Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (618)

Search Parameters:
Keywords = fuzzy logic adaptation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6905 KB  
Article
A Hybrid Fuzzy-PSO Framework for Multi-Objective Optimization of Stereolithography Process Parameters
by Mohanned M. H. AL-Khafaji, Abdulkader Ali Abdulkader Kadauw, Mustafa Mohammed Abdulrazaq, Hussein M. H. Al-Khafaji and Henning Zeidler
Micromachines 2025, 16(11), 1218; https://doi.org/10.3390/mi16111218 (registering DOI) - 26 Oct 2025
Abstract
Additive manufacturing is driving a significant change in industry, extending beyond prototyping to the inclusion of printed parts in final designs. Stereolithography (SLA) is a polymerization technique valued for producing highly detailed parts with smooth surface finishes. This study presents a hybrid intelligent [...] Read more.
Additive manufacturing is driving a significant change in industry, extending beyond prototyping to the inclusion of printed parts in final designs. Stereolithography (SLA) is a polymerization technique valued for producing highly detailed parts with smooth surface finishes. This study presents a hybrid intelligent framework for modeling and optimizing the SLA 3D printer process’s parameters for Acrylonitrile Butadiene Styrene (ABS) photopolymer parts. The nonlinear relationships between the process’s parameters (Orientation, Lifting Speed, Lifting Distance, Exposure Time) and multiple performance characteristics (ultimate tensile strength, yield strength, modulus of elasticity, Shore D hardness, and surface roughness), which represent complex relationships, were investigated. A Taguchi design of the experiment with an L18 orthogonal array was employed as an efficient experimental design. A novel hybrid fuzzy logic–Particle Swarm Optimization (PSO) algorithm, ARGOS (Adaptive Rule Generation with Optimized Structure), was developed to automatically generate high-accuracy Mamdani-type fuzzy inference systems (FISs) from experimental data. The algorithm starts by customizing Modified Learn From Example (MLFE) to create an initial FIS. Subsequently, the generated FIS is tuned using PSO to develop and enhance predictive accuracy. The ARGOS models provided excellent performances, achieving correlation coefficients (R2) exceeding 0.9999 for all five output responses. Once the FISs were tuned, a multi-objective optimization was carried out based on the weighted sum method. This step helped to identify a well-balanced set of parameters that optimizes the key qualities of the printed parts, ensuring that the results are not just mathematically ideal, but also genuinely helpful for real-world manufacturing. The results showed that the proposed hybrid approach is a robust and highly accurate method for the modeling and multi-objective optimization of the SLA 3D process. Full article
Show Figures

Figure 1

26 pages, 573 KB  
Article
Mutual V2I Multifactor Authentication Using PUFs in an Unsecure Multi-Hop Wi-Fi Environment
by Mohamed K. Elhadad and Fayez Gebali
Electronics 2025, 14(21), 4167; https://doi.org/10.3390/electronics14214167 (registering DOI) - 24 Oct 2025
Abstract
Secure authentication in vehicular ad hoc networks (VANETs) remains a fundamental challenge due to their dynamic topology, susceptibility to attacks, and scalability constraints in multi-hop communication. Existing approaches based on elliptic curve cryptography (ECC), blockchain, and fog computing have achieved partial success but [...] Read more.
Secure authentication in vehicular ad hoc networks (VANETs) remains a fundamental challenge due to their dynamic topology, susceptibility to attacks, and scalability constraints in multi-hop communication. Existing approaches based on elliptic curve cryptography (ECC), blockchain, and fog computing have achieved partial success but suffer from latency, resource overhead, and limited adaptability, leaving a gap for lightweight and hardware-rooted trust models. To address this, we propose a multi-hop mutual authentication protocol leveraging Physical Unclonable Functions (PUFs), which provide tamper-evident, device-specific responses for cryptographic key generation. Our design introduces a structured sequence of phases, including pre-deployment, registration, login, authentication, key establishment, and session maintenance, with optional multi-hop extension through relay vehicles. Unlike prior schemes, our protocol integrates fuzzy extractors for error tolerance, employs both inductive and game-based proofs for security guarantees, and maps BAN-logic reasoning to specific attack resistances, ensuring robustness against replay, impersonation, and man-in-the-middle attacks. The protocol achieves mutual trust between vehicles and RSUs while preserving anonymity via temporary identifiers and achieving forward secrecy through non-reused CRPs. Conceptual comparison with state-of-the-art PUF-based and non-PUF schemes highlights the potential for reduced latency, lower communication overhead, and improved scalability via cloud-assisted CRP lifecycle management, while pointing to the need for future empirical validation through simulation and prototyping. This work not only provides a secure and efficient solution for VANET authentication but also advances the field by offering the first integrated taxonomy-driven evaluation of PUF-enabled V2X protocols in multi-hop Wi-Fi environments. Full article
(This article belongs to the Special Issue Privacy and Security Vulnerabilities in 6G and Beyond Networks)
Show Figures

Figure 1

23 pages, 5356 KB  
Article
VMD-LSTM-Based Model Predictive Control for Hybrid Energy Storage Systems with Auto-Tuning Weights and Constraints
by Yi Yang, Bin Ma and Peng-Hui Li
Energies 2025, 18(21), 5559; https://doi.org/10.3390/en18215559 - 22 Oct 2025
Viewed by 276
Abstract
Enhancing ultra-capacitor (UC) utilization and mitigating battery stress are pivotal for improving the energy management efficiency and service life of hybrid energy storage systems (HESSs). Conventional energy management strategies (EMSs), however, rely on fixed parameters and therefore struggle to allocate power flexibly or [...] Read more.
Enhancing ultra-capacitor (UC) utilization and mitigating battery stress are pivotal for improving the energy management efficiency and service life of hybrid energy storage systems (HESSs). Conventional energy management strategies (EMSs), however, rely on fixed parameters and therefore struggle to allocate power flexibly or reduce battery degradation. This paper proposes a VMD-LSTM-based EMS that incorporates auto-tuning weight and constraint to address these limitations. First, a VMD-LSTM predictor was proposed to improve the velocity and road gradient prediction accuracy, thus leading an accurate power demand for EMS and enabling real-time parameter adaptation, especially in the nonlinear area. Second, the model predictive controller (MPC) was adopted to construct the EMS by solving a multi-objective problem using quadratic programming. Third, a combination of rule-based and fuzzy logic-based strategies was introduced to adjust the weights and constraints, optimizing UC utilization while alleviating the burden on batteries. Simulation results show that the proposed scheme boosts UC utilization by 10.98% and extends battery life by 19.75% compared to traditional MPC. These gains underscore the practical viability of intelligent, optimizing EMSs for HESSs. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

21 pages, 4777 KB  
Article
Processing the Sensor Signal in a PI Control System Using an Adaptive Filter Based on Fuzzy Logic
by Jarosław Joostberens, Aurelia Rybak and Aleksandra Rybak
Symmetry 2025, 17(10), 1774; https://doi.org/10.3390/sym17101774 - 21 Oct 2025
Viewed by 150
Abstract
This paper presents an adaptive fuzzy filter applied to processing a signal from a voltage sensor fed to the input of an object in an automatic temperature control system with a PI controller. (1) The research goal was to develop an algorithm for [...] Read more.
This paper presents an adaptive fuzzy filter applied to processing a signal from a voltage sensor fed to the input of an object in an automatic temperature control system with a PI controller. (1) The research goal was to develop an algorithm for processing the signal from an RMS voltage sensor, measured at the terminals of a heating element in a temperature control system with a PI controller, in a way that ensures good dynamic properties while maintaining an appropriate level of accuracy. (2) The paper presents a method for designing an adaptive fuzzy filter by synthesizing a first-order low-pass infinite impulse response (IIR) filter and a fuzzy model of the dependence of this filter parameter value on the modulus of the derivative of the measured quantity. The application of a model with a symmetric input and output structure and a modified fuzzy model with asymmetry resulting from the uneven distribution of modal values of singleton fuzzy sets at the output was shown. The innovation in the proposed solution is the use of a signal from a PI controller to determine the derivative module of the measured quantity and, using a fuzzy model, linking its instantaneous value with a digital filter parameter in the measurement chain with a sensor monitoring the signal at the input of the controlled object. It is demonstrated that the signal generated by the PI controller can be used in a control system to continuously determine the modulus of the time derivative of the signal measured at the input of the controlled object, also indicating the limitations of this method. The signal from the PI controller can also be used to select filter parameters. In such a situation, it can be treated as a reference signal representing the useful signal. The mean square error (MSE) was adopted as the criterion for matching the signal at the filter output to the reference signal. (3) Based on a comparative analysis of the results of using an adaptive fuzzy filter with a classic first-order IIR filter with an optimal parameter in the MSE sense, it was found that using a fuzzy filter yields better results, regardless of the structure of the fuzzy model used (symmetric or asymmetric). (4) The paper demonstrates that in the tested temperature control system, introducing a simple fuzzy model with one input characterized by three fuzzy sets, relating the modulus of the derivative of the signal developed by the PI controller to the value of the first-order IIR filter parameter, into the voltage sensor signal-processing algorithm gave significantly better results than using a first-order IIR filter with a constant optimal parameter in terms of MSE. The best results were obtained using a fuzzy model in which an intentional asymmetry in the modal values of the output fuzzy sets was introduced. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Fuzzy Control)
Show Figures

Figure 1

22 pages, 4286 KB  
Article
Optimizing Helmet Use Detection in Construction Sites via Fuzzy Logic-Based State Tracking
by Xiaoxiong Zhou, Xuejun Jia, Jian Bai, Xiang Lv, Xiaodong Lv and Guangming Zhang
Sensors 2025, 25(20), 6487; https://doi.org/10.3390/s25206487 - 21 Oct 2025
Viewed by 346
Abstract
Automated safety monitoring on construction sites requires precise helmet-status detection and robust multi-object tracking in long, occlusion-rich video sequences. This study proposes a two-stage framework: (i) a YOLOv5 model enhanced with self-adaptive coordinate attention (SACA), which incorporates coordinate-aware contextual information and reweights spatial–channel [...] Read more.
Automated safety monitoring on construction sites requires precise helmet-status detection and robust multi-object tracking in long, occlusion-rich video sequences. This study proposes a two-stage framework: (i) a YOLOv5 model enhanced with self-adaptive coordinate attention (SACA), which incorporates coordinate-aware contextual information and reweights spatial–channel responses to emphasize head-region cues—SACA modules are integrated into the backbone to improve small-object discrimination while maintaining computational efficiency; and (ii) a DeepSORT tracker equipped with fuzzy-logic gating and temporally consistent update rules that fuse short-term historical information to stabilize trajectories and suppress identity fragmentation. On challenging real-world video footage, the proposed detector achieved a mAP@0.5 of 0.940, surpassing YOLOv8 (0.919) and YOLOv9 (0.924). The tracker attained a MOTA of 90.5% and an IDF1 of 84.2%, with only five identity switches, outperforming YOLOv8 + StrongSORT (85.2%, 80.3%, 12) and YOLOv9 + BoT-SORT (88.1%, 83.0%, 10). Ablation experiments attribute the detection gains primarily to SACA and demonstrate that the temporal consistency rules effectively bridge short-term dropouts, reducing missed detections and identity fragmentation under severe occlusion, varied illumination, and camera motion. The proposed system thus provides accurate, low-switch helmet monitoring suitable for real-time deployment in complex construction environments. Full article
Show Figures

Figure 1

25 pages, 9736 KB  
Article
Adaptive Sliding Mode Observers for Speed Sensorless Induction Motor Control and Their Comparative Performance Tests
by Halil Burak Demir, Murat Barut, Recep Yildiz and Emrah Zerdali
Energies 2025, 18(20), 5530; https://doi.org/10.3390/en18205530 - 21 Oct 2025
Viewed by 209
Abstract
This paper presents adaptive sliding mode observers (A-SMOs) performing speed estimation for sensorless induction motor drives utilized in both industrial and electrical vehicle (EV) applications due to their computational simplicity. The fact that the constant switching gain (λ0) is used [...] Read more.
This paper presents adaptive sliding mode observers (A-SMOs) performing speed estimation for sensorless induction motor drives utilized in both industrial and electrical vehicle (EV) applications due to their computational simplicity. The fact that the constant switching gain (λ0) is used in conventional SMOs (C-SMOs) leads to the chattering problem, especially in low-speed regions. To tackle this issue, this paper proposes two different λ0 adaptation mechanisms based on fuzzy and curve fitting methods. To estimate stator stationary axis components of stator currents and rotor fluxes together with the rotor speed, the proposed A-SMOs only utilize the measured stator currents and voltages of the IM. Here, the difference only between the estimated and measured stator currents is determined as the sliding surface in the proposed A-SMOs. To demonstrate the effectiveness of the proposed fuzzy-based A-SMO (FA-SMO) and curve fitting-based A-SMO (CFA-SMO), they are compared with C-SMO in real-time experiments for different scenarios including wide speed range operations of IM with/without load torque changes. Moreover, the stator and rotor resistances as well as the magnetizing inductance variations are also examined in real-time experiments of the proposed methods and the conventional one. The estimation results demonstrate how positively the λ0 adaptations in FA-SMO and CFA-SMO affect the performance of C-SMO. Finally, two A-SMOs with improved performance are introduced and verified through real-time experiments. Full article
Show Figures

Figure 1

17 pages, 2622 KB  
Article
EvoFuzzy: Evolutionary Fuzzy Approach for Ensembling Reconstructed Genetic Networks
by Hasini Nakulugamuwa Gamage, Jaskaran Gill, Madhu Chetty, Suryani Lim and Jennifer Hallinan
BioMedInformatics 2025, 5(4), 59; https://doi.org/10.3390/biomedinformatics5040059 - 20 Oct 2025
Viewed by 221
Abstract
Background: Reconstructing gene regulatory networks (GRNs) from gene expression data remains a major challenge in systems biology due to the inherent complexity of biological systems and the limitations of existing reconstruction methods, which often yield high false-positive rates. This study aims to [...] Read more.
Background: Reconstructing gene regulatory networks (GRNs) from gene expression data remains a major challenge in systems biology due to the inherent complexity of biological systems and the limitations of existing reconstruction methods, which often yield high false-positive rates. This study aims to develop a robust and adaptive approach to enhance the accuracy of inferred GRNs by integrating multiple modelling paradigms. Methods: We introduce EvoFuzzy, a novel algorithm that integrates evolutionary computation and fuzzy logic to aggregate GRNs reconstructed using Boolean, regression, and fuzzy modelling techniques. The algorithm initializes an equal number of individuals from each modelling method to form a diverse population, which evolves through fuzzy trigonometric differential evolution. Gene expression values are predicted using a fuzzy logic-based predictor with confidence levels, and a fitness function is applied to identify the optimal consensus network. Results: The proposed method was evaluated using simulated benchmark datasets and a real-world SOS gene repair dataset. Experimental results demonstrated that EvoFuzzy consistently outperformed existing state-of-the-art GRN reconstruction methods in terms of accuracy and robustness. Conclusions: The fuzzy trigonometric differential evolution approach plays a pivotal role in refining and aggregating multiple network outputs into a single, optimal consensus network, making EvoFuzzy a powerful and reliable framework for reconstructing biologically meaningful gene regulatory networks. Full article
(This article belongs to the Topic Computational Intelligence and Bioinformatics (CIB))
Show Figures

Figure 1

22 pages, 13267 KB  
Article
Finite-Time Fuzzy Tracking Control for Two-Stage Continuous Stirred Tank Reactor: A Gradient Descent Approach via Armijo Line Search
by Yifan Liu and Min Ma
Electronics 2025, 14(20), 4069; https://doi.org/10.3390/electronics14204069 - 16 Oct 2025
Viewed by 244
Abstract
This paper proposes a novel finite-time adaptive fuzzy control strategy for two-stage continuous stirred tank reactor (CSTR) systems. The method integrates the gradient descent (GD) algorithm with Armijo line search to dynamically adjust the learning rate, thereby optimizing the parameters of fuzzy logic [...] Read more.
This paper proposes a novel finite-time adaptive fuzzy control strategy for two-stage continuous stirred tank reactor (CSTR) systems. The method integrates the gradient descent (GD) algorithm with Armijo line search to dynamically adjust the learning rate, thereby optimizing the parameters of fuzzy logic systems (FLSs) for fast and accurate approximation of unknown nonlinear functions. The proposed control scheme, based on finite-time stability theory, ensures convergence of system states to the desired trajectory within finite time. Compared with conventional adaptive fuzzy control methods, the approach effectively addresses the issues of slow convergence and low approximation accuracy, significantly reducing approximation error while enhancing convergence performance. Simulation results on a two-stage CSTR system verify that the proposed controller achieves rapid convergence and high approximation accuracy. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

27 pages, 396 KB  
Review
Application of Fuzzy Logic for Collaborative Robot Control
by Siarhei Autsou, Olga Dunajeva, Avar Pentel, Oleg Shvets and Mare Roosileht
Electronics 2025, 14(20), 4029; https://doi.org/10.3390/electronics14204029 - 14 Oct 2025
Viewed by 298
Abstract
Collaborative robots (cobots) play a crucial role in modern industry by ensuring safe and efficient human–robot interaction. However, traditional control methods struggle with uncertainty handling and adaptability to dynamic environments. This review explores the application of fuzzy logic as a promising approach for [...] Read more.
Collaborative robots (cobots) play a crucial role in modern industry by ensuring safe and efficient human–robot interaction. However, traditional control methods struggle with uncertainty handling and adaptability to dynamic environments. This review explores the application of fuzzy logic as a promising approach for cobot control. The article discusses the fundamental principles of fuzzy logic, its advantages over classical methods, and successful case studies. It analyzes current research, including hybrid methods combining fuzzy logic with machine learning and evolutionary algorithms. The paper also highlights existing challenges and potential future research directions. The conclusions emphasize the potential of fuzzy logic to enhance cobot adaptability and reliability in real-world conditions. Full article
(This article belongs to the Section Artificial Intelligence)
29 pages, 2033 KB  
Review
The Intelligentization Process of Agricultural Greenhouse: A Review of Control Strategies and Modeling Techniques
by Kangji Li, Jialu Shi, Chenglei Hu and Wenping Xue
Agriculture 2025, 15(20), 2135; https://doi.org/10.3390/agriculture15202135 - 14 Oct 2025
Viewed by 542
Abstract
With the increasing demand for sustainable food production, the facility agriculture is progressively developing towards automation and intelligence. Traditional control techniques such as PID, fuzzy logic, and model predictive control have been widely applied in greenhouse planting for years. Existing greenhouse management systems [...] Read more.
With the increasing demand for sustainable food production, the facility agriculture is progressively developing towards automation and intelligence. Traditional control techniques such as PID, fuzzy logic, and model predictive control have been widely applied in greenhouse planting for years. Existing greenhouse management systems still face challenges such as limited adaptability to fluctuating outdoor climates, and difficulties in maintaining both productivity and cost-effectiveness. Recently, with the development of greenhouse systems towards comprehensive environmental perception and intelligent decision-making, a large number of intelligent control and modeling technologies have provided new opportunities for the technological update of greenhouse management systems. This review systematically summarizes recent progress in greenhouse regulation and crop growth control technologies, emphasizing applications of intelligent techniques, involving adaptive strategies, neural networks, and reinforcement learning. Special attention is given to how these methods improve system robustness and control performance in terms of environmental stability, crop productivity, and energy efficiency, which are key performance indicators of greenhouse systems. Their advantages over conventional strategies in agricultural greenhouse systems are also analyzed in detail. Furthermore, the integration of intelligent technologies with greenhouse system modeling is examined, covering both greenhouse environmental models and crop growth models. The strengths and weaknesses of different techniques, such as mechanism, computational fluid dynamics (CFD), and data-driven models, are analyzed and discussed in terms of accuracy, computational cost, and applicability. Finally, future challenges and research opportunities are discussed, emphasizing the need for real-time adaptability, sustainability, and cluster intelligence. Full article
Show Figures

Figure 1

17 pages, 2107 KB  
Article
FVSMPC: Fuzzy Adaptive Virtual Steering Coefficient Model Predictive Control for Differential Tracked Robot Trajectory Tracking
by Pu Zhang, Xiubo Xia, Yongling Fu and Jian Sun
Actuators 2025, 14(10), 493; https://doi.org/10.3390/act14100493 - 12 Oct 2025
Viewed by 548
Abstract
Differential tracked robots play a crucial role in various modernized work scenarios such as smart industry, agriculture, and transportation. However, these robots frequently encounter substantial challenges in trajectory tracking, attributable to substantial initial errors and dynamic environments, which result in slow convergence rates, [...] Read more.
Differential tracked robots play a crucial role in various modernized work scenarios such as smart industry, agriculture, and transportation. However, these robots frequently encounter substantial challenges in trajectory tracking, attributable to substantial initial errors and dynamic environments, which result in slow convergence rates, cumulative errors, and diminished tracking precision. To address these challenges, this paper proposes a fuzzy adaptive virtual steering coefficient model predictive control (FVSMPC) algorithm. The FVSMPC algorithm introduces a virtual steering coefficient into the robot’s kinematic model, which is adaptively adjusted using fuzzy logic based on real-time positional error and velocity. This approach not only enhances the robot’s ability to quickly correct large errors but also maintains stability during tracking.The nonlinear kinematic model undergoes linearization via a Taylor expansion and is subsequently formulated as a quadratic programming problem to facilitate efficient iterative solutions. To validate the proposed control algorithm, a simulation environment was constructed and deployed on a real prototype for testing. Results demonstrate that compared to the baseline algorithm, the proposed algorithm performs excellently in trajectory tracking tasks, avoids complex parameter tuning, and exhibits high accuracy, fast convergence, and good stability. This work provides a practical and effective solution for improving the trajectory tracking performance of differential tracked robots in complex environments. Full article
Show Figures

Figure 1

18 pages, 505 KB  
Article
Linking SDGs, Competencies, and Learning Outcomes: A Tool for Curriculum Alignment in Higher Education
by Teresa Magraner, Isabel C. Gil-García and Ana Fernández-Guillamón
Sustainability 2025, 17(19), 8910; https://doi.org/10.3390/su17198910 - 8 Oct 2025
Viewed by 415
Abstract
This paper presents a structured strategy for integrating the Sustainable Development Goals (SDGs) into university courses by linking them to competencies and learning outcomes. The proposed methodology, based on fuzzy logic, evaluates the degree of alignment between teaching activities and selected SDGs through [...] Read more.
This paper presents a structured strategy for integrating the Sustainable Development Goals (SDGs) into university courses by linking them to competencies and learning outcomes. The proposed methodology, based on fuzzy logic, evaluates the degree of alignment between teaching activities and selected SDGs through matrices that connect competencies with assessment activities and expected learning outcomes, improving the gap regarding the inclusion of the SDGs and their articulation in terms of competencies. The approach was applied to two subjects from the Master’s Degree in Renewable Energy and Energy Efficiency at the Distance University of Madrid: “Electricity Market” and “Wind Energy”. In both cases, the learning outcomes were redesigned, and the activities were adjusted to ensure meaningful incorporation of sustainability principles into the curriculum. The method enables quantification of each activity’s contribution to the SDGs and supports a critical review of curriculum design to ensure coherent integration. The results indicate that project-based activities show the highest alignment with the SDGs, particularly with Goals 7, and 12, which achieve an average rating of 0.7 (high). The developed tool provides a practical and replicable solution for sustainability-oriented curriculum planning and can be adapted to other disciplines and educational programs. Full article
Show Figures

Figure 1

25 pages, 2551 KB  
Article
Deep-Reinforcement-Learning-Based Sliding Mode Control for Optimized Energy Management in DC Microgrids
by Monia Charfeddine, Mongi Ben Moussa and Khalil Jouili
Mathematics 2025, 13(19), 3212; https://doi.org/10.3390/math13193212 - 7 Oct 2025
Viewed by 379
Abstract
A hybrid control architecture is proposed for enhancing the stability and energy management of DC microgrids (DCMGs) integrating photovoltaic generation, batteries, and supercapacitors. The approach combines nonlinear Sliding Mode Control (SMC) for fast and robust DC bus voltage regulation with a Deep Q-Learning [...] Read more.
A hybrid control architecture is proposed for enhancing the stability and energy management of DC microgrids (DCMGs) integrating photovoltaic generation, batteries, and supercapacitors. The approach combines nonlinear Sliding Mode Control (SMC) for fast and robust DC bus voltage regulation with a Deep Q-Learning (DQL) agent that learns optimal high-level policies for charging, discharging, and load management. This dual-layer design leverages the real-time precision of SMC and the adaptive decision-making capability of DQL to achieve dynamic power sharing and balanced state-of-charge levels across storage units, thereby reducing asymmetric wear. Simulation results under variable operating scenarios showed that the proposed method significantly improvedvoltage stability, loweredthe occurrence of deep battery discharges, and decreased load shedding compared to conventional fuzzy-logic-based energymanagement, highlighting its effectiveness and resilience in the presence of renewable generation variability and fluctuating load demands. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

31 pages, 1677 KB  
Review
A Taxonomy of Robust Control Techniques for Hybrid AC/DC Microgrids: A Review
by Pooya Parvizi, Alireza Mohammadi Amidi, Mohammad Reza Zangeneh, Jordi-Roger Riba and Milad Jalilian
Eng 2025, 6(10), 267; https://doi.org/10.3390/eng6100267 - 6 Oct 2025
Viewed by 750
Abstract
Hybrid AC/DC microgrids have emerged as a promising solution for integrating diverse renewable energy sources, enhancing efficiency, and strengthening resilience in modern power systems. However, existing control schemes exhibit critical shortcomings that limit their practical effectiveness. Traditional linear controllers, designed around nominal operating [...] Read more.
Hybrid AC/DC microgrids have emerged as a promising solution for integrating diverse renewable energy sources, enhancing efficiency, and strengthening resilience in modern power systems. However, existing control schemes exhibit critical shortcomings that limit their practical effectiveness. Traditional linear controllers, designed around nominal operating points, often fail to maintain stability under large load and generation fluctuations. Optimization-based methods are highly sensitive to model inaccuracies and parameter uncertainties, reducing their reliability in dynamic environments. Intelligent approaches, such as fuzzy logic and ML-based controllers, provide adaptability but suffer from high computational demands, limited interpretability, and challenges in real-time deployment. These limitations highlight the need for robust control strategies that can guarantee reliable operation despite disturbances, uncertainties, and varying operating conditions. Numerical performance indices demonstrate that the reviewed robust control strategies outperform conventional linear, optimization-based, and intelligent controllers in terms of system stability, voltage and current regulation, and dynamic response. This paper provides a comprehensive review of recent robust control strategies for hybrid AC/DC microgrids, systematically categorizing classical model-based, intelligent, and adaptive approaches. Key research gaps are identified, including the lack of unified benchmarking, limited experimental validation, and challenges in integrating decentralized frameworks. Unlike prior surveys that broadly cover microgrid types, this work focuses exclusively on hybrid AC/DC systems, emphasizing hierarchical control architectures and outlining future directions for scalable and certifiable robust controllers. Also, comparative results demonstrate that state of the art robust controllers—including H∞-based, sliding mode, and hybrid intelligent controllers—can achieve performance improvements for metrics such as voltage overshoot, frequency settling time, and THD compared to conventional PID and droop controllers. By synthesizing recent advancements and identifying critical research gaps, this work lays the groundwork for developing robust control strategies capable of ensuring stability and adaptability in future hybrid AC/DC microgrids. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

28 pages, 760 KB  
Article
Expanding the Fine-Kinney Methodology Using Fuzzy Logic: A Case Study in an Energy Linemen Workshop
by Chris Mitrakas, Alexandros Xanthopoulos and Dimitrios Koulouriotis
Safety 2025, 11(4), 94; https://doi.org/10.3390/safety11040094 - 2 Oct 2025
Viewed by 482
Abstract
This paper investigates the effectiveness and limitations of the traditional Fine-Kinney method for occupational risk assessment, emphasizing its shortcomings in addressing complex and dynamic work environments. To overcome these challenges, two advanced methodologies, Fine-Kinney10 (FK10) and Fuzzy Fine-Kinney10 (FFK10), are introduced. The FK10 [...] Read more.
This paper investigates the effectiveness and limitations of the traditional Fine-Kinney method for occupational risk assessment, emphasizing its shortcomings in addressing complex and dynamic work environments. To overcome these challenges, two advanced methodologies, Fine-Kinney10 (FK10) and Fuzzy Fine-Kinney10 (FFK10), are introduced. The FK10 employs a symmetric scaling system (1–10) for probability, frequency, and severity indicators, providing a more balanced quantification of risks. Meanwhile, FFK10 incorporates fuzzy logic to handle uncertainty and subjectivity in risk assessment, significantly enhancing the sensitivity and accuracy of risk evaluation. These methodologies were applied to a linemen workshop in an energy production and distribution company, analyzing various types of accidents such as falls from heights, exposure to electric currents, slips on surfaces, and more. The applications highlighted the practical benefits of these methods in effectively assessing and mitigating risks. A significant finding includes the identification of risks related to falls from heights of <2.5 m (SH1) and road traffic accidents (SH6), where all three methods yielded different verbal outcomes. Compared to the traditional Fine-Kinney method, FK10 and FFK10 demonstrated superior ability in distinguishing risk levels and guiding targeted safety measures. The study underscores that FK10 and FFK10 represent significant advancements in occupational risk management, offering robust frameworks adaptable across various industries. Full article
Show Figures

Figure 1

Back to TopTop