Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = fullerene network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1820 KiB  
Article
Graph Neural Network Determine the Ground State Structures of Boron or Nitride Substitute C60 Fullerenes
by Linwei Sai, Beiran Du, Li Fu, Sultana Akter, Chunmei Tang and Jijun Zhao
Nanomaterials 2025, 15(13), 1012; https://doi.org/10.3390/nano15131012 - 30 Jun 2025
Viewed by 334
Abstract
Substitutional doping of fullerenes represents a significant category of heterofullerenes. Due to the vast number of isomers, confirming the ground state structure poses considerable challenges. In this study, we generated isomers of C60−nBn and C60−nNn [...] Read more.
Substitutional doping of fullerenes represents a significant category of heterofullerenes. Due to the vast number of isomers, confirming the ground state structure poses considerable challenges. In this study, we generated isomers of C60−nBn and C60−nNn with n ranging from 2 to 12. To avoid overlooking the ground state structures, we applied specific filtering rules: no adjacent nitrogen (N) or boron (B) atoms are allowed, and substitutions in meta-positions within pentagons are prohibited when the substitution number n exceeds nine. Approximately 15,000 isomers across various values of n within the range of 2 to 12 for B and N substituted fullerenes were selected and optimized using density functional theory (DFT) calculations, forming our dataset. We developed a Graph Neural Network (GNN) that aggregates both topological connections and its dual graph with ring types as input information to predict their binding energies. The GNN achieved high accuracy, reaching a root mean square error (RMSE) of 1.713 meV. Furthermore, it operates efficiently; indeed, it can predict over six thousand isomers per second on an eight-core PC. Several predicted stable structures were further optimized by DFT to confirm their ground state configurations. The energy cutoffs of each composition were determined through statistical simulations to ensure that the selected ground state structures possess high confidence levels. Notably, new lower-energy structures have been discovered for boron-substituted fullerenes with substitution number ranging from seven to twelve and nitride-substituted fullerenes with substitution number ranging from seven to eleven. Full article
Show Figures

Figure 1

34 pages, 7587 KiB  
Review
Multifunctional Carbon-Based Nanocomposite Hydrogels for Wound Healing and Health Management
by Tianyi Lu, Yaqian Chen, Meng Sun, Yuxian Chen, Weilong Tu, Yuxuan Zhou, Xiao Li and Tao Hu
Gels 2025, 11(5), 345; https://doi.org/10.3390/gels11050345 - 6 May 2025
Viewed by 1469
Abstract
Compared with acute wounds, typical chronic wounds (infection, burn, and diabetic wounds) are susceptible to bacterial infection and hard to heal. As for the complexity of chronic wounds, biocompatible hydrogel dressings can be employed to regulate the microenvironment and accelerate wound healing with [...] Read more.
Compared with acute wounds, typical chronic wounds (infection, burn, and diabetic wounds) are susceptible to bacterial infection and hard to heal. As for the complexity of chronic wounds, biocompatible hydrogel dressings can be employed to regulate the microenvironment and accelerate wound healing with their controllable physical and chemical properties. Recently, various nanomaterials have been introduced into hydrogel networks to prepare functional nanocomposite hydrogels. Among them, carbon-based nanomaterials (CBNs) have attracted wide attention in the biomedical field due to their outstanding physicochemical properties. However, comprehensive reviews on the use of CBNs for multifunctional hydrogel wound dressings in the past 10 years are very scarce. This review focuses on the research progress on hydrogel dressings made with typical CBNs. Specifically, a series of CBNs (carbon dots, graphene quantum dots, fullerenes, nanodiamonds, carbon nanotubes, graphene, graphene oxide and reduced graphene oxide) employed in the preparation of hydrogels are described as well as carbon-based nanocomposite hydrogels (CBNHs) with versatility (conductivity, antibacterial, injectable and self-healing, anti-inflammatory and antioxidant properties, substance delivery, stimulus response and real-time monitoring). Moreover, applications of CBNHs in treating different chronic wounds are concretely discussed. This review may provide some new inspirations for the future development of CBNHs in wound care and tissue engineering. Full article
(This article belongs to the Special Issue Gel-Based Materials for Sensing and Monitoring)
Show Figures

Figure 1

11 pages, 3209 KiB  
Article
Induced Effects of Nano-Patterned Substrates on the Electrical and Photo-Electrical Properties of PTB7-Th:ICBA (1:1, wt.%) Bulk-Heterojunction Solar Cells
by Tudor Suteu, Vlad-Andrei Antohe, Stefan Antohe, Ionel Stavarache, Maria Cristina Balasin, Gabriel Socol, Marcela Socol, Oana Rasoga and Sorina Iftimie
Surfaces 2025, 8(2), 30; https://doi.org/10.3390/surfaces8020030 - 1 May 2025
Viewed by 677
Abstract
In this study, we detailed the fabrication and characterization of photovoltaic structures based on PTB7:ICBA (1:1, wt.%) bulk-heterojunction on optical glass substrates by spin-coating. Some samples were deposited on a flat substrate, and others were placed on a patterned substrate obtained by nano-imprinting [...] Read more.
In this study, we detailed the fabrication and characterization of photovoltaic structures based on PTB7:ICBA (1:1, wt.%) bulk-heterojunction on optical glass substrates by spin-coating. Some samples were deposited on a flat substrate, and others were placed on a patterned substrate obtained by nano-imprinting lithography; the induced effects were analyzed. We demonstrated that using a patterned substrate enhanced the maximum output power, primarily because the short-circuit current density increased. This can be considered a direct consequence of reduced optical reflection and improved optical absorption. The topological parameters evaluated by atomic force microscopy, namely, the root mean square, Skewness, and Kurtosis, had small values of around 2 nm and 1 nm, respectively. This proves that the mixture of a conductive polymer and a fullerene derivative creates a thin film network with a high flatness degree. The samples discussed in this paper were fabricated and characterized in air; we can admit that the results are encouraging, but further optimization is needed. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Graphical abstract

15 pages, 10623 KiB  
Article
Optical Transitions Dominated by Orbital Interactions in Two-Dimensional Fullerene Networks
by Haonan Bai, Xinwen Gai, Yi Zou and Jingang Wang
C 2025, 11(1), 17; https://doi.org/10.3390/c11010017 - 25 Feb 2025
Viewed by 706
Abstract
Fullerenes are a class of highly symmetric spherical carbon materials that have attracted significant attention in optoelectronic applications due to their excellent electron transport properties. However, the isotropy of their spherical structure often leads to disordered inter-sphere stacking in practical applications, limiting in-depth [...] Read more.
Fullerenes are a class of highly symmetric spherical carbon materials that have attracted significant attention in optoelectronic applications due to their excellent electron transport properties. However, the isotropy of their spherical structure often leads to disordered inter-sphere stacking in practical applications, limiting in-depth studies of their electron transport behavior. The successful fabrication of long-range ordered two-dimensional fullerene arrays has opened up new opportunities for exploring the structure–activity relationship in spatial charge transport. In this study, theoretical calculations were performed to analyze the effects of different periodic arrangements in two-dimensional fullerene arrays on electronic excitation and optical behavior. The results show that HLOPC60 exhibits a strong absorption peak at 1050 nm, while TLOPC60 displays prominent absorption features at 700 nm and 1300 nm, indicating that their electronic excitation characteristics are significantly influenced by the periodic structure. Additionally, analyses of orbital distribution and the spatial electron density reveal a close relationship between carrier transport and the structural topology. Quantitative studies further indicate that the interlayer interaction energies of the HLOPC60 and TLOPC60 arrangements are −105.65 kJ/mol and −135.25 kJ/mol, respectively. TLOPC60 also exhibits stronger dispersion interactions, leading to enhanced interlayer binding. These findings provide new insights into the structural regulation of fullerene materials and offer theoretical guidance for the design and synthesis of novel organic optoelectronic materials. Full article
(This article belongs to the Special Issue High-Performance Carbon Materials and Their Composites)
Show Figures

Graphical abstract

30 pages, 4214 KiB  
Article
Spectral Polynomials and Spectra of Graphs Beyond Cubic and Icosahedral Symmetries: n-Octahedra, n-Cubes, Symmetric and Semi-Symmetric Graphs, Giant Fullerene Cages and Generalized Petersen Graphs
by Krishnan Balasubramanian
Symmetry 2025, 17(2), 247; https://doi.org/10.3390/sym17020247 - 7 Feb 2025
Viewed by 1228
Abstract
We report the results of our computations of the spectral polynomials and spectra of a number of graphs possessing automorphism symmetries beyond cubic and icosahedral symmetries. The spectral (characteristic) polynomials are computed in fully expanded forms. The coefficients of these polynomials contain a [...] Read more.
We report the results of our computations of the spectral polynomials and spectra of a number of graphs possessing automorphism symmetries beyond cubic and icosahedral symmetries. The spectral (characteristic) polynomials are computed in fully expanded forms. The coefficients of these polynomials contain a wealth of combinatorial information that finds a number of applications in many areas including nanomaterials, genetic networks, dynamic stereochemistry, chirality, and so forth. This study focuses on a number of symmetric and semi-symmetric graphs with automorphism groups of high order. In particular, Heawood, Coxeter, Pappus, Möbius–Kantor, Tutte–Coxeter, Desargues, Meringer, Dyck, n-octahedra, n-cubes, icosahedral fullerenes such as C80(Ih), golden supergiant C240(Ih), Archimedean (Ih), and generalized Petersen graphs up to 720 vertices, among others, have been studied. The spectral polynomials are computed in fully expanded forms as opposed to factored forms. Several applications of these polynomials are briefly discussed. Full article
(This article belongs to the Collection Feature Papers in Chemistry)
Show Figures

Figure 1

9 pages, 2997 KiB  
Article
Bilayer C60 Polymer/h-BN Heterostructures: A DFT Study of Electronic and Optic Properties
by Leonid A. Chernozatonskii and Aleksey I. Kochaev
Polymers 2024, 16(11), 1580; https://doi.org/10.3390/polym16111580 - 3 Jun 2024
Cited by 2 | Viewed by 1515
Abstract
Interest in fullerene-based polymer structures has renewed due to the development of synthesis technologies using thin C60 polymers. Fullerene networks are good semiconductors. In this paper, heterostructure complexes composed of C60 polymer networks on atomically thin dielectric substrates are modeled. Small [...] Read more.
Interest in fullerene-based polymer structures has renewed due to the development of synthesis technologies using thin C60 polymers. Fullerene networks are good semiconductors. In this paper, heterostructure complexes composed of C60 polymer networks on atomically thin dielectric substrates are modeled. Small tensile and compressive deformations make it possible to ensure appropriate placement of monolayer boron nitride with fullerene networks. The choice of a piezoelectric boron nitride substrate was dictated by interest in their applicability in mechanoelectric, photoelectronic, and electro-optical devices with the ability to control their properties. The results we obtained show that C60 polymer/h-BN heterostructures are stable compounds. The van der Waals interaction that arises between them affects their electronic and optical properties. Full article
Show Figures

Figure 1

20 pages, 8642 KiB  
Article
Cheminformatics and Machine Learning Approaches to Assess Aquatic Toxicity Profiles of Fullerene Derivatives
by Natalja Fjodorova, Marjana Novič, Katja Venko, Bakhtiyor Rasulev, Melek Türker Saçan, Gulcin Tugcu, Safiye Sağ Erdem, Alla P. Toropova and Andrey A. Toropov
Int. J. Mol. Sci. 2023, 24(18), 14160; https://doi.org/10.3390/ijms241814160 - 15 Sep 2023
Cited by 4 | Viewed by 2364
Abstract
Fullerene derivatives (FDs) are widely used in nanomaterials production, the pharmaceutical industry and biomedicine. In the present study, we focused on the potential toxic effects of FDs on the aquatic environment. First, we analyzed the binding affinity of 169 FDs to 10 human [...] Read more.
Fullerene derivatives (FDs) are widely used in nanomaterials production, the pharmaceutical industry and biomedicine. In the present study, we focused on the potential toxic effects of FDs on the aquatic environment. First, we analyzed the binding affinity of 169 FDs to 10 human proteins (1D6U, 1E3K, 1GOS, 1GS4, 1H82, 1OG5, 1UOM, 2F9Q, 2J0D, 3ERT) obtained from the Protein Data Bank (PDB) and showing high similarity to proteins from aquatic species. Then, the binding activity of 169 FDs to the enzyme acetylcholinesterase (AChE)—as a known target of toxins in fathead minnows and Daphnia magna, causing the inhibition of AChE—was analyzed. Finally, the structural aquatic toxicity alerts obtained from ToxAlert were used to confirm the possible mechanism of action. Machine learning and cheminformatics tools were used to analyze the data. Counter-propagation artificial neural network (CPANN) models were used to determine key binding properties of FDs to proteins associated with aquatic toxicity. Predicting the binding affinity of unknown FDs using quantitative structure–activity relationship (QSAR) models eliminates the need for complex and time-consuming calculations. The results of the study show which structural features of FDs have the greatest impact on aquatic organisms and help prioritize FDs and make manufacturing decisions. Full article
(This article belongs to the Special Issue Molecular Research in Environmental Toxicology)
Show Figures

Figure 1

31 pages, 2160 KiB  
Article
Obtaining Vegetable Production Enriched with Minor Micronutrients Using Fullerene Derivatives
by Gayane G. Panova, Konstantin N. Semenov, Anna S. Zhuravleva, Yuriy V. Khomyakov, Elena N. Volkova, Galina V. Mirskaya, Anna M. Artemyeva, Nailia R. Iamalova, Victoriya I. Dubovitskaya and Olga R. Udalova
Horticulturae 2023, 9(7), 828; https://doi.org/10.3390/horticulturae9070828 - 20 Jul 2023
Cited by 6 | Viewed by 2448
Abstract
Elaborating on the methods and means of enriching nutrition, including that of plants, with a number of microelements that are vital for humans is now very important due to the unresolved acute problems of micronutrient deficiency and imbalance, which affect the majority of [...] Read more.
Elaborating on the methods and means of enriching nutrition, including that of plants, with a number of microelements that are vital for humans is now very important due to the unresolved acute problems of micronutrient deficiency and imbalance, which affect the majority of the population of various countries in the world. Promising solutions for the implementation of biofortification in terms of safety, efficiency, size, biocompatibility, and transportability are the water-soluble derivatives of C60 or C70 fullerene. By now, the use of water-soluble fullerenes (C60(OH)22–24 or C70(OH)12–14 fullerenols, C60 fullerene with glycine or with arginine: C60-L-Gly or C60-L-Arg) with various functional groups for plant enrichment is pioneering. Experimental research work was carried out at the agrobiopolygon of the Agrophysical Research Institute under controlled microclimate conditions. This work constituted an assessment of the influence of C60(OH)22–24 fullerenol introduction into the soil on the content of macro- and microelements in the soil and in plants, for example, cucumber, as well as on the plants’ physiological state (photosynthetic pigments, the intensity of lipid peroxidation, the activity of peroxidase and catalase enzymes), growth, and element content. Its aim was to study the possibility of enriching the plants’ production (Chinese cabbage, tomato, and cucumber) with compositions of the fullerene derivatives (C60-L-Gly or C60-L-Arg, C60(OH)22–24 or C70(OH)12–14 fullerenols) and selenium or zinc compounds by introducing them into a nutrient solution or by foliar treatment of plants. It was revealed that the introduction of solutions of C60 fullerenol in various concentrations (1 mg/kg, 10 mg/kg, and 100 mg/kg) into soddy-podzolic sandy loamy soil contributed to the activation of the processes of nitrogen transformation in the soil, in particular, the enhancement of the process of nitrification, and to the increase in the content of mobile forms of some macro- and microelements in the soil as well as of the latter in plant organs, for example, in cucumber plants, especially in their leaves. Along with this, the plants showed an increase in the content of photosynthetic pigments, a predominant decrease in the activity of the oxidative enzyme peroxidase and in the intensity of lipid peroxidation, and an increase in the content of the reducing enzyme catalase. The improvement in the physiological state of plants had a positive effect on the growth rates of cucumber plants. The compositions of solutions of amino acid fullerenes (C60-L-Gly or C60-L-Arg) and sodium selenate as well as C60 or C70 fullerenols and zinc sulfate, selected on the basis of different charges of molecules or functional groups of fullerene derivatives, showed higher efficiency at low concentrations in enriching the plant products of Chinese cabbage, tomato, and cucumber with selenium and zinc, respectively, compared with mineral salts of the indicated elements and control (edible part of Chinese cabbage: by 31.0−89.0% relative to that in the control and by 26.0–81.0% relative to the treatment of plants with a sodium selenate; tomato fruits: by 33.7–42.2% relative to that in the control and by 10.2–17.2% relative to the treatment of plants with a sodium selenate; cucumber fruits: by 42.0–59.0% relative to that in the control and by 10.0–23.0% relative to the treatment of plants with a zinc sulfate). At the same time, the quantitative characteristics of growth, productivity, and/or quality of the obtained products increase and improve accordingly. The prospects for further research include an in-depth study into the mechanisms of the compositions of fullerene derivatives and various compounds of trace elements’ influence on the plants, as well as the synthesis and study of the various exo- and endo derivatives of fullerenes’ properties, including C60 complex compounds with transition metals and fullerenes, which, inside their carbon networks, contain atoms of various chemical elements, such as lanthanum and others. Full article
Show Figures

Graphical abstract

15 pages, 3612 KiB  
Article
Efficient Cathode Interfacial Layer for Low-Light/Indoor Non-Fullerene Organic Photovoltaics
by Muhammad Jahandar, Jinhee Heo, Soyeon Kim and Dong Chan Lim
Nanoenergy Adv. 2023, 3(2), 155-169; https://doi.org/10.3390/nanoenergyadv3020009 - 20 Jun 2023
Viewed by 2146
Abstract
Indoor organic photovoltaics (IOPVs) have attained considerable research attention as a power source for a low-power consumption self-sustainable electronic device for Internet of Things (IoT) applications. This study aims to develop an efficient cathode interfacial layer (CIL) based on a polyethyleneimine (PEIE) derivative, [...] Read more.
Indoor organic photovoltaics (IOPVs) have attained considerable research attention as a power source for a low-power consumption self-sustainable electronic device for Internet of Things (IoT) applications. This study aims to develop an efficient cathode interfacial layer (CIL) based on a polyethyleneimine (PEIE) derivative, processed at room temperature, for the advancement of non-fullerene acceptor (NFA)-based IOPVs. Using a simple chemical reaction between polyethyleneimine and cobalt (II) chloride, we developed a 3D network-structured CIL. Through quaternary ammonium salts and chelating, metal ions act as mediators and induce metal-ion doping. An inverted device architecture with wide-bandgap and low-bandgap photo-absorber layer is utilized to understand the role of CILs under standard 1 sun and low-light or indoor light illuminations. The IOPV devices with modified CIL (Co-PEIE) having PBDB-T: IT-M and PBDB-T-2F: BTP-4F photo-absorber layers demonstrate a power conversion efficiency of 22.60% and 18.34% under 1000 lux LED lamp (2700 K) illumination conditions, respectively, whereas the IOPV devices with pristine PEIE CIL realized a poor device performance of 18.31% and 14.32% for the PBDB-T: IT-M and PBDB-T-2F: BTP-4F active layers, respectively. The poor device performance of PEIE interlayer-based IOPV under low-light conditions is the result of the significantly high leakage current and low shunt resistance that directly affect the open-circuit voltage (VOC) and fill factor (FF). Therefore, the adjustable energy barrier and notably low leakage current exhibited by the Co-PEIE CIL have a crucial impact on mitigating losses in VOC and FF when operating under low-light conditions. Full article
Show Figures

Figure 1

7 pages, 1637 KiB  
Communication
First Theoretical Realization of a Stable Two-Dimensional Boron Fullerene Network
by Bohayra Mortazavi
Appl. Sci. 2023, 13(3), 1672; https://doi.org/10.3390/app13031672 - 28 Jan 2023
Cited by 4 | Viewed by 2483
Abstract
Successful experimental realizations of two-dimensional (2D) C60 fullerene networks have been among the most exciting latest advances in the rapidly growing field of 2D materials. In this short communication, on the basis of the experimentally synthesized full boron B40 fullerene lattice, [...] Read more.
Successful experimental realizations of two-dimensional (2D) C60 fullerene networks have been among the most exciting latest advances in the rapidly growing field of 2D materials. In this short communication, on the basis of the experimentally synthesized full boron B40 fullerene lattice, and by structural minimizations of extensive atomic configurations via density functional theory calculations, we could, for the first time, predict a stable B40 fullerene 2D network, which shows an isotropic structure. Acquired results confirm that the herein predicted B40 fullerene network is energetically and dynamically stable and also exhibits an appealing thermal stability. The elastic modulus and tensile strength are estimated to be 125 and 7.8 N/m, respectively, revealing strong bonding interactions in the predicted nanoporous nanosheet. Electronic structure calculations reveal metallic character and the possibility of a narrow and direct band gap opening by applying the uniaxial loading. This study introduces the first boron fullerene 2D nanoporous network with an isotropic lattice, remarkable stability, and a bright prospect for the experimental realization. Full article
(This article belongs to the Special Issue Novel Nanomaterials and Nanostructures)
Show Figures

Figure 1

13 pages, 3457 KiB  
Article
Stability and Elasticity of Quasi-Hexagonal Fullerene Monolayer from First-Principles Study
by Guichang Shen, Linxian Li, Shuai Tang, Jianfeng Jin, Xiao-Jia Chen and Qing Peng
Crystals 2023, 13(2), 224; https://doi.org/10.3390/cryst13020224 - 26 Jan 2023
Cited by 20 | Viewed by 3152
Abstract
As a newly synthesized two-dimensional carbon material, the stability study of monolayer fullerene networks or quasi-hexagonal phase fullerenes (qhp-C60) is timely desirable. We have investigated the stabilities of qhp-C60, including thermal, structural, mechanical, and thermodynamic stabilities, as well as [...] Read more.
As a newly synthesized two-dimensional carbon material, the stability study of monolayer fullerene networks or quasi-hexagonal phase fullerenes (qhp-C60) is timely desirable. We have investigated the stabilities of qhp-C60, including thermal, structural, mechanical, and thermodynamic stabilities, as well as the bonding characteristics, ductility, and mechanical properties, via first-principles calculations. The results show that qhp-C60 is energetically, mechanically, and thermodynamically stable. The thermodynamic stability of qhp-C60 at 300 K and 600 K is verified. The bonding characteristics of qhp-C60 are analyzed from the bond length, and it has sp2 and sp3 hybridization. The Pugh ratio (B/G) and Poisson’s ratio (v) indicate similar ductility with graphite and graphene. We also found that qhp-C60 has the lowest hardness and the anisotropy of the material. In addition, the electronic characteristics, including electron localization function (ELF), crystal orbital Hamiltonian population (COHP), and density of states (DOS) at different temperatures, are analyzed to verify the thermal stability of the material. Our results might be helpful in the material design of qhp-C60-related applications. Full article
(This article belongs to the Special Issue Graphene Mechanics Volume III)
Show Figures

Figure 1

13 pages, 2991 KiB  
Review
Potential of Polymer/Fullerene Nanocomposites for Anticorrosion Applications in the Biomedical Field
by Ayesha Kausar
J. Compos. Sci. 2022, 6(12), 394; https://doi.org/10.3390/jcs6120394 - 16 Dec 2022
Cited by 16 | Viewed by 2935
Abstract
Initially, this review presents the fundamentals of corrosion-resistant polymer/fullerene nanocomposites. Then, the potential of polymer/fullerene nanocomposites for corrosion resistance in biomedical applications is presented. In particular, anticorrosion biomedical applications of fullerene-based nanomaterials are proposed for antimicrobial applications, drug delivery, bioimaging, etc. According to [...] Read more.
Initially, this review presents the fundamentals of corrosion-resistant polymer/fullerene nanocomposites. Then, the potential of polymer/fullerene nanocomposites for corrosion resistance in biomedical applications is presented. In particular, anticorrosion biomedical applications of fullerene-based nanomaterials are proposed for antimicrobial applications, drug delivery, bioimaging, etc. According to the literature, due to the low conductivity/anticorrosion features of pristine thermoplastic polymers, conjugated polymers (polyaniline, polypyrrole, polythiophene, etc.) with high corrosion resistance performance were used. Subsequently, thermoplastic/thermosetting polymers were filled with nanoparticles to enhance their anticorrosion properties relative to those of neat polymers. Accordingly, fullerene-derived nanocomposites were found to be effective for corrosion protection. Polymer/fullerene nanocomposites with a fine dispersion and interactions revealed superior anticorrosion performance. The formation of a percolation network in the polymers/fullerenes facilitated their electron conductivity and, thus, corrosion resistance behavior. Consequently, the anticorrosion polymer/fullerene nanocomposites were applied in the biomedical field. However, this field needs to be further explored to see the full biomedical potential of anticorrosion polymer/fullerene nanocomposites. Full article
Show Figures

Figure 1

15 pages, 2603 KiB  
Article
Nano-Ag Particles Embedded in C-Matrix: Preparation, Properties and Application in Cell Metabolism
by Sylwia Terpilowska, Stanislaw Gluszek, Elzbieta Czerwosz, Halina Wronka, Piotr Firek, Jan Szmidt, Malgorzata Suchanska, Justyna Keczkowska, Bozena Kaczmarska, Mirosław Kozlowski and Ryszard Diduszko
Materials 2022, 15(17), 5826; https://doi.org/10.3390/ma15175826 - 24 Aug 2022
Cited by 3 | Viewed by 1832
Abstract
The application of nano-Ag grains as antiviral and antibacterial materials is widely known since ancient times. The problem is the toxicity of the bulk or big-size grain materials. It is known that nano-sized silver grains affect human and animal cells in some medical [...] Read more.
The application of nano-Ag grains as antiviral and antibacterial materials is widely known since ancient times. The problem is the toxicity of the bulk or big-size grain materials. It is known that nano-sized silver grains affect human and animal cells in some medical treatments. The aim of this study is to investigate the influence of nano-Ag grains embedded in a carbonaceous matrix on cytotoxicity, genotoxicity in fibroblasts, and mutagenicity. The nanocomposite film is composed of silver nanograins embedded in a carbonaceous matrix and it was obtained via the PVD method by deposition from two separated sources of fullerenes and silver acetate powders. This method allows for the preparation of material in the form of a film or powder, in which Ag nanograins are stabilized by a carbon network. The structure and morphology of this material were studied using SEM/EDX, XRD, and Raman spectroscopy. The toxicology studies were performed for various types of the material differing in the size of Ag nanograins. Furthermore, it was found that these properties, such as cell viability, genotoxicity, and mutagenicity, depend on Ag grain size. Full article
(This article belongs to the Special Issue Trends in Electronic and Optoelectronic Materials)
Show Figures

Figure 1

7 pages, 1467 KiB  
Communication
Low and Anisotropic Tensile Strength and Thermal Conductivity in the Single-Layer Fullerene Network Predicted by Machine-Learning Interatomic Potentials
by Bohayra Mortazavi and Xiaoying Zhuang
Coatings 2022, 12(8), 1171; https://doi.org/10.3390/coatings12081171 - 12 Aug 2022
Cited by 23 | Viewed by 2861
Abstract
In the latest ground-breaking experimental advancement (Nature (2022), 606, 507), zero-dimensional fullerenes (C60) have been covalently bonded to form single-layer two-dimensional (2D) fullerene network, namely quasi-hexagonal-phase fullerene (qHPC60). Motivated by the aforementioned accomplishment, in this communication, for the [...] Read more.
In the latest ground-breaking experimental advancement (Nature (2022), 606, 507), zero-dimensional fullerenes (C60) have been covalently bonded to form single-layer two-dimensional (2D) fullerene network, namely quasi-hexagonal-phase fullerene (qHPC60). Motivated by the aforementioned accomplishment, in this communication, for the first time, we explore the phononic and mechanical properties of the qHPC60 monolayer, employing state-of-the-art machine-learning interatomic potentials. By employing an efficient passive-training methodology, the thermal and mechanical properties were examined with an ab-initio level of accuracy using the classical molecular dynamics simulations. Predicted phonon dispersion confirmed the desirable dynamical stability of the qHPC60 monolayer. Room temperature lattice thermal conductivity is predicted to be ultralow and around 2.9 (5.7) W/m·K along the x(y) directions, which are by three orders of magnitude lower than that of the graphene. Close to the ground state and at room temperature, the ultimate tensile strength of the qHPC60 monolayer along the x(y) directions is predicted to be 7.0 (8.8) and 3.3 (4.2) GPa, respectively, occurring at corresponding strains of around 0.07 and 0.029, respectively. The presented computationally accelerated first-principles results confirm highly anisotropic and remarkably low tensile strength and phononic thermal conductivity of the qHPC60 fullerene network nanosheets. Full article
Show Figures

Graphical abstract

16 pages, 3050 KiB  
Article
Molecular Conditional Generation and Property Analysis of Non-Fullerene Acceptors with Deep Learning
by Shi-Ping Peng, Xin-Yu Yang and Yi Zhao
Int. J. Mol. Sci. 2021, 22(16), 9099; https://doi.org/10.3390/ijms22169099 - 23 Aug 2021
Cited by 6 | Viewed by 3756
Abstract
The proposition of non-fullerene acceptors (NFAs) in organic solar cells has made great progress in the raise of power conversion efficiency, and it also broadens the ways for searching and designing new acceptor molecules. In this work, the design of novel NFAs with [...] Read more.
The proposition of non-fullerene acceptors (NFAs) in organic solar cells has made great progress in the raise of power conversion efficiency, and it also broadens the ways for searching and designing new acceptor molecules. In this work, the design of novel NFAs with required properties is performed with the conditional generative model constructed from a convolutional neural network (CNN). The temporal CNN is firstly trained to be a good string-based molecular conditional generative model to directly generate the desired molecules. The reliability of generated molecular properties is then demonstrated by a graph-based prediction model and evaluated with quantum chemical calculations. Specifically, the global attention mechanism is incorporated in the prediction model to pool the extracted information of molecular structures and provide interpretability. By combining the generative and prediction models, thousands of NFAs with required frontier molecular orbital energies are generated. The generated new molecules essentially explore the chemical space and enrich the database of transformation rules for molecular design. The conditional generation model can also be trained to generate the molecules from molecular fragments, and the contribution of molecular fragments to the properties is subsequently predicted by the prediction model. Full article
(This article belongs to the Special Issue In Silico Molecular Design)
Show Figures

Graphical abstract

Back to TopTop