Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = gemykibivirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1774 KB  
Article
Transcriptome Analysis Reveals Gemykibivirus Infection Induces Mitochondrial DNA Release in HEK293T Cells
by Runbo Yang, Hao Yan, Yifan Wang, Wenqing Yang and Jianru Qin
Viruses 2025, 17(10), 1331; https://doi.org/10.3390/v17101331 - 30 Sep 2025
Viewed by 999
Abstract
Gemykibivirus, an emerging single-stranded DNA (ssDNA) virus of the recently established genus in the family of Genomoviridae, had been discovered in human blood and cerebrospinal fluid and a variety of other body fluids. However, the molecular mechanisms of gemykibivirus entrance into the host [...] Read more.
Gemykibivirus, an emerging single-stranded DNA (ssDNA) virus of the recently established genus in the family of Genomoviridae, had been discovered in human blood and cerebrospinal fluid and a variety of other body fluids. However, the molecular mechanisms of gemykibivirus entrance into the host cells and its pathogenicity remain poorly understood. To investigate the host response of gemykibivirus, we used an infectious clone of gemykibivirus previously established through molecular biology techniques to rescue virus in HEK293T cells and analyzed the changes in the host transcriptome during the infection period by RNA-Seq. Our findings indicate that gemykibivirus can both express viral proteins and accomplish replication, and high-throughput transcriptome analysis identified a total 1732 significantly different genes. Functional enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for differentially expressed genes (DEGs) showed gemykibivirus involving several important pathways, including MAPK signaling pathway, Chemical carcinogenesis-reactive oxygen species and Oxidative phosphorylation. Interestingly, mitochondrial DNA-encoded mRNAs exhibited varying levels of upregulation, suggesting that gemykibivirus may be involved in mitochondrial fission and the regulation of mitochondrial function. Subsequently, a series of experiments proved that gemykibivirus can lead an increase in mitochondrial DNA copy number, promote the release of mtDNA into the cytoplasm, enhance reactive oxygen species production and trigger other cellular antiviral responses. Overall, we lay a foundation for revealing the relationship between Gemykibivirus and human diseases through mitochondrial functional alterations. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

20 pages, 1967 KB  
Article
Metagenomic Analysis of the Gastrointestinal Phageome and Incorporated Dysbiosis in Children with Persistent Diarrhea of Unknown Etiology in Vietnam
by Trong Khoa Dao, Thi Thanh Nga Pham, Hong Duong Nguyen, Quang Trung Dam, Thi Bich Thuy Phung, Thi Viet Ha Nguyen, Thi Quy Nguyen, Kim Chi Hoang and Thi Huyen Do
Pathogens 2025, 14(10), 985; https://doi.org/10.3390/pathogens14100985 - 29 Sep 2025
Cited by 1 | Viewed by 1020
Abstract
Persistent diarrhea of unknown etiology in children under 2 years of age is a common problem and poses a major challenge for the health sector. However, knowledge of the composition and dysbiosis of the intestinal phageome, phage-associated bacteriome in the persistent diarrhea remains [...] Read more.
Persistent diarrhea of unknown etiology in children under 2 years of age is a common problem and poses a major challenge for the health sector. However, knowledge of the composition and dysbiosis of the intestinal phageome, phage-associated bacteriome in the persistent diarrhea remains limited. In this study, a process for phage enrichment and metagenomic extraction was developed and applied to recover gut phage metagenomes from 30 healthy children and 30 children with persistent diarrhea for high-throughput sequencing. Taxonomic annotation using Kraken2 revealed that, besides Norwalk virus, Primate bocaparvovirus 1 and Human-associated gemykibivirus 2, phage communities in the diarrhea group showed reduced diversity and contained sample-dependent phages targeting Salmonella enterica, Enterobacter, Shigella flexneri, Clostridioides difficile, Pseudomonas aeruginosa, Streptococcus miti, uropathogenic Escherichia coli and functioned balancing bacterial communities. Bacterial fraction in the metagenomic datasets reflected clear patterns of dysbiosis, including a severe deficiency of beneficial bacteria, an increase in Firmicutes, a marked decline in Actinobacteria, Bacteroidetes, Proteobacteria and sample-dependent enrichment of Enterococcus, Escherichia and Acinetobacter in diarrhea cases. This study, for the first time, investigated the dynamics of gut phageome, phage-associated bacteriome in children with persistent diarrhea of unknown causes in Vietnam, providing new insight for complementary treatment. Full article
Show Figures

Figure 1

13 pages, 2406 KB  
Article
Genomoviruses in Liver Samples of Molossus molossus Bats
by Roseane da Silva Couto, Wandercleyson Uchôa Abreu, Luís Reginaldo Ribeiro Rodrigues, Luis Fernando Marinho, Vanessa dos Santos Morais, Fabiola Villanova, Ramendra Pati Pandey, Xutao Deng, Eric Delwart, Antonio Charlys da Costa and Elcio Leal
Microorganisms 2024, 12(4), 688; https://doi.org/10.3390/microorganisms12040688 - 29 Mar 2024
Cited by 1 | Viewed by 2182
Abstract
CRESS-DNA encompasses a broad spectrum of viruses documented across diverse organisms such as animals, plants, diatoms, fungi, and marine invertebrates. Despite this prevalence, the full extent of these viruses’ impact on the environment and their respective hosts remains incompletely understood. Furthermore, an increasing [...] Read more.
CRESS-DNA encompasses a broad spectrum of viruses documented across diverse organisms such as animals, plants, diatoms, fungi, and marine invertebrates. Despite this prevalence, the full extent of these viruses’ impact on the environment and their respective hosts remains incompletely understood. Furthermore, an increasing number of viruses within this category lack detailed characterization. This investigation focuses on unveiling and characterizing viruses affiliated with the Genomoviridae family identified in liver samples from the bat Molossus molossus. Leveraging viral metagenomics, we identified seven sequences (MmGmV-PA) featuring a circular DNA genome housing two ORFs encoding replication-associated protein (Rep) and capsid protein (Cap). Predictions based on conserved domains typical of the Genomoviridae family were established. Phylogenetic analysis revealed the segregation of these sequences into two clades aligning with the genera Gemycirculavirus (MmGmV-06-PA and MmGmV-07-PA) and Gemykibivirus (MmGmV-01-PA, MmGmV-02-PA, MmGmV-03-PA, MmGmV-05-PA, and MmGmV-09-PA). At the species level, pairwise comparisons based on complete nucleotide sequences indicated the potential existence of three novel species. In summary, our study significantly contributes to an enhanced understanding of the diversity of Genomoviridae within bat samples, shedding light on previously undiscovered viral entities and their potential ecological implications. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

28 pages, 4725 KB  
Article
Metagenomic Analysis of Viromes of Aedes Mosquitoes across India
by Abhranil Gangopadhayya, Kavita Lole, Onkar Ghuge, Ashwini Ramdasi, Asmita Kamble, Diya Roy, Shivani Thakar, Amol Nath, AB Sudeep and Sarah Cherian
Viruses 2024, 16(1), 109; https://doi.org/10.3390/v16010109 - 12 Jan 2024
Cited by 8 | Viewed by 4326
Abstract
Metagenomic analysis of Aedes aegypti and Ae. albopictus mosquitoes from diverse geographical regions of India revealed the presence of several insect viruses of human interest. Most abundant reads found in Ae. aegypti mosquitoes were of Phasi Charoen-like virus (PCLV), Choristoneura fumiferana granulovirus (CfGV), [...] Read more.
Metagenomic analysis of Aedes aegypti and Ae. albopictus mosquitoes from diverse geographical regions of India revealed the presence of several insect viruses of human interest. Most abundant reads found in Ae. aegypti mosquitoes were of Phasi Charoen-like virus (PCLV), Choristoneura fumiferana granulovirus (CfGV), Cell fusing agent virus (CFAV), and Wenzhou sobemo-like virus 4 (WSLV4), whereas WSLV4 and CfGV constituted the highest percentage of reads in Ae. albopictus viromes. Other reads that were of low percentage included Hubei mosquito virus 2 (HMV2), Porcine astrovirus 4 (PAstV4), and Wild Boar astrovirus (WBAstV). PCLV and CFAV, which were found to be abundant in Ae. aegypti viromes were absent in Ae. albopictus viromes. Among the viromes analyzed, Ae. aegypti sampled from Pune showed the highest percentage (79.82%) of viral reads, while Ae. aegypti mosquitoes sampled from Dibrugarh showed the lowest percentage (3.47%). Shamonda orthobunyavirus (SHAV), African swine fever virus (ASFV), Aroa virus (AROAV), and Ilheus virus (ILHV), having the potential to infect vertebrates, including humans, were also detected in both mosquito species, albeit with low read numbers. Reads of gemykibivirus, avian retrovirus, bacteriophages, herpesviruses, and viruses infecting protozoans, algae, etc., were also detected in the mosquitoes. A high percentage of reads in the Ae. albopictus mosquito samples belonged to unclassified viruses and warrant further investigation. The data generated in the present work may not only lead to studies to explain the influence of these viruses on the replication and transmission of viruses of clinical importance but also to find applications as biocontrol agents against pathogenic viruses. Full article
(This article belongs to the Special Issue Insect-Specific Viruses 2.0)
Show Figures

Figure 1

17 pages, 647 KB  
Article
Unbiased Virus Detection in a Danish Zoo Using a Portable Metagenomic Sequencing System
by Anna S. Fomsgaard, Stamatios A. Tahas, Katja Spiess, Charlotta Polacek, Jannik Fonager and Graham J. Belsham
Viruses 2023, 15(6), 1399; https://doi.org/10.3390/v15061399 - 20 Jun 2023
Cited by 5 | Viewed by 3871
Abstract
Metagenomic next-generation sequencing (mNGS) is receiving increased attention for the detection of new viruses and infections occurring at the human–animal interface. The ability to actively transport and relocate this technology enables in situ virus identification, which could reduce response time and enhance disease [...] Read more.
Metagenomic next-generation sequencing (mNGS) is receiving increased attention for the detection of new viruses and infections occurring at the human–animal interface. The ability to actively transport and relocate this technology enables in situ virus identification, which could reduce response time and enhance disease management. In a previous study, we developed a straightforward mNGS procedure that greatly enhances the detection of RNA and DNA viruses in human clinical samples. In this study, we improved the mNGS protocol with transportable battery-driven equipment for the portable, non-targeted detection of RNA and DNA viruses in animals from a large zoological facility, to simulate a field setting for point-of-incidence virus detection. From the resulting metagenomic data, we detected 13 vertebrate viruses from four major virus groups: (+)ssRNA, (+)ssRNA-RT, dsDNA and (+)ssDNA, including avian leukosis virus in domestic chickens (Gallus gallus), enzootic nasal tumour virus in goats (Capra hircus) and several small, circular, Rep-encoding, ssDNA (CRESS DNA) viruses in several mammal species. More significantly, we demonstrate that the mNGS method is able to detect potentially lethal animal viruses, such as elephant endotheliotropic herpesvirus in Asian elephants (Elephas maximus) and the newly described human-associated gemykibivirus 2, a human-to-animal cross-species virus, in a Linnaeus two-toed sloth (Choloepus didactylus) and its enclosure, for the first time. Full article
(This article belongs to the Special Issue Applications of Next-Generation Sequencing in Virus Discovery 2.0)
Show Figures

Figure 1

16 pages, 4647 KB  
Article
First Insights into the Occurrence of Circular Single-Stranded DNA Genomes in Asian and African Cattle
by Marie-Thérèse König, Kai Frölich, Anabell Jandowsky, Tobias Knauf-Witzens, Christoph Langner, Richard Dietrich, Erwin Märtlbauer and Andrea Didier
Animals 2023, 13(9), 1492; https://doi.org/10.3390/ani13091492 - 27 Apr 2023
Cited by 4 | Viewed by 2329
Abstract
Circular replicase-encoding single-stranded (CRESS) DNA viruses and other circular DNA agents are increasingly found in various samples and animals. A specific class of these agents—termed bovine meat and milk factors (BMMF)—has been supposed to act as a factor in indirect carcinogenesis in humans. [...] Read more.
Circular replicase-encoding single-stranded (CRESS) DNA viruses and other circular DNA agents are increasingly found in various samples and animals. A specific class of these agents—termed bovine meat and milk factors (BMMF)—has been supposed to act as a factor in indirect carcinogenesis in humans. Initial observations attributed the BMMF to European cattle breeds and foodstuffs produced thereof. In the present study, blood and fecal samples from African and Asian cattle were examined. BMMF molecules and genomoviruses were detected in all bovids under study. The majority (79%) of the 29 circular elements could be assigned to BMMF groups 1 and 2, whereas CRESS viruses of the family Genomoviridae accounted for the smaller part (21%). Two genomoviruses belong to the genus Gemykibivirus and one to the genus Gemykrogvirus. The remaining three might be considered as novel species within the genus Gemycircularvirus. The majority of all isolated molecules originated from fecal samples, whereas only three derived from blood. The results from this study expand our knowledge on the diversity and presence of circular DNA in different ruminants that serve for food production in many countries over the world. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

23 pages, 1872 KB  
Article
A Preliminary Study of the Virome of the South American Free-Tailed Bats (Tadarida brasiliensis) and Identification of Two Novel Mammalian Viruses
by Elisa M. Bolatti, Tomaž M. Zorec, María E. Montani, Lea Hošnjak, Diego Chouhy, Gastón Viarengo, Pablo E. Casal, Rubén M. Barquez, Mario Poljak and Adriana A. Giri
Viruses 2020, 12(4), 422; https://doi.org/10.3390/v12040422 - 9 Apr 2020
Cited by 26 | Viewed by 7119
Abstract
Bats provide important ecosystem services as pollinators, seed dispersers, and/or insect controllers, but they have also been found harboring different viruses with zoonotic potential. Virome studies in bats distributed in Asia, Africa, Europe, and North America have increased dramatically over the past decade, [...] Read more.
Bats provide important ecosystem services as pollinators, seed dispersers, and/or insect controllers, but they have also been found harboring different viruses with zoonotic potential. Virome studies in bats distributed in Asia, Africa, Europe, and North America have increased dramatically over the past decade, whereas information on viruses infecting South American species is scarce. We explored the virome of Tadarida brasiliensis, an insectivorous New World bat species inhabiting a maternity colony in Rosario (Argentina), by a metagenomic approach. The analysis of five pooled oral/anal swab samples indicated the presence of 43 different taxonomic viral families infecting a wide range of hosts. By conventional nucleic acid detection techniques and/or bioinformatics approaches, the genomes of two novel viruses were completely covered clustering into the Papillomaviridae (Tadarida brasiliensis papillomavirus type 1, TbraPV1) and Genomoviridae (Tadarida brasiliensis gemykibivirus 1, TbGkyV1) families. TbraPV1 is the first papillomavirus type identified in this host and the prototype of a novel genus. TbGkyV1 is the first genomovirus reported in New World bats and constitutes a new species within the genus Gemykibivirus. Our findings extend the knowledge about oral/anal viromes of a South American bat species and contribute to understand the evolution and genetic diversity of the novel characterized viruses. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop