Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = full-scale ship test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7568 KiB  
Article
Delayed Detached-Eddy Simulations of Aerodynamic Variability During Carrier-Based Aircraft Landing with a Domain Precursor Inflow Method
by Jiawei Fu, Ruifan Hu, Hong Wang, Ke Xu and Shuling Tian
J. Mar. Sci. Eng. 2025, 13(3), 498; https://doi.org/10.3390/jmse13030498 - 3 Mar 2025
Viewed by 732
Abstract
Flight tests and wind tunnel experiments face difficulties in investigating the impact of aircraft carrier air-wake on the landing process. Meanwhile, numerical methods generally exhibit low overall computational efficiency in solving such problems. To address the computational challenges posed by the disparate spatiotemporal [...] Read more.
Flight tests and wind tunnel experiments face difficulties in investigating the impact of aircraft carrier air-wake on the landing process. Meanwhile, numerical methods generally exhibit low overall computational efficiency in solving such problems. To address the computational challenges posed by the disparate spatiotemporal scales of the ship air-wake and aircraft motion, a domain precursor inflow method is developed to efficiently generate unsteady inflow boundary conditions from precomputed full-domain air-wake simulations. This study investigates the aerodynamic variability of carrier-based aircraft during landing through the turbulent air-wake generated by an aircraft carrier, employing a hybrid RANS-LES methodology on dynamic unstructured overset grids. The numerical framework integrates a delayed detached-eddy simulation (DDES) model with a parallel dynamic overset grid approach, enabling high-fidelity simulations of coupled aircraft carrier interactions. Validation confirms the accuracy of the precursor inflow method in reproducing air-wake characteristics and aerodynamic loads compared to full-domain simulations. Parametric analyses of 15 distinct landing trajectories reveal significant aerodynamic variability, particularly within 250 m of the carrier, where interactions with island-generated vortices induce fluctuations in lift (up to 25%), drag (18%), and pitching moments (30%). Ground effects near the deck further amplify load variations, while lateral deviations in landing paths generate asymmetric forces and moments. The proposed methodology demonstrates computational efficiency for multi-scenario analysis, providing critical insights into aerodynamic uncertainties during carrier operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 12721 KiB  
Article
Numerical Analysis on the Scale Effect of a Free-Running Ship’s Manoeuvring Characteristics
by Woo-Seok Choi, Gyeong-Seo Min, Hae-Chan Yun, Young-Uk Do, Kang-Min Kim, Momchil Terziev, Saishuai Dai, Daejeong Kim, Doojin Jung and Soonseok Song
J. Mar. Sci. Eng. 2025, 13(2), 228; https://doi.org/10.3390/jmse13020228 - 25 Jan 2025
Viewed by 947
Abstract
This study focuses on the manoeuvring characteristics of model- and full-scale ships. Various methods, including free-running model tests (FRMTs), computational fluid dynamics (CFD), and theoretical approaches, were employed to estimate ship manoeuvring performance. However, these methods are typically simulated at model-scale, which introduces [...] Read more.
This study focuses on the manoeuvring characteristics of model- and full-scale ships. Various methods, including free-running model tests (FRMTs), computational fluid dynamics (CFD), and theoretical approaches, were employed to estimate ship manoeuvring performance. However, these methods are typically simulated at model-scale, which introduces discrepancies in the Reynolds number due to Froude scaling laws. Although numerous studies have investigated scale effects, most have concentrated on ship resistance, with limited research on manoeuvring performance. To address this gap, this study developed a free-running CFD simulation model for both a model-scale and full-scale ONRT. The study involved a detailed analysis of manoeuvring trajectories, forces, and moments. This analysis aimed to highlight differences in manoeuvring performance caused by Reynolds number discrepancies between model- and full-scale ships, providing a quantitative assessment of performance variations across scales and contributing to a more accurate understanding of manoeuvring characteristics at full scale. Full article
(This article belongs to the Special Issue Management and Control of Ship Traffic Behaviours)
Show Figures

Figure 1

27 pages, 13034 KiB  
Article
Numerical Research on Hull–Propeller–Rudder–Ice Interaction of Full-Scale Polar Transport Ship in Brash Ice Channel
by Jinlong Zhang, Jianing Zhang, Lei Zhang, Weimin Chen and Qingshan Zhang
J. Mar. Sci. Eng. 2025, 13(1), 145; https://doi.org/10.3390/jmse13010145 - 15 Jan 2025
Cited by 1 | Viewed by 1265
Abstract
A strong nonlinear ice load has a significant impact on the resistance and power demand of polar transport ships under different drafts in brash ice channels. In this study, the CFD-DEM coupling method is used to investigate the self-propulsion performance of a full-scale [...] Read more.
A strong nonlinear ice load has a significant impact on the resistance and power demand of polar transport ships under different drafts in brash ice channels. In this study, the CFD-DEM coupling method is used to investigate the self-propulsion performance of a full-scale polar transport ship in brash ice channels. The interactions between the full-scale polar transport ship, propeller, rudder, and brash ice are effectively simulated. First, the hydrodynamic performance of an open-water propeller is tested, and it is found that the numerical errors of efficiency and the experimental result are less than 8%. Then, the ice resistance, total thrust, effective power, delivered power, and propulsive efficiency of the polar transport ship under different draft conditions are studied, and the results are in good agreement with those of the self-propulsion model tests in the brash ice channel. Through a numerical simulation of self-propulsion in the brash ice channel, self-propulsion points under different drafts and brash ice thicknesses are obtained. It is found that the propeller rotation speed is closely related to the draft depth. Finally, experiments and numerical simulations of the total ice resistance are carried out under different brash ice thicknesses, and the results are consistent with those of the empirical formulas. The accuracy of the three empirical formulas under different drafts is compared. This research work determines the resistance, power demand, and propulsive efficiency of a polar transport ship under given ice conditions and speeds, as well as the self-propulsion points under different ice thicknesses. It is of great significance for the control of ships in polar navigation. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 1817 KiB  
Article
Slow Steaming as a Sustainable Measure for Low-Carbon Maritime Transport
by Nastia Degiuli, Ivana Martić and Carlo Giorgio Grlj
Sustainability 2024, 16(24), 11169; https://doi.org/10.3390/su162411169 - 19 Dec 2024
Cited by 2 | Viewed by 1557
Abstract
Reducing greenhouse gas (GHG) emissions is essential across all sectors, including the maritime transport industry. Speed reduction is a key short-term operational measure for lowering GHG emissions from ships, and its implementation has already begun. While speed reduction offers significant benefits, particularly in [...] Read more.
Reducing greenhouse gas (GHG) emissions is essential across all sectors, including the maritime transport industry. Speed reduction is a key short-term operational measure for lowering GHG emissions from ships, and its implementation has already begun. While speed reduction offers significant benefits, particularly in terms of GHG emissions reduction potential, there are concerns about its application, including increased voyage times, an increase in the number of ships required, and the fact that ships may operate in conditions quite different from those for which they were designed and optimized. This study investigates the impact of speed reduction on ship performance in calm water, using a post-Panamax container ship as an example. Numerical simulations of resistance, open-water, and self-propulsion tests were conducted for a full-scale ship and propeller, and the results were validated against extrapolated towing tank data. Hydrodynamic characteristics, fuel consumption, and carbon dioxide emissions at various speeds were then estimated. The results indicated that when constant transport work was maintained, yearly CO2 emissions decreased by −16.89% with a 10% speed reduction, −21.97% with a 20% speed reduction, and −25.74% with a 30% speed reduction. This study demonstrates that the classical cubic law for fuel oil consumption and speed dependence is not valid, as the speed exponent is lower than 3. The potential benefits and drawbacks of implementing slow steaming are discussed. Finally, this research contributes to the existing literature by evaluating the CO2 emissions reduction potential of slow steaming. Full article
Show Figures

Figure 1

22 pages, 7294 KiB  
Article
A Study on the Hydrodynamic Response Characteristics of Vessel-Shaped Cages Based on the Smoothed Particle Hydrodynamics Method
by Yue Zhuo, Junhua Chen, Lingjie Bao, Hao Li, Fangping Huang and Chuhua Jiang
J. Mar. Sci. Eng. 2024, 12(12), 2199; https://doi.org/10.3390/jmse12122199 - 1 Dec 2024
Cited by 1 | Viewed by 993
Abstract
Due to the limitations of farming space, fish cage aquaculture is gradually expanding into offshore deep-sea areas, where the environmental conditions surrounding deep-sea fish cages are more complex and harsher compared to those in shallower offshore locations. Conventional multi-point moored gravity flexible fish [...] Read more.
Due to the limitations of farming space, fish cage aquaculture is gradually expanding into offshore deep-sea areas, where the environmental conditions surrounding deep-sea fish cages are more complex and harsher compared to those in shallower offshore locations. Conventional multi-point moored gravity flexible fish cages are prone to damage in the more hostile environments of the deep sea. In this paper, we present a design for a single-point mooring vessel-shaped fish cage that can quickly adjust its bow direction when subjected to waves from various angles. This design ensures that the floating frame consistently responds effectively to wave impacts, thereby reducing the wave forces experienced. The dynamic response of the floating frame and the mooring forces were simulated by coupling the Smoothed Particle Hydrodynamics method with the Moordyn numerical model for mooring analysis. The three degrees of freedom (heave, surge, and pitch) and the mooring forces of a scaled-down vessel-type ship cage model under wave conditions were investigated both numerically and experimentally. The results indicate that the error between the simulation data and the experimental results is maintained within 6%. Building on this foundation, the motion response and mooring force of a full-sized ship-shaped net box under wave conditions off the southeast coast of China were simulated. This study examined the effects of varying mooring lengths and buoy configurations on the motion response and mooring force of the fish cage. Finally, we constructed the fish cage and tested it under the influence of a typhoon. The results demonstrate that the fish cage could operate stably without structural damage, such as mooring failure or floating frame breakage, despite the significant deformation of the floating frame. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

10 pages, 2049 KiB  
Article
An Investigation into Using CFD for the Estimation of Ship Specific Parameters for the SPICE Model for the Prediction of Sea Spray Icing: Part 2—The Verification of SPICE2 with a Full-Scale Test
by Per-Arne Sundsbø and Sujay Deshpande
J. Mar. Sci. Eng. 2024, 12(10), 1866; https://doi.org/10.3390/jmse12101866 - 18 Oct 2024
Cited by 2 | Viewed by 850
Abstract
A hybrid CFD–ML model for the prediction of sea spray icing, SPICE2, was developed in Part 1 of this study in Deshpande et al., 2024. The SPICE2 model is an extension of the ML model, SPICE, where some of the variables required for [...] Read more.
A hybrid CFD–ML model for the prediction of sea spray icing, SPICE2, was developed in Part 1 of this study in Deshpande et al., 2024. The SPICE2 model is an extension of the ML model, SPICE, where some of the variables required for icing rate predictions: local wind speed, spray duration, spray period, and spray flux, are computed from CFD simulations. These, along with the air and water temperatures, and the salinity from the metocean data are used for the prediction of icing rates at different locations on a moving vessel. The existing full-scale icing measurements proved to be not detailed enough for the purpose of the verification of sea spray icing prediction models and the verification of the SPICE2 required distribution of sea spray icing data on the vessel surface in addition to the vessel design for simulation. A full-scale sea spray icing test was conducted in 2018 by Sundsbø et al. on a fully enclosed lifeboat equipped for the Goliat field in the Barents Sea. The 3D design of the same lifeboat, together with the corresponding metocean conditions and ship characteristics was used for the simulation of the vessel-specific parameters required for the verification of the icing rate and distribution prediction from the SPICE2 model against the measured distribution of sea spray icing rates on the lifeboat surface. The availability of the 3D model of this lifeboat, in addition to the fact that the icing measurements from this test were detailed enough to attempt a model verification served the purpose of validating the SPICE2 model. The icing rates measured on this lifeboat are used for the full-scale validation of the SPICE2 model that is proposed in Part 1 of this study. It was seen that the icing rates predicted by SPICE2 concurred with 9 of 13 selected locations on the lifeboat. The ones which did not showed very little deviation from the measurements. The icing rate and distribution prediction with SPICE2 were satisfactorily validated against full-scale icing measurements. This is a first attempt in modelling sea spray generation using CFD and further research into CFD for the estimation of spray flux is suggested. Full article
(This article belongs to the Special Issue Novel Maritime Techniques and Technologies, and Their Safety)
Show Figures

Figure 1

24 pages, 3418 KiB  
Article
Corrected Method for Scaling the Structural Response Subjected to Blast Load
by Yihao Liu, Xiangshao Kong, Hu Zhou, Cheng Zheng and Weiguo Wu
J. Mar. Sci. Eng. 2024, 12(10), 1767; https://doi.org/10.3390/jmse12101767 - 5 Oct 2024
Viewed by 1171
Abstract
In scale-down tests of ship structures subjected to a blast load, the accuracy of the predicted response of a prototype is affected by the material substitution and geometric distortion between a scaled model and a full-size structure; this is known as incomplete similarity. [...] Read more.
In scale-down tests of ship structures subjected to a blast load, the accuracy of the predicted response of a prototype is affected by the material substitution and geometric distortion between a scaled model and a full-size structure; this is known as incomplete similarity. To obtain a more accurate response from a prototype during small-size tests, a corrected method for scaling the response of thin plates and stiffened plates under a blast load was derived. In addition, based on numerical simulations of explosion responses by employing the elastic–plastic model and the Johnson–Cook constitutive model, it was found that using the average yield stress derived from the equivalent plastic strain energy in the ideal elastic–plastic model can obtain consistent structural responses. Moreover, a method for calculating the distortion factor caused by the yield stress of different materials was proposed. Furthermore, it was demonstrated that the average effective plastic strain between the prototype and the corrected model is equal, and based on this, a similarity prediction method was established to correct the distortions caused by yield stress and the thickness of blast loaded plates. The results indicate that the proposed correction method can compensate for the differences caused by distorted factors of yield stress and thickness, with the maximum error in the structure’s peak displacement being less than 3%. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

33 pages, 18116 KiB  
Article
Investigation on Calm Water Resistance of Wind Turbine Installation Vessels with a Type of T-BOW
by Mingsheng Xiahou, Deqing Yang, Hengxu Liu and Yuanhe Shi
J. Mar. Sci. Eng. 2024, 12(8), 1337; https://doi.org/10.3390/jmse12081337 - 6 Aug 2024
Cited by 1 | Viewed by 1407
Abstract
Given the typical characteristics of self-propulsion and jack-up wind turbine installation vessels (WTIVs), including their full and blunt hull form and complex appendages, this paper combines the model test method with the RANS-based CFD numerical prediction method to experimentally and numerically study the [...] Read more.
Given the typical characteristics of self-propulsion and jack-up wind turbine installation vessels (WTIVs), including their full and blunt hull form and complex appendages, this paper combines the model test method with the RANS-based CFD numerical prediction method to experimentally and numerically study the resistance of the optimized hull at different spudcan retraction positions. The calm water resistance components and their mechanisms of WTIVs based on T-BOW were obtained. Furthermore, using the multivariate nonlinear least squares method, an empirical formula for rapid resistance estimation based on the Holtrop method was derived, and its prediction accuracy and applicability were validated with a full-scale ship case. This study indicates that the primary resistance components of such low-speed vessels are viscous pressure resistance, followed by frictional resistance and wave-making resistance. Notably, the spudcan retraction well area, as a unique appendage of WTIVs, exhibits a significant “moonpool additional resistance” effect. Different spudcan retraction positions affect the total calm water resistance by approximately 20% to 30%. Therefore, in the resistance optimization design of WTIVs, special attention should be paid to the matching design of the spudcan structure and the hull shell plate lines in the spudcan retraction well area. Full article
Show Figures

Figure 1

18 pages, 9037 KiB  
Article
Integrating Computational Fluid Dynamics for Maneuverability Prediction in Dual Full Rotary Propulsion Ships: A 4-DOF Mathematical Model Approach
by Qiaochan Yu, Yuan Yang, Xiongfei Geng, Yuhan Jiang, Yabin Li and Yougang Tang
J. Mar. Sci. Eng. 2024, 12(5), 762; https://doi.org/10.3390/jmse12050762 - 30 Apr 2024
Cited by 3 | Viewed by 1768
Abstract
To predict the maneuverability of a dual full rotary propulsion ship quickly and accurately, the integrated computational fluid dynamics (CFD) and mathematical model approach is performed to simulate the ship turning and zigzag tests, which are then compared and validated against a full-scale [...] Read more.
To predict the maneuverability of a dual full rotary propulsion ship quickly and accurately, the integrated computational fluid dynamics (CFD) and mathematical model approach is performed to simulate the ship turning and zigzag tests, which are then compared and validated against a full-scale trial carried out under actual sea conditions. Initially, the RANS equations are solved, employing the Volume of Fluid (VOF) method to capture the free water surface, while a numerical simulation of the captive model test is conducted using the rigid body motion module. Secondly, hydrodynamic derivatives for the MMG model are obtained from the CFD simulations and empirical formula. Lastly, a four-degree-of-freedom mathematical model group (MMG) maneuvering model is proposed for the dual full rotary propulsion ship, incorporating full-scale simulations of turning and zigzag tests followed by a full-scale trial for comparative validation. The results indicate that the proposed method has a high accuracy in predicting the maneuverability of dual full-rotary propulsion ships, with an average error of less than 10% from the full-scale trial data (and within 5% for the tactical diameters in particular) in spite of the influence of environmental factors such as wind and waves. It provides experience in predicting the maneuverability of a full-scale ship during the ship design stage. Full article
Show Figures

Figure 1

23 pages, 8816 KiB  
Article
Field Test of an Autonomous Observing System Prototype for Measuring Oceanographic Parameters from Ships
by Fernando P. Santos, Teresa L. Rosa, Miguel A. Hinostroza, Roberto Vettor, A. Miguel Piecho-Santos and C. Guedes Soares
Oceans 2024, 5(1), 127-149; https://doi.org/10.3390/oceans5010008 - 14 Mar 2024
Cited by 1 | Viewed by 1686
Abstract
A prototype of an autonomous system for the retrieval of oceanographic, wave, and meteorologic data was installed and tested in May 2021 on a Portuguese research vessel navigating on the Atlantic Ocean. The system was designed to be installed in fishing vessels that [...] Read more.
A prototype of an autonomous system for the retrieval of oceanographic, wave, and meteorologic data was installed and tested in May 2021 on a Portuguese research vessel navigating on the Atlantic Ocean. The system was designed to be installed in fishing vessels that could operate as a distributed network of ocean data collection. It consists of an automatic weather station, a ferrybox with a water pumping system, an inertial measurement unit, a GNSS unit, an onboard desktop computer, and a wave estimator algorithm for wave spectra estimation. Among several parameters collected by this system’s sensors are the air temperature, barometric pressure, humidity, wind speed and direction, sea water temperature, pH, dissolved oxygen, salinity, chlorophyll-a, roll, pitch, heave, true heading, and geolocation of the ship. This paper’s objectives are the following: (1) describe the autonomous prototype; and (2) present the data obtained during a full-scale trial; (3) discuss the results, advantages, and limitations of the system and future developments. Meteorologic measurements were validated by a second weather station onboard. The estimated wave parameters and wave spectra showed good agreement with forecasted data from the Copernicus database. The results are promising, and the system can be a cost-effective solution for voluntary observing ships. Full article
Show Figures

Figure 1

37 pages, 8828 KiB  
Review
Lithium-Ion Batteries on Board: A Review on Their Integration for Enabling the Energy Transition in Shipping Industry
by Giovanni Lucà Trombetta, Salvatore Gianluca Leonardi, Davide Aloisio, Laura Andaloro and Francesco Sergi
Energies 2024, 17(5), 1019; https://doi.org/10.3390/en17051019 - 21 Feb 2024
Cited by 14 | Viewed by 6466
Abstract
The emission reductions mandated by International Maritime Regulations present an opportunity to implement full electric and hybrid vessels using large-scale battery energy storage systems (BESSs). lithium-ionion batteries (LIB), due to their high power and specific energy, which allows for scalability and adaptability to [...] Read more.
The emission reductions mandated by International Maritime Regulations present an opportunity to implement full electric and hybrid vessels using large-scale battery energy storage systems (BESSs). lithium-ionion batteries (LIB), due to their high power and specific energy, which allows for scalability and adaptability to large transportation systems, are currently the most widely used electrochemical storage system. Hence, BESSs are the focus of this review proposing a comprehensive discussion on the commercial LIB chemistries that are currently available for marine applications and their potential role in ship services. This work outlines key elements that are necessary for designing a BESS for ships, including an overview of the regulatory framework for large-scale onboard LIB installations. The basic technical information about system integration has been summarized from various research projects, white papers, and test cases mentioned in available studies. The aim is to provide state-of-the-art information about the installation of BESSs on ships, in accordance with the latest applicable rules for ships. The goal of this study is to facilitate and promote the widespread use of batteries in the marine industry. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

19 pages, 8290 KiB  
Article
Numerical Study of a Model and Full-Scale Container Ship Sailing in Regular Head Waves
by Andreea Mandru, Liliana Rusu, Adham Bekhit and Florin Pacuraru
Inventions 2024, 9(1), 22; https://doi.org/10.3390/inventions9010022 - 12 Feb 2024
Cited by 1 | Viewed by 2745
Abstract
In the present study, the added resistance, heave, and pitch of the KRISO Container Ship (KCS) in waves, at both model scale and full scale, are predicted numerically in regular head waves, for four wavelengths and three wave heights. The ISIS-CFD viscous flow [...] Read more.
In the present study, the added resistance, heave, and pitch of the KRISO Container Ship (KCS) in waves, at both model scale and full scale, are predicted numerically in regular head waves, for four wavelengths and three wave heights. The ISIS-CFD viscous flow solver, implemented in the Fidelity Fine Marine software provided by CADENCE, was employed for the numerical simulations. The spatial discretization was based on the finite volume method using an unstructured grid. The unsteady Reynolds-averaged Navier–Stokes (RANS) equations were solved numerically, with the turbulence modeled by shear stress transport (k-ω) (SST). The free-surface capturing was based on the volume-of-fluid method. The computed solutions were validated through comparisons with towing test data available in the public domain. To predict the uncertainties in the numerical solution, a systematic grid convergence study based on the Richardson extrapolation method was performed for a single wave case on three different grid resolutions. Specific attention was given to the free-surface and wake flow in the propeller plane. The purpose was to compare the numerical results from the model- and full-scale tests to examine the scale’s effect on the ship’s performance in regular head waves. The comparison between the model scale and full scale showed obvious differences, less accentuated for the free-surface topology and clearly observed in terms of boundary layer formation in the propeller’s vicinity. Full article
Show Figures

Figure 1

24 pages, 23898 KiB  
Article
Influence of Edge-Limited Hot Surfaces on Accidental Ignition and Combustion in Ship Engine Rooms: A Case Study of Marine Diesel Leakage
by Xiaolei Liu, Kan Wang, Yuru He, Yang Ming and Hao Wang
J. Mar. Sci. Eng. 2024, 12(2), 247; https://doi.org/10.3390/jmse12020247 - 30 Jan 2024
Cited by 2 | Viewed by 1539
Abstract
To extend initial ignition-related fire prevention in ship engine room, this work presents a case study of marine diesel leakage for identifying accidental ignition by hot surface. Based on a self-designed experimental platform, a full-scale innovative experimental arrangement was conducted for diesel leakage-related [...] Read more.
To extend initial ignition-related fire prevention in ship engine room, this work presents a case study of marine diesel leakage for identifying accidental ignition by hot surface. Based on a self-designed experimental platform, a full-scale innovative experimental arrangement was conducted for diesel leakage-related hot surface ignition (HSI) tests in a ship engine room. A series of parameters (e.g., heat transfer, evaporation mode, ignition position, ignition delay time, flame instability, and combustion behavior) for improving the initial HSI of diesel leakage on an edge-limited hot surface were analyzed. A transient sequence corresponding to a change in leakage flow rates ranging from 7.5 mL to 25 mL was tested, and hot surface temperatures (HSTs) were adjusted between 390 °C to 525 °C. Puffing motion accelerated the mixing of HSI-driven vapors with fresh air, which was affected by the edge-based limitation and HSTs. The case study identified the effects of hot surface shape and the most important combinations of HSI-driven combustion characteristics for estimating initial ignition responses. Based on this current work, prediction models were proposed for determining the HSI height of marine diesel for varying leakage flow rates and HSTs. The results indicate that HSI height increases with leakage flow rate and HSI position is influenced by edged hot surfaces, leading the vertical centerline to shift towards the side of the edge structure. The results also revealed that the ignition delay time of diesel leaked onto an edged hot surface decreases as leakage flow rate increases. This change causes the initial HSI to occur earlier, potentially creating an extra risk in ship engine rooms. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

22 pages, 9326 KiB  
Article
Sloshing Response of an Aquaculture Vessel: An Experimental Study
by Yanwu Tao, Renqing Zhu, Jiayang Gu, Qi Wei, Fangxin Hu, Xiaosen Xu, Zhongyu Zhang and Zhiyu Li
J. Mar. Sci. Eng. 2023, 11(11), 2122; https://doi.org/10.3390/jmse11112122 - 6 Nov 2023
Cited by 4 | Viewed by 1647
Abstract
The sloshing response is crucial to the design and operation of aquaculture vessels and affects the safety of the culture equipment and the efficiency of the culture operation. A 1/50 scaled model was utilized to investigate the coupled sloshing response characteristics of a [...] Read more.
The sloshing response is crucial to the design and operation of aquaculture vessels and affects the safety of the culture equipment and the efficiency of the culture operation. A 1/50 scaled model was utilized to investigate the coupled sloshing response characteristics of a novel aquaculture vessel in a wave basin. Two wave directions (beam and head wave) and two filling levels (81.5% and 47.4%) are taken into account. The time-domain and frequency-domain characteristics of the sloshing response under the linear regular wave and extreme operational sea state were investigated using regular wave tests and irregular wave tests, respectively. The sloshing mechanism in the aquaculture tanks is complicated, due to the coupling effect between external waves, ship motion, and internal sloshing. In linear regular waves, the wave frequency mode dominates the sloshing response, which is larger under beam wave conditions than under head wave conditions and larger under half load conditions than full load conditions. The irregular wave test results confirmed the regular wave test conclusions, but the sloshing response has stronger nonlinearity, higher natural modes appeared, and the amplitude of the higher natural modes is also relatively larger. Full article
(This article belongs to the Special Issue New Techniques and Equipment in Large Offshore Aquaculture Platform)
Show Figures

Figure 1

24 pages, 4614 KiB  
Article
A Machine-Learning-Based Method for Ship Propulsion Power Prediction in Ice
by Li Zhou, Qianyang Sun, Shifeng Ding, Sen Han and Aimin Wang
J. Mar. Sci. Eng. 2023, 11(7), 1381; https://doi.org/10.3390/jmse11071381 - 6 Jul 2023
Cited by 46 | Viewed by 3229
Abstract
In recent years, safety issues respecting polar ship navigation in the presence of ice have become a research hotspot. The accurate prediction of propulsion power plays an important role in ensuring safe ship navigation and evaluating ship navigation ability, and deep learning has [...] Read more.
In recent years, safety issues respecting polar ship navigation in the presence of ice have become a research hotspot. The accurate prediction of propulsion power plays an important role in ensuring safe ship navigation and evaluating ship navigation ability, and deep learning has been widely applied in the field of shipping, of which the artificial neural network (ANN) is a common method. This study combines the scientific problems of ice resistance and propulsion power for polar ship design, focusing on the design of an ANN model for predicting the propulsion power of polar ships. Reference is made to the traditional propulsion power requirements of various classification societies, as well as ship model test and full-scale test data, to select appropriate input features and a training dataset. Three prediction methods are considered: building a radial basis function–particle swarm optimization algorithm (RBF-PSO) model to directly predict the propulsion power; based on the full-scale test and model test data, calculating the propulsion power using the Finnish–Swedish Ice Class Rules (FSICR) formula; using an ice resistance artificial neural network model (ANN-IR) to predict the ice resistance and calculate the propulsion power using the FSICR formula. Prediction errors are determined, and a sensitivity analysis is carried out with respect to the relevant parameters of propulsion power based on the above methods. This study shows that the RBF-PSO model based on nine feature inputs has a reasonable generalization effect. Compared with the data of the ship model test and full-scale test, the average error is about 14%, which shows that the method has high accuracy and can be used as a propulsion power prediction tool. Full article
(This article belongs to the Special Issue Ice-Structure Interaction in Marine Engineering)
Show Figures

Figure 1

Back to TopTop