Leveraging Multivariable Linear Regression Analysis to Identify Patients with Anterior Cruciate Ligament Deficiency Using a Composite Index of the Knee Flexion and Muscle Force
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection and Modeling Analysis
2.3. Muscle Data Processing
2.4. Extracting Features
- Collect an m × n matrix G, where m is the sample size and n is the n-dimensional variable.
- Subtract the respective mean from each variable.
- Compute the covariance matrix of the de-averaged matrix.
- Calculate the eigenvalues and eigenvectors of the covariance matrix by singular value decomposition.
- Sort the eigenvalues from large to small, and select the largest k eigenvalues among them. In this study, the ratio of selected eigenvalues to the sum of all eigenvalues was used to assess the information content. Arrange the eigenvectors in the same order as the eigenvalues to form a matrix of principal component coefficients (PCcoeff).
- Transform the data into a new space, i.e., the new data samples = G × PCcoeff. The first k columns are the required features.
2.5. Composite Index
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanamori, A.; Zeminski, J.; Rudy, T.W.; Li, G.; Fu, F.H.; Woo, S.L.-Y. The effect of axial tibial torque on the function of the anterior cruciate ligament: A biomechanical study of a simulated pivot shift test. Arthrosc. J. Arthrosc. Relat. Surg. 2002, 18, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Sakane, M.; Woo, S.L.-Y.; Hildebrand, K.A.; Fox, R.J. The contribution of the anterior cruciate ligament to knee joint kinematics: Evaluation of its in situ forces using a robot/universal force-moment sensor test system. J. Orthop. Sci. 1996, 1, 335–347. [Google Scholar] [CrossRef]
- Zajac, F.E. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 1989, 17, 359–411. [Google Scholar]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [Green Version]
- Damsgaard, M.; Rasmussen, J.; Christensen, S.T.; Surma, E.; de Zee, M. Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul. Model. Pract. Theory 2006, 14, 1100–1111. [Google Scholar] [CrossRef]
- Berchuck, M.; Andriacchi, T.P.; Bach, B.R.; Reider, B. Gait adaptations by patients who have a deficient anterior cruciate ligament. JBJS 1990, 72, 871–877. [Google Scholar] [CrossRef]
- Shelburne, K.B.; Torry, M.R.; Pandy, M.G. Effect of Muscle Compensation on Knee Instability during ACL-Deficient Gait. Med. Sci. Sports Exerc. 2005, 37, 642–648. [Google Scholar] [CrossRef]
- Hurd, W.J.; Snyder-Mackler, L. Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait. J. Orthop. Res. 2007, 25, 1369–1377. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, W.-H.; Yao, Z.; Ma, L.; Lin, Z.; Wang, S.; Huang, H. Anterior Cruciate Ligament Injuries Alter the Kinematics of Knees with or without Meniscal Deficiency. Am. J. Sports Med. 2016, 44, 3132–3139. [Google Scholar] [CrossRef]
- Ren, S.; Yu, Y.; Shi, H.; Miao, X.; Jiang, Y.; Liang, Z.; Hu, X.; Huang, H.; Ao, Y. Three dimensional knee kinematics and kinetics in ACL-deficient patients with and without medial meniscus posterior horn tear during level walking. Gait Posture 2018, 66, 26–31. [Google Scholar] [CrossRef]
- Yin, W.; Ren, S.; Huang, H.; Yu, Y.; Liang, Z.; Ao, Y.; Rong, Q. Dynamical Characteristics of Anterior Cruciate Ligament Deficiency Combined Meniscus Injury Knees. In Advanced Computational Methods in Life System Modeling and Simulation; Springer: Singapore, 2017; pp. 132–139. [Google Scholar]
- Barenius, B.; Ponzer, S.; Shalabi, A.; Bujak, R.; Norlén, L.; Eriksson, K. Increased Risk of Osteoarthritis After Anterior Cruciate Ligament Reconstruction: A 14-year follow-up study of a randomized controlled trial. Am. J. Sports Med. 2014, 42, 1049–1057. [Google Scholar] [CrossRef]
- Wellsandt, E.; Gardinier, E.S.; Manal, K.; Axe, M.J.; Buchanan, T.S.; Snyder-Mackler, L. Decreased Knee Joint Loading Associated with Early Knee Osteoarthritis After Anterior Cruciate Ligament Injury. Am. J. Sports Med. 2016, 44, 143–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makihara, Y.; Nishino, A.; Fukubayashi, T.; Kanamori, A. Decrease of knee flexion torque in patients with ACL reconstruction: Combined analysis of the architecture and function of the knee flexor muscles. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Smeets, A.; Willems, M.; Gilson, L.; Verschueren, S.; Staes, F.; Vandenneucker, H.; Claes, S.; Vanrenterghem, J. Neuromuscular and biomechanical landing alterations persist in athletes returning to sport after anterior cruciate ligament reconstruction. Knee 2021, 33, 305–317. [Google Scholar] [CrossRef]
- Christian, J.; Kröll, J.; Strutzenberger, G.; Alexander, N.; Ofner, M.; Schwameder, H. Computer aided analysis of gait patterns in patients with acute anterior cruciate ligament injury. Clin. Biomech. 2016, 33, 55–60. [Google Scholar] [CrossRef]
- Berruto, M.; Uboldi, F.; Gala, L.; Marelli, B.; Albisetti, W. Is triaxial accelerometer reliable in the evaluation and grading of knee pivot-shift phenomenon? Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 981–985. [Google Scholar] [CrossRef]
- Zeng, W.; Ismail, S.A.; Pappas, E. Classification of gait patterns in patients with unilateral anterior cruciate ligament deficiency based on phase space reconstruction, Euclidean distance and neural networks. Soft Comput. 2020, 24, 1851–1868. [Google Scholar] [CrossRef]
- Kokkotis, C.; Moustakidis, S.; Tsatalas, T.; Ntakolia, C.; Chalatsis, G.; Konstadakos, S.; Hantes, M.E.; Giakas, G.; Tsaopoulos, D. Leveraging explainable machine learning to identify gait biomechanical parameters associated with anterior cruciate ligament injury. Sci. Rep. 2022, 12, 6647. [Google Scholar] [CrossRef]
- Reinbolt, J.A.; Fox, M.D.; Schwartz, M.H.; Delp, S.L. Predicting outcomes of rectus femoris transfer surgery. Gait Posture 2009, 30, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Deluzio, K.; Astephen, J. Biomechanical features of gait waveform data associated with knee osteoarthritis: An application of principal component analysis. Gait Posture 2007, 25, 86–93. [Google Scholar] [CrossRef]
- Armstrong, D.P.; Pretty, S.P.; Weaver, T.B.; Fischer, S.L.; Laing, A.C. Application of Principal Component Analysis to Forward Reactive Stepping: Whole-body Movement Strategy Differs as a Function of Age and Sex. Gait Posture 2021, 89, 38–44. [Google Scholar] [CrossRef]
- Tingley, M.; Wilson, C.; Biden, E.; Knight, W. An index to quantify normality of gait in young children. Gait Posture 2002, 16, 149–158. [Google Scholar] [CrossRef]
- Leporace, G.; Batista, L.A.; Muniz, A.M.; Zeitoune, G.; Luciano, T.; Metsavaht, L.; Nadal, J. Classification of gait kinematics of anterior cruciate ligament reconstructed subjects using principal component analysis and regressions modelling. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 6514–6517. [Google Scholar] [CrossRef]
- Romei, M.; Galli, M.; Motta, F.; Schwartz, M.; Crivellini, M. Use of the normalcy index for the evaluation of gait pathology. Gait Posture 2004, 19, 85–90. [Google Scholar] [CrossRef]
- Schutte, L.M.; Narayanan, U.; Stout, J.L.; Selber, P.; Gage, J.R.; Schwartz, M.H. An index for quantifying deviations from normal gait. Gait Posture 2000, 11, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Shin, K.-Y.; Rim, Y.H.; Kim, Y.S.; Kim, H.S.; Han, J.W.; Choi, C.H.; Lee, K.S.; Mun, J.H. A joint normalcy index to evaluate patients with gait pathologies in the functional aspects of joint mobility. J. Mech. Sci. Technol. 2010, 24, 1901–1909. [Google Scholar] [CrossRef]
- Liu, X.; Huang, H.; Ren, S.; Rong, Q.; Ao, Y. Use of the normalcy index for the assessment of abnormal gait in the anterior cruciate ligament deficiency combined with meniscus injury. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 1102–1108. [Google Scholar] [CrossRef]
- Rozumalski, A.; Schwartz, M.H. Crouch gait patterns defined using k-means cluster analysis are related to underlying clinical pathology. Gait Posture 2009, 30, 155–160. [Google Scholar] [CrossRef]
- Hicks, J.L.; Delp, S.L.; Schwartz, M.H. Can biomechanical variables predict improvement in crouch gait? Gait Posture 2011, 34, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Zhang, D.; Jiang, Y.; Yang, J.; Feng, T.; Gong, X.; Wang, J.; Ao, Y. Translation, validation and cross-cultural adaptation of a simplified-Chinese version of the Tegner Activity Score in Chinese patients with anterior cruciate ligament injury. PLoS ONE 2016, 11, e0155463. [Google Scholar] [CrossRef] [Green Version]
- Théoret, D.; Lamontagne, M. Study on three-dimensional kinematics and electromyography of ACL deficient knee participants wearing a functional knee brace during running. Knee Surg. Sports Traumatol. Arthrosc. 2006, 14, 555–563. [Google Scholar] [CrossRef]
- Horsman, M.K.; Koopman, H.; van der Helm, F.; Prosé, L.P.; Veeger, H. Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. 2007, 22, 239–247. [Google Scholar] [CrossRef]
- Andersen, M.S.; Benoit, D.L.; Damsgaard, M.; Ramsey, D.K.; Rasmussen, J. Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. J. Biomech. 2010, 43, 268–273. [Google Scholar] [CrossRef]
- Marra, M.A.; Vanheule, V.; Fluit, R.; Koopman, B.H.F.J.M.; Rasmussen, J.; Verdonschot, N.; Andersen, M.S. A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty. J. Biomech. Eng. 2015, 137, 020904. [Google Scholar] [CrossRef]
- Crowninshield, R. Use of optimization techniques to predict muscle forces. J. Biomech. 1979, 12, 627. [Google Scholar] [CrossRef]
- Carbone, V.; Fluit, R.; Pellikaan, P.; van der Krogt, M.M.; Janssen, D.; Damsgaard, M.; Vigneron, L.; Feilkas, T.; Koopman, H.F.J.M.; Verdonschot, N. TLEM 2.0—A comprehensive musculoskeletal geometry dataset for subject-specific modeling of lower extremity. J. Biomech. 2015, 48, 734–741. [Google Scholar] [CrossRef] [Green Version]
- Carbone, V.; van der Krogt, M.M.; Koopman, H.F.; Verdonschot, N. Sensitivity of subject-specific models to Hill muscle–tendon model parameters in simulations of gait. J. Biomech. 2016, 49, 1953–1960. [Google Scholar] [CrossRef] [PubMed]
- Trinler, U.; Schwameder, H.; Baker, R.; Alexander, N. Muscle force estimation in clinical gait analysis using AnyBody and OpenSim. J. Biomech. 2019, 86, 55–63. [Google Scholar] [CrossRef]
- Andriacchi, T.P.; Dyrby, C.O. Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J. Biomech. 2005, 38, 293–298. [Google Scholar] [CrossRef]
- Hug, F.; Vogel, C.; Tucker, K.; Dorel, S.; Deschamps, T.; Le Carpentier, É.; Lacourpaille, L. Individuals have unique muscle activation signatures as revealed during gait and pedaling. J. Appl. Physiol. 2019, 127, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Maitland, M.E. The effect of hamstring muscle compensation for anterior laxity in the ACL-deficient knee during gait. J. Biomech. 2000, 33, 871–879. [Google Scholar] [CrossRef]
- Catalfamo, P.F.; Aguiar, G.; Curi, J.; Braidot, A. Anterior Cruciate Ligament Injury: Compensation during Gait using Hamstring Muscle Activity. Open Biomed. Eng. J. 2010, 4, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Lenhart, R.L.; Francis, C.A.; Lenz, A.L.; Thelen, D.G. Empirical evaluation of gastrocnemius and soleus function during walking. J. Biomech. 2014, 47, 2969–2974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granan, L.-P.; Inacio, M.C.; Maletis, G.B.; Funahashi, T.T.; Engebretsen, L. Sport-Specific Injury Pattern Recorded During Anterior Cruciate Ligament Reconstruction. Am. J. Sports Med. 2013, 41, 2814–2818. [Google Scholar] [CrossRef] [PubMed]
- Lenhart, R.L.; Thelen, D.G.; Wille, C.M.; Chumanov, E.S.; Heiderscheit, B.C. Increasing Running Step Rate Reduces Patellofemoral Joint Forces. Med. Sci. Sports Exerc. 2014, 46, 557–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Control | ACLD |
---|---|---|
Age (years) | 29.22 ± 5.61 | 27.20 ± 4.19 |
Height (cm) | 173.67 ± 1.95 | 178.36 ± 7.23 |
Weight (kg) | 74.06 ± 4.73 | 82.04 ± 11.55 |
BMI (kg/m2) | 24.56 ± 1.62 | 25.75 ± 2.93 |
Pace (m/s) | 2.32 ± 0.17 | 2.36 ± 0.25 |
Time since injury (months) | / | 11.10 ± 6.87 |
Tegner score | / | 4.16 ± 1.72 |
Number of Features | Use of the Composite Index Only | Accuracy | p Value for the t-Test of Regression Coefficients for the Composite Index |
---|---|---|---|
3 + 1 | No | 67.4% | 0.001 |
3 + 2 | No | 74.4% | 0.001 0.001 |
3 + 3 | No | 81.4% | 0.001 0.006 0.208 |
3 + 4 | No | 81.4% | 0.001 0.008 0.209 0.686 |
3 + 5 | No | 81.4% | 0.001 0.009 0.225 0.692 0.999 |
0 + 1 | Yes | 72.1% | 0.001 |
0 + 3 | Yes | 79.1% | 0.001 0.001 0.75 |
0 + 8 | Yes | 81.4% | 0.001 0.001 0.74 0.66 0.45 0.01 0.3 0.48 |
TP | FP | FN | TN | Accuracy | Precision | Recall | Specificity | F1-Score |
---|---|---|---|---|---|---|---|---|
20 | 3 | 5 | 15 | 81.4% | 87.0% | 80.0% | 83.3% | 83.3% |
Features | Coefficient | Standard Error of the Coefficients | p Value a |
---|---|---|---|
Constant | 0.1628 | 0.1113 | 0.152 |
Mean muscle force during the stance phase | 0.2384 | 0.1850 | 0.205 |
Average muscle force during the swing phase | −2.5339 | 0.1968 | 0.206 |
Knee flexion during the swing phase | 0.7346 | 0.5518 | 0.191 |
Composite Index 1 | −2.3055 | 0.5040 | <0.001 |
Composite Index 2 | −1.5697 | 0.5468 | 0.006 |
Composite Index 3 | 1. 2417 | 0.9698 | 0.208 |
RMSE | 0.73 | ||
R-squared | 0.542 | ||
p value b | <0.001 |
Features | ACLD Group | Control Group | ||
---|---|---|---|---|
Subject Value | Expected Improvement | Subject Value | Expected Improvement | |
Constant | 1 | 0.1628 | 1 | 0.1628 |
Mean muscle force during the stance phase | −0.1757 | −0.0419 | 0.2440 | 0.0582 |
Average muscle force during the swing phase | −0.0063 | 0.0160 | 0.0088 | −0.0223 |
Knee flexion during the swing phase | −0.0051 | −0.0037 | 0.0071 | 0.0052 |
Composite Index 1 | −0.1490 | 0.3435 | 0.2069 | −0.4771 |
Composite Index 2 | −0.0937 | 0.1470 | 0.1301 | −0.2042 |
Composite Index 3 | −0.0059 | −0.0073 | 0.0082 | 0.0102 |
Expected outcome | 0.6164 | −0.4672 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Huang, H.; Ren, S.; Rong, Q. Leveraging Multivariable Linear Regression Analysis to Identify Patients with Anterior Cruciate Ligament Deficiency Using a Composite Index of the Knee Flexion and Muscle Force. Bioengineering 2023, 10, 284. https://doi.org/10.3390/bioengineering10030284
Li H, Huang H, Ren S, Rong Q. Leveraging Multivariable Linear Regression Analysis to Identify Patients with Anterior Cruciate Ligament Deficiency Using a Composite Index of the Knee Flexion and Muscle Force. Bioengineering. 2023; 10(3):284. https://doi.org/10.3390/bioengineering10030284
Chicago/Turabian StyleLi, Haoran, Hongshi Huang, Shuang Ren, and Qiguo Rong. 2023. "Leveraging Multivariable Linear Regression Analysis to Identify Patients with Anterior Cruciate Ligament Deficiency Using a Composite Index of the Knee Flexion and Muscle Force" Bioengineering 10, no. 3: 284. https://doi.org/10.3390/bioengineering10030284
APA StyleLi, H., Huang, H., Ren, S., & Rong, Q. (2023). Leveraging Multivariable Linear Regression Analysis to Identify Patients with Anterior Cruciate Ligament Deficiency Using a Composite Index of the Knee Flexion and Muscle Force. Bioengineering, 10(3), 284. https://doi.org/10.3390/bioengineering10030284