Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = gait cycle index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 246 KiB  
Article
Wearable Sensor Assessment of Gait Characteristics in Individuals Awaiting Total Knee Arthroplasty: A Cross-Sectional, Observational Study
by Elina Gianzina, Christos K. Yiannakopoulos, Elias Armenis and Efstathios Chronopoulos
J. Funct. Morphol. Kinesiol. 2025, 10(3), 288; https://doi.org/10.3390/jfmk10030288 - 28 Jul 2025
Viewed by 160
Abstract
Background: Gait impairments are common in individuals with knee osteoarthritis awaiting total knee arthroplasty, affecting their mobility and quality of life. This study aimed to assess and compare biomechanical gait features between individuals awaiting total knee arthroplasty and healthy, non-arthritic controls, focusing on [...] Read more.
Background: Gait impairments are common in individuals with knee osteoarthritis awaiting total knee arthroplasty, affecting their mobility and quality of life. This study aimed to assess and compare biomechanical gait features between individuals awaiting total knee arthroplasty and healthy, non-arthritic controls, focusing on less-explored variables using sensor-based measurements. Methods: A cross-sectional observational study was conducted with 60 participants: 21 individuals awaiting total knee arthroplasty and 39 nonarthritic controls aged 64–85 years. Participants completed a standardized 14 m walk, and 17 biomechanical gait parameters were measured using the BTS G-Walk inertial sensor. Key variables, such as stride duration, cadence, symmetry indices, and pelvic angles, were analyzed for group differences. Results: The pre-total knee arthroplasty group exhibited significantly longer gait cycles and stride durations (p < 0.001), reduced cadence (p < 0.001), and lower gait cycle symmetry index (p < 0.001) than the control group. The pelvic angle symmetry indices for tilt (p = 0.014), rotation (p = 0.002), and obliquity (p < 0.001) were also lower. Additionally, the pre-total knee arthroplasty group had lower propulsion indices for both legs (p < 0.001) and a lower walking quality index on the right leg (p = 0.005). The number of elaborated steps was significantly greater in the pre-total knee arthroplasty group (left, p < 0.001, right: p < 0.001). No significant differences were observed in any other gait parameters. Conclusions: This study revealed significant gait impairment in individuals awaiting total knee arthroplasty. Although direct evidence for prehabilitation is lacking, future research should explore whether targeted approaches, such as strengthening exercises or gait retraining, can improve gait and functional outcomes before surgery. Full article
14 pages, 985 KiB  
Article
Forefoot Centre of Pressure Patterns in Black Male African Recreational Runners with Pes Planus
by Jodie Dickson, Glen James Paton and Yaasirah Mohomed Choonara
J. Funct. Morphol. Kinesiol. 2025, 10(3), 273; https://doi.org/10.3390/jfmk10030273 - 16 Jul 2025
Viewed by 220
Abstract
Background: Pes planus is a condition where the arch of the foot collapses, resulting in the entire sole contacting the ground. The biomechanical implications of pes planus on gait have been widely studied; however, research specific to Black African populations, particularly recreational runners, [...] Read more.
Background: Pes planus is a condition where the arch of the foot collapses, resulting in the entire sole contacting the ground. The biomechanical implications of pes planus on gait have been widely studied; however, research specific to Black African populations, particularly recreational runners, is scarce. Aim: This study aimed to describe the forefoot centre of pressure (CoP) trajectory during the barefoot gait cycle among Black African recreational runners with pes planus. Methods: A prospective explorative and quantitative study design was employed. Participants included Black African male recreational runners aged 18 to 45 years diagnosed with pes planus. A Freemed™ 6050 force plate was used to collect gait data. Statistical analysis included cross-tabulations to identify patterns. Results: This study included 104 male participants across seven weight categories, with the majority in the 70-to-79 kg range (34.6%, n = 36). Most participants with pes planus showed a neutral foot posture (74.0%, n = 77) on the foot posture index 6 (FPI-6) scale. Flexible pes planus (94.2%, n = 98) was much more common than rigid pes planus (5.8%, n = 6). Lateral displacement of the CoP was observed in the right forefoot (90.4%, n = 94) and left forefoot (57.7%, n = 60). Load distribution patterns differed between feet, with the right foot favouring the medial heel, arch, and metatarsal heads, while the left foot favoured the lateral heel, medial heel, and lateral arch. No statistical significance was found in the cross-tabulations, but notable lateral CoP displacement in the forefoot was observed. Conclusions: The findings challenge the traditional view of pes planus causing overpronation and highlight the need for clinicians to reconsider standard diagnostic and management approaches. Further research is needed to explore the implications of these findings for injury prevention and management in this population. Full article
(This article belongs to the Special Issue Biomechanical Analysis in Physical Activity and Sports—2nd Edition)
Show Figures

Figure 1

20 pages, 3627 KiB  
Article
Biotribological Wear Prediction of Alumina–Polymer Hip Prostheses Using Finite Element Analysis
by Mhd Ayham Darwich, Hasan Mhd Nazha, Hiba Mohsen Ghadir and Ahmad Salamah
Appl. Mech. 2025, 6(3), 46; https://doi.org/10.3390/applmech6030046 - 24 Jun 2025
Viewed by 500
Abstract
This study investigates the biotribological performance of alumina–UHMWPE and alumina–PEEK hip implant couples through finite element simulation (ANSYS v24) and statistical inference (STATA v17). During gait cycle loading simulations, significant disparity in wear behaviour was observed. Alumina–UHMWPE demonstrated superior mechanical resistance, with a [...] Read more.
This study investigates the biotribological performance of alumina–UHMWPE and alumina–PEEK hip implant couples through finite element simulation (ANSYS v24) and statistical inference (STATA v17). During gait cycle loading simulations, significant disparity in wear behaviour was observed. Alumina–UHMWPE demonstrated superior mechanical resistance, with a wear volume of 0.18481 mm3 and a wear depth of 6.93 × 10−4 mm compared to alumina–PEEK, which registered higher wear (volume: 8.4006 mm3; depth: 3.15 × 10−2 mm). Wear distribution analysis indicated alumina–UHMWPE showed an even wear pattern in comparison to the poor, uneven alumina-PEEK high-wear patterns. Statistical comparison validated these findings, wherein alumina–UHMWPE achieved a 27.60 hip joint wear index (HCI) value, which is better than that of alumina–PEEK (35.85 HCI), particularly regarding key parameters like wear depth and volume. This computational–statistical model yields a baseline design for biomaterial choice, demonstrating the potential clinical superiority of alumina–UHMWPE in reducing implant failure risk. While this is a simulation study lacking experimental validation, the results pave the way for experimental and clinical studies for further verification and refinement. The approach enables hip arthroplasty design optimization with maximal efficiency and minimal resource-intensive testing. Full article
(This article belongs to the Collection Fracture, Fatigue, and Wear)
Show Figures

Figure 1

14 pages, 1379 KiB  
Article
Evaluation of Muscle Synergy Flexibility Induced by a Muscle Nerve Block in Chronic Stroke Patients
by Anthony Supiot, Nicolas Roche, Bastien Berret and Didier Pradon
Biomechanics 2025, 5(2), 27; https://doi.org/10.3390/biomechanics5020027 - 1 May 2025
Viewed by 724
Abstract
Background: Drug treatments for gait disorders in post-stroke patients aim to reduce muscular hyperactivity. The analysis of muscle activity is essential to help clinicians understand these disorders. This study aimed to quantify changes in muscle synergies before (PRE) and after (POST) a rectus [...] Read more.
Background: Drug treatments for gait disorders in post-stroke patients aim to reduce muscular hyperactivity. The analysis of muscle activity is essential to help clinicians understand these disorders. This study aimed to quantify changes in muscle synergies before (PRE) and after (POST) a rectus femoris nerve block. Methods: Gait analysis of 8 post-stroke patients before and immediately after nerve block. Muscle synergies were quantified from electromyographic signals. We have selected the account for variance, which indicates the effectiveness of the synergies, the recruitment selectivity index, which indicates the degree of multiplexing of the synergies, and the recruitment consistency index, which indicates the variability of the synergy activations across gait cycles. Results: A decrease in Variance Account For (VAF) is observed, showing a lack of robustness of the underlying muscle synergies between PRE and POST. We also note that spatial and temporal primitives result in different Index of Recruitment Selectivity (IRS) but similar Index of Recruitment Consistency (IRC) for PRE vs. POST. This shows that the synergies’ activations remain consistent across cycles but are more distributed in POST than in PRE. Conclusions: The motor nerve block has not created new muscle synergies of the paretic limb during gait but indicates that there is flexibility in motor organization. This method of quantification may enable clinicians to assess the motor adaptation potential of their post-stroke patients. Full article
(This article belongs to the Section Neuromechanics)
Show Figures

Figure 1

13 pages, 1011 KiB  
Article
Gender-Based Differences in Biomechanical Walking Patterns of Athletes Using Inertial Sensors
by Elina Gianzina, Christos K. Yiannakopoulos, Georgios Kalinterakis, Spilios Delis and Efstathios Chronopoulos
J. Funct. Morphol. Kinesiol. 2025, 10(1), 82; https://doi.org/10.3390/jfmk10010082 - 27 Feb 2025
Cited by 2 | Viewed by 879
Abstract
Background: Wearable inertial sensors are essential tools in biomechanics and sports science for assessing gait in real-world conditions. This study explored gender-based differences in biomechanical walking patterns among healthy Greek athletes using the BTS G-Walk system, focusing on key gait parameters to [...] Read more.
Background: Wearable inertial sensors are essential tools in biomechanics and sports science for assessing gait in real-world conditions. This study explored gender-based differences in biomechanical walking patterns among healthy Greek athletes using the BTS G-Walk system, focusing on key gait parameters to inform gender-specific training and rehabilitation strategies. Methods: Ninety-five healthy athletes (55 men, 40 women), aged 18 to 30 years, participated in this study. Each athlete performed a standardized 14 m walk while 17 biomechanical gait parameters were recorded using the BTS G-Walk inertial sensor. Statistical analyses were conducted using SPSS to assess gender differences and left–right foot symmetry. Results: No significant asymmetry was found between the left and right feet for most gait parameters. Men exhibited longer stride lengths (left: p = 0.005, Cohen’s d = 0.61; right: p = 0.009, Cohen’s d = 0.53) and longer stride and gait cycle durations (left: p = 0.025, Cohen’s d = 0.52; right: p = 0.025, Cohen’s d = 0.53). Women showed a higher cadence (p = 0.022, Cohen’s d = −0.52) and greater propulsion index (left: p = 0.001, Cohen’s d = −0.71; right: p = 0.001, Cohen’s d = −0.73), as well as a higher percentage of first double support (p = 0.030, Cohen’s d = −0.44). Conclusions: These findings highlight the impact of biological and biomechanical differences on walking patterns, emphasizing the need for gender-specific training and rehabilitation. The BTS G-Walk system proved reliable for gait analysis, with potential for optimizing performance, injury prevention, and rehabilitation in athletes. Future research should explore larger, more diverse populations with multi-sensor setups. Full article
(This article belongs to the Special Issue Gait Analysis in Athletes)
Show Figures

Figure 1

15 pages, 2885 KiB  
Article
Effect of Ankle-Foot Orthosis on Paretic Gastrocnemius and Tibialis Anterior Muscle Contraction of Stroke Survivors During Walking: A Pilot Study
by Wei Liu, Hui-Dong Wu, Yu-Ying Li, Ringo Tang-Long Zhu, Yu-Yan Luo, Yan To Ling, Li-Ke Wang, Jian-Fa Wang, Yong-Ping Zheng and Christina Zong-Hao Ma
Biosensors 2024, 14(12), 595; https://doi.org/10.3390/bios14120595 - 4 Dec 2024
Cited by 1 | Viewed by 1829
Abstract
Ankle-foot orthoses (AFOs) have been commonly prescribed for stroke survivors with foot drop, but their impact on the contractions of paretic tibialis anterior (TA) and medial gastrocnemius (MG) has remained inconclusive. This study thus investigated the effect of AFOs on these muscle contractions [...] Read more.
Ankle-foot orthoses (AFOs) have been commonly prescribed for stroke survivors with foot drop, but their impact on the contractions of paretic tibialis anterior (TA) and medial gastrocnemius (MG) has remained inconclusive. This study thus investigated the effect of AFOs on these muscle contractions in stroke survivors. The contractions of paretic TA and MG muscles were assessed in twenty stroke patients and compared between walking with and without AFOs, using a novel wearable dynamic ultrasound imaging and sensing system. The study found an increase in TA muscle thickness throughout a gait cycle (p > 0.05) and a significant increase in TA muscle surface mechanomyography (sMMG) signals during the pre- and initial swing phases (p < 0.05) when using an AFO. MG muscle thickness generally decreased with the AFO (p > 0.05), aligning more closely with trends seen in healthy adults. The MG surface electromyography (sEMG) signal significantly decreased during the initial and mid-swing phases when wearing an AFO (p < 0.05). The TA-MG co-contraction index significantly decreased during initial and mid-swing phases with the AFO (p < 0.05). These results suggest that AFOs positively influenced the contraction patterns of paretic ankle muscles during walking in stroke patients, but further research is needed to understand their long-term effects. Full article
(This article belongs to the Special Issue Advances in Wearable Biosensors for Healthcare Monitoring)
Show Figures

Figure 1

15 pages, 999 KiB  
Article
Phasor-Based Myoelectric Synergy Features: A Fast Hand-Crafted Feature Extraction Scheme for Boosting Performance in Gait Phase Recognition
by Andrea Tigrini, Rami Mobarak, Alessandro Mengarelli, Rami N. Khushaba, Ali H. Al-Timemy, Federica Verdini, Ennio Gambi, Sandro Fioretti and Laura Burattini
Sensors 2024, 24(17), 5828; https://doi.org/10.3390/s24175828 - 8 Sep 2024
Cited by 15 | Viewed by 1788
Abstract
Gait phase recognition systems based on surface electromyographic signals (EMGs) are crucial for developing advanced myoelectric control schemes that enhance the interaction between humans and lower limb assistive devices. However, machine learning models used in this context, such as Linear Discriminant Analysis (LDA) [...] Read more.
Gait phase recognition systems based on surface electromyographic signals (EMGs) are crucial for developing advanced myoelectric control schemes that enhance the interaction between humans and lower limb assistive devices. However, machine learning models used in this context, such as Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM), typically experience performance degradation when modeling the gait cycle with more than just stance and swing phases. This study introduces a generalized phasor-based feature extraction approach (PHASOR) that captures spatial myoelectric features to improve the performance of LDA and SVM in gait phase recognition. A publicly available dataset of 40 subjects was used to evaluate PHASOR against state-of-the-art feature sets in a five-phase gait recognition problem. Additionally, fully data-driven deep learning architectures, such as Rocket and Mini-Rocket, were included for comparison. The separability index (SI) and mean semi-principal axis (MSA) analyses showed mean SI and MSA metrics of 7.7 and 0.5, respectively, indicating the proposed approach’s ability to effectively decode gait phases through EMG activity. The SVM classifier demonstrated the highest accuracy of 82% using a five-fold leave-one-trial-out testing approach, outperforming Rocket and Mini-Rocket. This study confirms that in gait phase recognition based on EMG signals, novel and efficient muscle synergy information feature extraction schemes, such as PHASOR, can compete with deep learning approaches that require greater processing time for feature extraction and classification. Full article
Show Figures

Figure 1

14 pages, 2597 KiB  
Article
Effects of Technique Asymmetry on 500 m Speed Skating Performance
by Zimeng Liu, Meilin Ding, Masen Zhang, Bing Yu and Hui Liu
Bioengineering 2024, 11(9), 899; https://doi.org/10.3390/bioengineering11090899 - 7 Sep 2024
Cited by 1 | Viewed by 1610
Abstract
This study aimed to determine the effects of technique asymmetry on 500 m straight-track speed skating performance. We analyzed 20 elite skaters, measuring their joint angles, center of mass shift, and times and speeds during the gliding and push-off phases. The technique asymmetry [...] Read more.
This study aimed to determine the effects of technique asymmetry on 500 m straight-track speed skating performance. We analyzed 20 elite skaters, measuring their joint angles, center of mass shift, and times and speeds during the gliding and push-off phases. The technique asymmetry index (ASI) was calculated for each parameter, and paired t-tests were used to compare bilateral asymmetry. Spearman correlation coefficients assessed the relationship between the ASI and both the average straight track speed and overall performance. Significant bilateral asymmetries in the knee, push-off, trunk, and hip angles were found in both male and female participants (p < 0.05). The male participants demonstrated a higher right push-off speed (p = 0.029) and a longer left gliding time (p = 0.048). Significant asymmetry was also observed in the lateral shift of the center of mass during each phase of the straight-track skating gait cycle (p < 0.001). No significant correlation was found between the ASIs and the overall performance (p ≥ 0.067). These findings indicate that while elite speed skaters demonstrated significant bilateral technique asymmetry in straight track skating, these asymmetries did not significantly impact their overall performance. Full article
(This article belongs to the Special Issue Biomechanics and Motion Analysis)
Show Figures

Graphical abstract

14 pages, 2700 KiB  
Communication
Clinical Effect Analysis of Wearable Sensor Technology-Based Gait Function Analysis in Post-Transcranial Magnetic Stimulation Stroke Patients
by Litong Wang, Likai Wang, Zhan Wang, Fei Gao, Jingyi Wu and Hong Tang
Sensors 2024, 24(10), 3051; https://doi.org/10.3390/s24103051 - 11 May 2024
Cited by 4 | Viewed by 2311
Abstract
(1) Background: This study evaluates the effectiveness of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) in improving gait in post-stroke hemiplegic patients, using wearable sensor technology for objective gait analysis. (2) Methods: A total of 72 stroke patients were randomized into control, sham stimulation, [...] Read more.
(1) Background: This study evaluates the effectiveness of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) in improving gait in post-stroke hemiplegic patients, using wearable sensor technology for objective gait analysis. (2) Methods: A total of 72 stroke patients were randomized into control, sham stimulation, and LF-rTMS groups, with all receiving standard medical treatment. The LF-rTMS group underwent stimulation on the unaffected hemisphere for 6 weeks. Key metrics including the Fugl-Meyer Assessment Lower Extremity (FMA-LE), Berg Balance Scale (BBS), Modified Barthel Index (MBI), and gait parameters were measured before and after treatment. (3) Results: The LF-rTMS group showed significant improvements in the FMA-LE, BBS, MBI, and various gait parameters compared to the control and sham groups (p < 0.05). Specifically, the FMA-LE scores improved by an average of 5 points (from 15 ± 3 to 20 ± 2), the BBS scores increased by 8 points (from 35 ± 5 to 43 ± 4), the MBI scores rose by 10 points (from 50 ± 8 to 60 ± 7), and notable enhancements in gait parameters were observed: the gait cycle time was reduced from 2.05 ± 0.51 s to 1.02 ± 0.11 s, the stride length increased from 0.56 ± 0.04 m to 0.97 ± 0.08 m, and the walking speed improved from 35.95 ± 7.14 cm/s to 75.03 ± 11.36 cm/s (all p < 0.001). No adverse events were reported. The control and sham groups exhibited improvements but were not as significant. (4) Conclusions: LF-rTMS on the unaffected hemisphere significantly enhances lower-limb function, balance, and daily living activities in subacute stroke patients, with the gait parameters showing a notable improvement. Wearable sensor technology proves effective in providing detailed, objective gait analysis, offering valuable insights for clinical applications in stroke rehabilitation. Full article
(This article belongs to the Special Issue Novel Wearable Sensors and Digital Applications)
Show Figures

Figure 1

10 pages, 2922 KiB  
Article
A Comparison of Dynamic Gait Stability between the Young and Elderly Female Populations Using the Zero-Moment Point Method
by Sang Kuy Han, Jeong-Bae Ko, Yeonwoo Yu, Jae-Soo Hong, Jei-Cheong Ryu, Ki Kwang Lee and Sung-Jae Kang
Electronics 2024, 13(1), 135; https://doi.org/10.3390/electronics13010135 - 28 Dec 2023
Cited by 1 | Viewed by 1469
Abstract
A compromised stability in the elderly population is considered a major factor for fall risk assessment. The dynamic stability of human gait with various mathematical metrics has been extensively studied to find a prediction index and fall prevention strategies that can be embedded [...] Read more.
A compromised stability in the elderly population is considered a major factor for fall risk assessment. The dynamic stability of human gait with various mathematical metrics has been extensively studied to find a prediction index and fall prevention strategies that can be embedded in a wearable monitoring sensor. In this study, the zero-moment point method (ZMP) was utilized for analyzing the gait stability of young and elderly female populations. Participants in the young and elderly female groups with no musculoskeletal disorders and fall experience were asked to walk at a habitual speed on 10 m flat ground. Dynamic instability is defined by the percentage of the ZMP values that fall outside the base of support during one gait cycle. The ZMP trajectory between the left and right leg swing was not symmetrical considering flat-ground walking. Also, there was no statistical difference in the dynamic stability in the anterior–posterior direction (71.3 ± 7.9% for the young group and 73.6 ± 7.6% for the elderly group), but walking in the medial–lateral direction was more stable in the elderly group (53.9 ± 8.6%) than in the young group (44.1 ± 11.2%) because the habitual walking speed decreased in the elderly group. Full article
Show Figures

Figure 1

11 pages, 805 KiB  
Article
Gait Variability at Different Walking Speeds
by Johnny Padulo, Susanna Rampichini, Marta Borrelli, Daniel Maria Buono, Christian Doria and Fabio Esposito
J. Funct. Morphol. Kinesiol. 2023, 8(4), 158; https://doi.org/10.3390/jfmk8040158 - 8 Nov 2023
Cited by 7 | Viewed by 4384
Abstract
Gait variability (GV) is a crucial measure of inconsistency of muscular activities or body segmental movements during repeated tasks. Hence, GV might serve as a relevant and sensitive measure to quantify adjustments of walking control. However, it has not been clarified whether GV [...] Read more.
Gait variability (GV) is a crucial measure of inconsistency of muscular activities or body segmental movements during repeated tasks. Hence, GV might serve as a relevant and sensitive measure to quantify adjustments of walking control. However, it has not been clarified whether GV is associated with walking speed, a clarification needed to exploit effective better bilateral coordination level. For this aim, fourteen male students (age 22.4 ± 2.7 years, body mass 74.9 ± 6.8 kg, and body height 1.78 ± 0.05 m) took part in this study. After three days of walking 1 km each day at a self-selected speed (SS) on asphalt with an Apple Watch S. 7 (AppleTM, Cupertino, CA, USA), the participants were randomly evaluated on a treadmill at three different walking speed intensities for 10 min at each one, SS − 20%/SS + 20%/ SS, with 5 min of passive recovery in-between. Heart rate (HR) was monitored and normalized as %HRmax, while the rate of perceived exertion (RPE) (CR-10 scale) was asked after each trial. Kinematic analysis was performed, assessing the Contact Time (CT), Swing Time (ST), Stride Length (SL), Stride Cycle (SC), and Gait Variability as Phase Coordination Index (PCI). RPE and HR increased as the walking speed increased (p = 0.005 and p = 0.035, respectively). CT and SC decreased as the speed increased (p = 0.0001 and p = 0.013, respectively), while ST remained unchanged (p = 0.277). SL increased with higher walking speed (p = 0.0001). Conversely, PCI was 3.81 ± 0.88% (high variability) at 3.96 ± 0.47 km·h−1, 2.64 ± 0.75% (low variability) at SS (4.94 ± 0.58 km·h−1), and 3.36 ± 1.09% (high variability) at 5.94 ± 0.70 km·h−1 (p = 0.001). These results indicate that while the metabolic demand and kinematics variables change linearly with increasing speed, the most effective GV was observed at SS. Therefore, SS could be a new methodological approach to choose the individual walking speed, normalize the speed intensity, and avoid a gait pattern alteration. Full article
(This article belongs to the Special Issue Biomechanics and Neuromuscular Control of Gait and Posture)
Show Figures

Graphical abstract

11 pages, 991 KiB  
Article
Leveraging Multivariable Linear Regression Analysis to Identify Patients with Anterior Cruciate Ligament Deficiency Using a Composite Index of the Knee Flexion and Muscle Force
by Haoran Li, Hongshi Huang, Shuang Ren and Qiguo Rong
Bioengineering 2023, 10(3), 284; https://doi.org/10.3390/bioengineering10030284 - 22 Feb 2023
Cited by 3 | Viewed by 2192
Abstract
Patients with anterior cruciate ligament (ACL) deficiency (ACLD) tend to have altered lower extremity kinematics and dynamics. Clinical diagnosis of ACLD requires more objective and convenient evaluation criteria. Twenty-five patients with ACLD before ACL reconstruction and nine healthy volunteers were recruited. Five experimental [...] Read more.
Patients with anterior cruciate ligament (ACL) deficiency (ACLD) tend to have altered lower extremity kinematics and dynamics. Clinical diagnosis of ACLD requires more objective and convenient evaluation criteria. Twenty-five patients with ACLD before ACL reconstruction and nine healthy volunteers were recruited. Five experimental jogging data sets of each participant were collected and calculated using a musculoskeletal model. The resulting knee flexion and muscle force data were analyzed using a t-test for characteristic points, which were the time points in the gait cycle when the most significant difference between the two groups was observed. The data of the characteristic points were processed with principal component analysis to generate a composite index for multivariable linear regression. The accuracy rate of the regression model in diagnosing patients with ACLD was 81.4%. This study demonstrates that the multivariable linear regression model and composite index can be used to diagnose patients with ACLD. The composite index and characteristic points can be clinically objective and can be used to extract effective information quickly and conveniently. Full article
(This article belongs to the Special Issue Biomechanics-Based Motion Analysis)
Show Figures

Graphical abstract

20 pages, 1100 KiB  
Systematic Review
Evidence of High-Intensity Exercise on Lower Limb Functional Outcomes and Safety in Acute and Subacute Stroke Population: A Systematic Review
by Shi Min Mah, Alicia M. Goodwill, Hui Chueng Seow and Wei-Peng Teo
Int. J. Environ. Res. Public Health 2023, 20(1), 153; https://doi.org/10.3390/ijerph20010153 - 22 Dec 2022
Cited by 13 | Viewed by 6459
Abstract
This systematic review investigated the effects of high-intensity exercise (HIE) on lower limb (LL) function in acute and subacute stroke patients. A systematic electronic search was performed in PubMed, CINAHL and the Web of Science from inception to 30 June 2022. Outcomes examined [...] Read more.
This systematic review investigated the effects of high-intensity exercise (HIE) on lower limb (LL) function in acute and subacute stroke patients. A systematic electronic search was performed in PubMed, CINAHL and the Web of Science from inception to 30 June 2022. Outcomes examined included LL function and measures of activities of daily living such as the Barthel index, 6 min walk test (6MWT), gait speed and Berg balance scale (BBS), adverse events and safety outcomes. The methodological quality and the quality of evidence for each study was assessed using the PEDro scale and the Risk of Bias 2 tool (RoB 2). HIE was defined as achieving at least 60% of the heart rate reserve (HRR) or VO2 peak, 70% of maximal heart rate (HRmax), or attaining a score of 14 or more on the rate of perceived exertion Borg scale (6–20 rating scale). This study included randomized controlled trials (RCTs) which compared an intervention group of HIE to a control group of lower intensity exercise, or no intervention. All participants were in the acute (0–3 months) and subacute (3–6 months) stages of stroke recovery. Studies were excluded if they were not RCTs, included participants from a different stage of stroke recovery, or if the intervention did not meet the pre-defined HIE criteria. Overall, seven studies were included that used either high-intensity treadmill walking, stepping, cycling or overground walking exercises compared to either a low-intensity exercise (n = 4) or passive control condition (n = 3). Three studies reported significant improvements in 6MWT and gait speed performance, while only one showed improved BBS scores. No major adverse events were reported, although minor incidents were reported in only one study. This systematic review showed that HIE improved LL functional task performance, namely the 6MWT and gait speed. Previously, there was limited research demonstrating the efficacy of HIE early after stroke. This systematic review provides evidence that HIE may improve LL function with no significant adverse events report for stroke patients in their acute and subacute rehabilitation stages. Hence, HIE should be considered for implementation in this population, taking into account the possible benefits in terms of functional outcomes, as compared to lower intensity interventions. Full article
Show Figures

Figure 1

18 pages, 723 KiB  
Review
Characteristics and Future Direction of Tibialis Posterior Tendinopathy Research: A Scoping Review
by Hye Chang Rhim, Ravi Dhawan, Ashley E. Gureck, Daniel E. Lieberman, David C. Nolan, Ramy Elshafey and Adam S. Tenforde
Medicina 2022, 58(12), 1858; https://doi.org/10.3390/medicina58121858 - 16 Dec 2022
Cited by 10 | Viewed by 7004
Abstract
Background and Objectives: Tibialis posterior tendon pathologies have been traditionally categorized into different stages of posterior tibial tendon dysfunction (PTTD), or adult acquired flatfoot deformity (AAFD), and more recently to progressive collapsing foot deformity (PCFD). The purpose of this scoping review is [...] Read more.
Background and Objectives: Tibialis posterior tendon pathologies have been traditionally categorized into different stages of posterior tibial tendon dysfunction (PTTD), or adult acquired flatfoot deformity (AAFD), and more recently to progressive collapsing foot deformity (PCFD). The purpose of this scoping review is to synthesize and characterize literature on early stages of PTTD (previously known as Stage I and II), which we will describe as tibialis posterior tendinopathy (TPT). We aim to identify what is known about TPT, identify gaps in knowledge on the topics of TPT, and propose future research direction. Materials and Methods: We included 44 studies and categorized them into epidemiology, diagnosis, evaluation, biomechanics outcome measure, imaging, and nonsurgical treatment. Results: A majority of studies (86.4%, 38 of 44 studies) recruited patients with mean or median ages greater than 40. For studies that reported body mass index (BMI) of the patients, 81.5% had mean or median BMI meeting criteria for being overweight. All but two papers described study populations as predominantly or entirely female gender. Biomechanical studies characterized findings associated with TPT to include increased forefoot abduction and rearfoot eversion during gait cycle, weak hip and ankle performance, and poor balance. Research on non-surgical treatment focused on orthotics with evidence mostly limited to observational studies. The optimal exercise regimen for the management of TPT remains unclear due to the limited number of high-quality studies. Conclusions: More epidemiological studies from diverse patient populations are necessary to better understand prevalence, incidence, and risk factors for TPT. The lack of high-quality studies investigating nonsurgical treatment options is concerning because, regardless of coexisting foot deformity, the initial treatment for TPT is typically conservative. Additional studies comparing various exercise programs may help identify optimal exercise therapy, and investigation into further nonsurgical treatments is needed to optimize the management for TPT. Full article
(This article belongs to the Special Issue Orthopedic Surgeries in Sports Medicine)
Show Figures

Figure 1

19 pages, 5307 KiB  
Article
Analysis of Kinematic Characteristics of Saanen Goat Spine under Multi-Slope
by Fu Zhang, Xiahua Cui, Shunqing Wang, Haoxuan Sun, Jiajia Wang, Xinyue Wang, Sanling Fu and Zhijun Guo
Biomimetics 2022, 7(4), 181; https://doi.org/10.3390/biomimetics7040181 - 28 Oct 2022
Cited by 4 | Viewed by 3116
Abstract
In order to improve the slope movement stability and flexibility of quadruped robot, a theoretical design method of a flexible spine of a robot that was based on bionics was proposed. The kinematic characteristics of the spine were analyzed under different slopes with [...] Read more.
In order to improve the slope movement stability and flexibility of quadruped robot, a theoretical design method of a flexible spine of a robot that was based on bionics was proposed. The kinematic characteristics of the spine were analyzed under different slopes with a Saanen goat as the research object. A Qualisys track manager (QTM) gait analysis system was used to obtain the trunk movement of goats under multiple slopes, and linear time normalization (LTN) was used to calibrate and match typical gait cycles to characterize the goat locomotion gait under slopes. Firstly, the spatial angle changes of cervical thoracic vertebrae, thoracolumbar vertebrae, and lumbar vertebrae were compared and analyzed under 0°, 5°, 10°, and 15° slopes, and it was found that the rigid and flexible coupling structure between the thoraco–lumbar vertebrae played an obvious role when moving on the slope. Moreover, with the increase in slope, the movement of the spine changed to the coupling movement of thoraco–lumbar coordination movement and a flexible swing of lumbar vertebrae. Then, the Gaussian mixture model (GMM) clustering algorithm was used to analyze the changes of the thoraco–lumbar vertebrae and lumbar vertebrae in different directions. Combined with anatomical knowledge, it was found that the motion of the thoraco–lumbar vertebrae and lumbar vertebrae in the goat was mainly manifested as a left–right swing in the coronal plane. Finally, on the basis of the analysis of the maximin and variation range of the thoraco–lumbar vertebrae and lumbar vertebrae in the coronal plane, it was found that the coupling motion of the thoraco–lumbar cooperative motion and flexible swing of the lumbar vertebrae at the slope of 10° had the most significant effect on the motion stability. SSE, R2, adjusted-R2, and RMSE were used as evaluation indexes, and the general equations of the spatial fitting curve of the goat spine were obtained by curve fitting of Matlab software. Finally, Origin software was used to obtain the optimal fitting spatial equations under eight movements of the goat spine with SSE and adjusted-R2 as indexes. The research will provide an idea for the bionic spine design with variable stiffness and multi-direction flexible bending, as well as a theoretical reference for the torso design of a bionic quadruped robot. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

Back to TopTop