Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = fusarivirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4186 KiB  
Article
The Mycovirome in a Worldwide Collection of the Brown Rot Fungus Monilinia fructicola
by Rita Milvia De Miccolis Angelini, Celeste Raguseo, Caterina Rotolo, Donato Gerin, Francesco Faretra and Stefania Pollastro
J. Fungi 2022, 8(5), 481; https://doi.org/10.3390/jof8050481 - 6 May 2022
Cited by 12 | Viewed by 3261
Abstract
The fungus Monilinia fructicola is responsible for brown rot on stone and pome fruit and causes heavy yield losses both pre- and post-harvest. Several mycoviruses are known to infect fungal plant pathogens. In this study, a metagenomic approach was applied to obtain a [...] Read more.
The fungus Monilinia fructicola is responsible for brown rot on stone and pome fruit and causes heavy yield losses both pre- and post-harvest. Several mycoviruses are known to infect fungal plant pathogens. In this study, a metagenomic approach was applied to obtain a comprehensive characterization of the mycovirome in a worldwide collection of 58 M. fructicola strains. Deep sequencing of double-stranded (ds)RNA extracts revealed a great abundance and variety of mycoviruses. A total of 32 phylogenetically distinct positive-sense (+) single-stranded (ss)RNA viruses were identified. They included twelve mitoviruses, one in the proposed family Splipalmiviridae, and twelve botourmiaviruses (phylum Lenarviricota), eleven of which were novel viral species; two hypoviruses, three in the proposed family Fusariviridae, and one barnavirus (phylum Pisuviricota); as well as one novel beny-like virus (phylum Kitrinoviricota), the first one identified in Ascomycetes. A partial sequence of a new putative ssDNA mycovirus related to viruses within the Parvoviridae family was detected in a M. fructicola isolate from Serbia. The availability of genomic sequences of mycoviruses will serve as a solid basis for further research aimed at deepening the knowledge on virus–host and virus–virus interactions and to explore their potential as biocontrol agents against brown rot disease. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

19 pages, 5062 KiB  
Communication
Six Novel Mycoviruses Containing Positive Single-Stranded RNA and Double-Stranded RNA Genomes Co-Infect a Single Strain of the Rhizoctonia solani AG-3 PT
by Yuting Li, Siwei Li, Yumeng Zhao, Tao Zhou, Xuehong Wu and Can Zhao
Viruses 2022, 14(4), 813; https://doi.org/10.3390/v14040813 - 14 Apr 2022
Cited by 13 | Viewed by 4162
Abstract
Six novel mycoviruses that collectively represent the mycovirome of Rhizoctonia solani anastomosis group (AG)-3 PT strain ZJ-2H, which causes potato black scurf, were identified through metatranscriptome sequencing and putatively designated as Rhizoctonia solani fusarivirus 4 [RsFV4, positive single-stranded RNA (+ssRNA)], Rhizoctonia solani fusarivirus [...] Read more.
Six novel mycoviruses that collectively represent the mycovirome of Rhizoctonia solani anastomosis group (AG)-3 PT strain ZJ-2H, which causes potato black scurf, were identified through metatranscriptome sequencing and putatively designated as Rhizoctonia solani fusarivirus 4 [RsFV4, positive single-stranded RNA (+ssRNA)], Rhizoctonia solani fusarivirus 5 (RsFV5, +ssRNA), Rhizoctonia solani mitovirus 40 (RsMV40, +ssRNA), Rhizoctonia solani partitivirus 10 [RsPV10, double-stranded RNA (dsRNA)], Rhizoctonia solani partitivirus 11 (RsPV11, dsRNA), and Rhizoctonia solani RNA virus 11 (RsRV11, dsRNA). Whole genome sequences of RsFV4, RsMV40, RsPV10, RsPV11, and RsRV11, as well as a partial genome sequence of RsFV5, were obtained. The 3’- and 5’- untranslated regions of the five mycoviruses with complete genome sequences were folded into stable stem-loop or panhandle secondary structures. RsFV4 and RsFV5 are most closely related to Rhizoctonia solani fusarivirus 1 (RsFV1), however, the first open reading frame (ORF) of RsFV4 and RsFV5 encode a hypothetical protein that differs from the first ORF of RsFV1, which encodes a helicase. We confirmed that RsPV10 and RsPV11 assemble into the spherical virus particles (approximately 30 nm in diameter) that were extracted from strain ZJ-2H. This is the first report that +ssRNA and dsRNA viruses co-infect a single strain of R. solani AG-3 PT. Full article
(This article belongs to the Collection Mycoviruses)
Show Figures

Figure 1

21 pages, 3839 KiB  
Article
Four Novel Mycoviruses from the Hypovirulent Botrytis cinerea SZ-2-3y Isolate from Paris polyphylla: Molecular Characterisation and Mitoviral Sequence Transboundary Entry into Plants
by Qiong Wang, Qi Zou, Zhaoji Dai, Ni Hong, Guoping Wang and Liping Wang
Viruses 2022, 14(1), 151; https://doi.org/10.3390/v14010151 - 14 Jan 2022
Cited by 13 | Viewed by 3551
Abstract
A hypovirulent SZ-2-3y strain isolated from diseased Paris polyphylla was identified as Botrytis cinerea. Interestingly, SZ-2-3y was coinfected with a mitovirus, two botouliviruses, and a 3074 nt fusarivirus, designated Botrytis cinerea fusarivirus 8 (BcFV8); it shares an 87.2% sequence identity with the [...] Read more.
A hypovirulent SZ-2-3y strain isolated from diseased Paris polyphylla was identified as Botrytis cinerea. Interestingly, SZ-2-3y was coinfected with a mitovirus, two botouliviruses, and a 3074 nt fusarivirus, designated Botrytis cinerea fusarivirus 8 (BcFV8); it shares an 87.2% sequence identity with the previously identified Botrytis cinerea fusarivirus 6 (BcFV6). The full-length 2945 nt genome sequence of the mitovirus, termed Botrytis cinerea mitovirus 10 (BcMV10), shares a 54% sequence identity with Fusarium boothii mitovirus 1 (FbMV1), and clusters with fungus mitoviruses, plant mitoviruses and plant mitochondria; hence BcMV10 is a new Mitoviridae member. The full-length 2759 nt and 2812 nt genome sequences of the other two botouliviruses, named Botrytis cinerea botoulivirus 18 and 19 (BcBoV18 and 19), share a 40% amino acid sequence identity with RNA-dependent RNA polymerase protein (RdRp), and these are new members of the Botoulivirus genus of Botourmiaviridae. Horizontal transmission analysis showed that BcBoV18, BcBoV19 and BcFV8 are not related to hypovirulence, suggesting that BcMV10 may induce hypovirulence. Intriguingly, a partial BcMV10 sequence was detected in cucumber plants inoculated with SZ-2-3y mycelium or pXT1/BcMV10 agrobacterium. In conclusion, we identified a hypovirulent SZ-2-3y fungal strain from P. polyphylla, coinfected with four novel mycoviruses that could serve as potential biocontrol agents. Our findings provide evidence of cross-kingdom mycoviral sequence transmission. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

17 pages, 3106 KiB  
Article
Novel Fusari- and Toti-like Viruses, with Probable Different Origins, in the Plant Pathogenic Oomycete Globisporangium ultimum
by Miki Fukunishi, Shinsaku Sasai, Motoaki Tojo and Tomofumi Mochizuki
Viruses 2021, 13(10), 1931; https://doi.org/10.3390/v13101931 - 25 Sep 2021
Cited by 6 | Viewed by 3112
Abstract
To further classify the oomycete viruses that have been discovered in recent years, we investigated virus infection in the plant-parasitic oomycete Globisporangium ultimum in Japan. Double-stranded RNA detection, high-throughput sequencing, and RT-PCR revealed that the G. ultimum isolate UOP226 contained two viruses related [...] Read more.
To further classify the oomycete viruses that have been discovered in recent years, we investigated virus infection in the plant-parasitic oomycete Globisporangium ultimum in Japan. Double-stranded RNA detection, high-throughput sequencing, and RT-PCR revealed that the G. ultimum isolate UOP226 contained two viruses related to fusarivirus and totivirus, named Pythium ultimum RNA virus 1 (PuRV1) and Pythium ultimum RNA virus 2 (PuRV2), respectively. Phylogenetic analysis of the deduced amino acid sequence of the RNA-dependent RNA polymerase (RdRp) showed that fusari-like PuRV1 belonged to a different phylogenetic group than Plasmopara viticola lesion-associated fusari virus (PvlaFV) 1–3 from oomycete Plasmopara viticola. Codon usage bias of the PuRV1 RdRp gene was more similar to those of fungi than Globisporangium and Phytophthora, suggesting that the PuRV1 ancestor horizontally transmitted to G. ultimum ancestor from fungi. Phylogenetic analysis of the deduced amino acid sequence of the RdRp of toti-like PuRV2 showed a monophyletic group with the other toti-like oomycete viruses from Globisporangium, Phytophthora, and Pl. viticola. However, the nucleotide sequences of toti-like oomycete viruses were not so homologous, suggesting the possibility of convergent evolution of toti-like oomycete viruses. Full article
(This article belongs to the Special Issue Advances in Oomycete Virus Research)
Show Figures

Figure 1

20 pages, 5366 KiB  
Article
Two Novel Hypovirulence-Associated Mycoviruses in the Phytopathogenic Fungus Botrytis cinerea: Molecular Characterization and Suppression of Infection Cushion Formation
by Fangmin Hao, Ting Ding, Mingde Wu, Jing Zhang, Long Yang, Weidong Chen and Guoqing Li
Viruses 2018, 10(5), 254; https://doi.org/10.3390/v10050254 - 13 May 2018
Cited by 60 | Viewed by 7208
Abstract
Botrytis cinerea is a necrotrophic fungus causing disease on many important agricultural crops. Two novel mycoviruses, namely Botrytis cinerea hypovirus 1 (BcHV1) and Botrytis cinerea fusarivirus 1 (BcFV1), were fully sequenced. The genome of BcHV1 is 10,214 nt long excluding a poly-A tail [...] Read more.
Botrytis cinerea is a necrotrophic fungus causing disease on many important agricultural crops. Two novel mycoviruses, namely Botrytis cinerea hypovirus 1 (BcHV1) and Botrytis cinerea fusarivirus 1 (BcFV1), were fully sequenced. The genome of BcHV1 is 10,214 nt long excluding a poly-A tail and possesses one large open reading frame (ORF) encoding a polyprotein possessing several conserved domains including RNA-dependent RNA polymerase (RdRp), showing homology to hypovirus-encoded polyproteins. Phylogenetic analysis indicated that BcHV1 may belong to the proposed genus Betahypovirus in the viral family Hypoviridae. The genome of BcFV1 is 8411 nt in length excluding the poly A tail and theoretically processes two major ORFs, namely ORF1 and ORF2. The larger ORF1 encoded polypeptide contains protein domains of an RdRp and a viral helicase, whereas the function of smaller ORF2 remains unknown. The BcFV1 was phylogenetically clustered with other fusariviruses forming an independent branch, indicating BcFV1 was a member in Fusariviridae. Both BcHV1 and BcFV1 were capable of being transmitted horizontally through hyphal anastomosis. Infection by BcHV1 alone caused attenuated virulence without affecting mycelial growth, significantly inhibited infection cushion (IC) formation, and altered expression of several IC-formation-associated genes. However, wound inoculation could fully rescue the virulence phenotype of the BcHV1 infected isolate. These results indicate the BcHV1-associated hypovirulence is caused by the viral influence on IC-formation-associated pathways. Full article
(This article belongs to the Special Issue Mycoviruses)
Show Figures

Figure 1

15 pages, 1106 KiB  
Article
Molecular Characterization of a Novel Positive-Sense, Single-Stranded RNA Mycovirus Infecting the Plant Pathogenic Fungus Sclerotinia sclerotiorum
by Rong Liu, Jiasen Cheng, Yanping Fu, Daohong Jiang and Jiatao Xie
Viruses 2015, 7(5), 2470-2484; https://doi.org/10.3390/v7052470 - 21 May 2015
Cited by 30 | Viewed by 8607
Abstract
Recent studies have demonstrated that a diverse array of mycoviruses infect the plant pathogenic fungus Sclerotinia sclerotiorum. Here, we report the molecular characterization of a newly identified mycovirus, Sclerotinia sclerotiorum fusarivirus 1 (SsFV1), which was isolated from a sclerotia-defective strain JMTJ14 of [...] Read more.
Recent studies have demonstrated that a diverse array of mycoviruses infect the plant pathogenic fungus Sclerotinia sclerotiorum. Here, we report the molecular characterization of a newly identified mycovirus, Sclerotinia sclerotiorum fusarivirus 1 (SsFV1), which was isolated from a sclerotia-defective strain JMTJ14 of S. sclerotiorum. Excluding a poly (A) tail, the genome of SsFV1 comprises 7754 nucleotides (nts) in length with 83 and 418 nts for 5'- and 3'-untranslated regions, respectively. SsFV1 has four non-overlapping open reading frames (ORFs): ORF1 encodes a 191 kDa polyprotein (1664 amino acid residues in length) containing conserved RNA-dependent RNA polymerase (RdRp) and helicase domains; the other three ORFs encode three putative hypothetical proteins of unknown function. Phylogenetic analysis, based on RdRp and Helicase domains, indicated that SsFV1 is phylogenetically related to Rosellinia necatrix fusarivirus 1 (RnFV1), Fusarium graminearum virus-DK21 (FgV1), and Penicillium roqueforti RNA mycovirus 1 (PrRV1), a cluster of an independent group belonging to a newly proposed family Fusarividae. However, SsFV1 is markedly different from FgV1 and RnFV1 in genome organization and nucleotide sequence. SsFV1 was transmitted successfully to two vegetatively incompatible virus-free strains. SsFV1 is not responsible for the abnormal phenotype of strain JMTJ14. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

Back to TopTop