion and nonlinear behavioral modeling of power amplifiers (PA) have been the subject of intensive research in the time domain (TD), in contrast with the limited number of works conducted in the frequency domain (FD). However, the adoption of orthogonal frequency division multiplexing (OFDM) as a prevalent modulation scheme in current wireless communication standards provides a promising avenue for employing an FD approach. In this work, a procedure to model nonlinear distortion in wireless OFDM systems in the frequency domain is demonstrated for general model structures based on a sparse Bayesian learning (SBL) algorithm to identify a reduced set of regressors capable of an efficient and accurate prediction. The FD-SBL algorithm is proposed to first identify the active FD regressors and estimate the coefficients of the PA model using a given symbol, and then, the coefficients are employed to predict the distortion of successive OFDM symbols. The performance of this proposed FD-SBL with a validation NMSE of 47 dB for a signal of 30 MHz bandwidth is comparable to 46.6 dB of the previously proposed implementation of the TD-SBL. In terms of execution time, the TD-SBL fails due to excessive processing time and numerical problems for a 100 MHz bandwidth signal, whereas the FD-SBL yields an adequate validation NMSE of −38.6 dB. Full article
Show Figures

Figure 1

Back to TopTop