Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = front face fluorescence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4683 KiB  
Article
The Effect of Storage on the Absorption and Fluorescence Spectra of Petal Extracts of Selected Anthocyanin-Containing Flowers
by Kacper Kut, Grzegorz Bartosz and Izabela Sadowska-Bartosz
Processes 2025, 13(6), 1826; https://doi.org/10.3390/pr13061826 - 9 Jun 2025
Viewed by 444
Abstract
The biological role of the fluorescence of flowers is a matter of debate. Anthocyanins are a group of compounds that are weakly fluorescent; their fluorescence in flowers has been rarely studied. This study aimed to compare the absorption and fluorescence spectra of anthocyanins [...] Read more.
The biological role of the fluorescence of flowers is a matter of debate. Anthocyanins are a group of compounds that are weakly fluorescent; their fluorescence in flowers has been rarely studied. This study aimed to compare the absorption and fluorescence spectra of anthocyanins extracted from several anthocyanin-containing autumn flowers and examine changes in these spectra during the storage of petals at cold-room and room temperatures and during the storage of dried petals. Petals of red clover Trifolium pratense, pink petunia Petunia × hybrida, Pelargonium horatum, Pelargonium. zonale, Pelargonium. peltatum, red and pink Begonia semperflorens, Buddleja japonica, and purple Chrysanthemum were studied. The results demonstrate that it is possible to distinguish between petals of various flowers based on the absorption spectra of petal extracts and the fluorescence spectra of petal extracts and intact petals. Spectral changes during storage were not always unidirectional and progressive; the most common one was the increase in the intensity of the fluorescence band at 500–560 nm at the excitation wavelength of 460 nm. These results point to the possibility of using fluorescence measurements to identify and estimate the freshness of petal-based material in herbalism, forensic analysis, and the food industry. The measurement of the spectra of whole petals or their fragments by front-face fluorimetry, including common plate readers, may be especially useful due to its simplicity and rapidity. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Graphical abstract

16 pages, 1080 KiB  
Review
What Can Fluorescence Tell Us About Wine?
by Izabela Sadowska-Bartosz and Grzegorz Bartosz
Int. J. Mol. Sci. 2025, 26(7), 3384; https://doi.org/10.3390/ijms26073384 - 4 Apr 2025
Viewed by 739
Abstract
Rapid and cost-effective measurements of the autofluorescence of wine can provide valuable information on the brand, origin, age, and composition of wine and may be helpful for the authentication of wine and detection of forgery. The list of fluorescent components of wines includes [...] Read more.
Rapid and cost-effective measurements of the autofluorescence of wine can provide valuable information on the brand, origin, age, and composition of wine and may be helpful for the authentication of wine and detection of forgery. The list of fluorescent components of wines includes flavonoids, phenolic acids, stilbenes, some vitamins, aromatic amino acids, NADH, and Maillard reaction products. Distinguishing between various fluorophores is not simple, and chemometrics are usually employed to analyze the fluorescence spectra of wines. Front-face fluorescence is especially useful in the analysis of wine, obviating the need for sample dilution. Front-face measurements are possible using most plate readers, so they are commonly available. Additionally, the use of fluorescent probes allows for the detection and quantification of specific wine components, such as resveratrol, oxygen, total iron, copper, hydrogen sulfite, and haze-forming proteins. Fluorescence measurements can thus be useful for at least a preliminary rapid evaluation of wine properties. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 2594 KiB  
Article
Fluorescence of Intrinsic Milk Chromophores as a Novel Verification Method of UV-C Treatment of Milk
by Kallis Souroullas, Andreas Manoli, Grigorios Itskos, Theofylaktos Apostolou and Photis Papademas
Foods 2024, 13(18), 2887; https://doi.org/10.3390/foods13182887 - 12 Sep 2024
Cited by 3 | Viewed by 1720
Abstract
The European Food Safety Authority (EFSA) has approved the use of a 1045 J/L UV-C dose as an adjunct to pasteurization to increase the shelf life and vitamin D3 content of milk. However, there are no verification methods analogous to the alkaline phosphatase [...] Read more.
The European Food Safety Authority (EFSA) has approved the use of a 1045 J/L UV-C dose as an adjunct to pasteurization to increase the shelf life and vitamin D3 content of milk. However, there are no verification methods analogous to the alkaline phosphatase test for pasteurized milk to ensure that the desired UV-C dose has been correctly applied. The aim is to develop a real-time in-line detector based on fluorescence spectroscopy. In this study, 22 different UV-C doses (ranging from 0 to 2000 J/L) were applied to milk to assess the impact of photooxidation on intrinsic photosensitive chromophores. Fluorescence spectroscopy (90°-angle) was employed as the method of analysis for monitoring the changes in the fluorescence spectra of chromophores in milk without sample pretreatment. Three important chromophore areas (CAs) were identified: CA 1 (riboflavin), CA 3 (vitamin A and dityrosine) and CA 4 (tryptophan), with statistically significant changes at around 1045 J/L and 1500 J/L. The findings of our preliminary study support our hypothesis that the fluorescence of intrinsic chromophores can be used as verification of the applied UV-C dose. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

15 pages, 2150 KiB  
Review
Synchronous Front-Face Fluorescence Spectra: A Review of Milk Fluorophores
by Paulina Freire, Anna Zamora and Manuel Castillo
Foods 2024, 13(5), 812; https://doi.org/10.3390/foods13050812 - 6 Mar 2024
Cited by 6 | Viewed by 2790
Abstract
Milk is subjected to different industrial processes, provoking significant physicochemical modifications that impact milk’s functional properties. As a rapid and in-line method, front-face fluorescence can be used to characterize milk instead of conventional analytical tests. However, when applying fluorescence spectroscopy for any application, [...] Read more.
Milk is subjected to different industrial processes, provoking significant physicochemical modifications that impact milk’s functional properties. As a rapid and in-line method, front-face fluorescence can be used to characterize milk instead of conventional analytical tests. However, when applying fluorescence spectroscopy for any application, it is not always necessary to determine which compound is responsible for each fluorescent response. In complex matrixes such as milk where several variables are interdependent, the unique identification of compounds can be challenging. Thus, few efforts have been made on the chemical characterization of milk’ fluorescent spectrum and the current information is dispersed. This review aims to organize research findings by dividing the milk spectra into areas and concatenating each area with at least one fluorophore. Designations are discussed by providing specific information on the fluorescent properties of each compound. In addition, a summary table of all fluorophores and references cited in this work by area is provided. This review provides a solid foundation for further research and could serve as a central reference. Full article
Show Figures

Graphical abstract

12 pages, 3408 KiB  
Article
Combined Application of Fluorescence Spectroscopy and Principal Component Analysis in Characterisation of Selected Herbhoneys
by Joanna Banaś and Marian Banaś
Molecules 2024, 29(4), 749; https://doi.org/10.3390/molecules29040749 - 6 Feb 2024
Cited by 4 | Viewed by 1930
Abstract
This study reports the use of front-face fluorescence spectroscopy with principal component analysis (PCA) as a tool for the characterisation of selected Polish herbhoneys (raspberry, lemon balm, rose, mint, black current, instant coffee, pine, hawthorn, and nettle). Fluorimetric spectra registered in the ranges [...] Read more.
This study reports the use of front-face fluorescence spectroscopy with principal component analysis (PCA) as a tool for the characterisation of selected Polish herbhoneys (raspberry, lemon balm, rose, mint, black current, instant coffee, pine, hawthorn, and nettle). Fluorimetric spectra registered in the ranges ascribed to fluorescence of amino acids, polyphenols, vitamins, and products of Maillard’s reaction enabled the comparison of herbhoney compositions. Obtained synchronous spectra combined with PCA were used to investigate potential differences between analysed samples and interactions between compounds present in them. The most substantial influence on the total variance had the intensities of polyphenols fluorescence. These intensities were the main factor differentiated by the analysed products. Full article
Show Figures

Graphical abstract

17 pages, 2310 KiB  
Review
Intrinsic Fluorescence Markers for Food Characteristics, Shelf Life, and Safety Estimation: Advanced Analytical Approach
by Ksenija Radotić, Mira Stanković, Dragana Bartolić and Maja Natić
Foods 2023, 12(16), 3023; https://doi.org/10.3390/foods12163023 - 11 Aug 2023
Cited by 24 | Viewed by 4111
Abstract
Food is a complex matrix of proteins, fats, minerals, vitamins, and other components. Various analytical methods are currently used for food testing. However, most of the used methods require sample preprocessing and expensive chemicals. New analytical methods are needed for quick and economic [...] Read more.
Food is a complex matrix of proteins, fats, minerals, vitamins, and other components. Various analytical methods are currently used for food testing. However, most of the used methods require sample preprocessing and expensive chemicals. New analytical methods are needed for quick and economic measurement of food quality and safety. Fluorescence spectroscopy is a simple and quick method to measure food quality, without sample preprocessing. This technique has been developed for food samples due to the application of a front-face measuring setup. Fluorescent compounds–fluorophores in the food samples are highly sensitive to their environment. Information about molecular structure and changes in food samples is obtained by the measurement of excitation–emission matrices of the endogenous fluorophores and by applying multivariate chemometric tools. Synchronous fluorescence spectroscopy is an advantageous screening mode used in food analysis. The fluorescent markers in food are amino acids tryptophan and tyrosine; the structural proteins collagen and elastin; the enzymes and co-enzymes NADH and FAD; vitamins; lipids; porphyrins; and mycotoxins in certain food types. The review provides information on the principles of the fluorescence measurements of food samples and the advantages of this method over the others. An analysis of the fluorescence spectroscopy applications in screening the various food types is provided. Full article
Show Figures

Figure 1

21 pages, 3285 KiB  
Article
Green Synthesis and Characterization of Novel Silver Nanoparticles Using Achillea maritima subsp. maritima Aqueous Extract: Antioxidant and Antidiabetic Potential and Effect on Virulence Mechanisms of Bacterial and Fungal Pathogens
by Badiaa Essghaier, Hédia Hannachi, Rihem Nouir, Filomena Mottola and Lucia Rocco
Nanomaterials 2023, 13(13), 1964; https://doi.org/10.3390/nano13131964 - 28 Jun 2023
Cited by 16 | Viewed by 2968
Abstract
Novel silver nanoparticles were synthesized based on a simple and non-toxic method by applying the green synthesis technique, using, for the first time, the aqueous extract of an extremophile plant belonging to the Achillea maritima subsp. maritima species. AgNP characterization was performed via [...] Read more.
Novel silver nanoparticles were synthesized based on a simple and non-toxic method by applying the green synthesis technique, using, for the first time, the aqueous extract of an extremophile plant belonging to the Achillea maritima subsp. maritima species. AgNP characterization was performed via UV-Visible, front-face fluorescence spectroscopy, and FTIR and XRD analyses. AgNP formation was immediately confirmed by a color change from yellow to brown and by a surface plasmon resonance peak using UV-Vis spectroscopy at 420 nm. The biosynthesized AgNPs were spherical in shape with a size ranging from approximatively 14.13 to 21.26 nm. The presented silver nanoparticles exhibited strong antioxidant activity following a DPPH assay compared to ascorbic acid, with IC50 values of about 0.089 µg/mL and 22.54 µg/mL, respectively. The AgNPs showed higher antidiabetic capacities than acarbose, by inhibiting both alpha amylase and alpha glucosidase. The silver nanoparticles could affect various bacterial mechanisms of virulence, such as EPS production, biofilm formation and DNA damage. The silver nanoparticles showed no lysozyme activity on the cell walls of Gram-positive bacteria. The AgNPs also had a strong inhibitory effect on the Candida albicans virulence factor (extracellular enzymes, biofilm formation). The microscopic observation showed abnormal morphogenesis and agglomeration of Candida albicans exposed to AgNPs. The AgNPs showed no cytotoxic effect on human cells in an MTT assay. The use of novel silver nanoparticles is encouraged in the formulation of natural antimicrobial and antidiabetic agents. Full article
(This article belongs to the Special Issue Nanostructured Materials for Environmental and Healthy Applications)
Show Figures

Figure 1

13 pages, 3774 KiB  
Article
Using Front-Face Fluorescence Spectroscopy and Biochemical Analysis of Honey to Assess a Marker for the Level of Varroa destructor Infestation of Honey Bee (Apis mellifera) Colonies
by Mira Stanković, Miloš Prokopijević, Branko Šikoparija, Nebojša Nedić, Filip Andrić, Natalija Polović, Maja Natić and Ksenija Radotić
Foods 2023, 12(3), 629; https://doi.org/10.3390/foods12030629 - 2 Feb 2023
Cited by 4 | Viewed by 3027
Abstract
Varroa destructor is a parasitic mite responsible for the loss of honey bee (Apis mellifera) colonies. This study aimed to find a promising marker in honey for the bee colony infestation level using fluorescence spectroscopy and biochemical analyses. We examined whether [...] Read more.
Varroa destructor is a parasitic mite responsible for the loss of honey bee (Apis mellifera) colonies. This study aimed to find a promising marker in honey for the bee colony infestation level using fluorescence spectroscopy and biochemical analyses. We examined whether the parameters of the honey samples’ fluorescence spectra and biochemical parameters, both related to proteins and phenolics, may be connected with the level of honey bee colonies’ infestation. The infestation level was highly positively correlated with the catalase activity in honey (r = 0.936). Additionally, the infestation level was positively correlated with the phenolic spectral component (r = 0.656), which was tentatively related to the phenolics in honey. No correlation was found between the diastase activity in honey and the colonies’ infestation level. The results indicate that the catalase activity in honey and the PFC1 spectral component may be reliable markers for the V. destructor infestation level of the colonies. The obtained data may be related to the honey yield obtained from the apiaries. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

31 pages, 1925 KiB  
Review
Animal Species Authentication in Dairy Products
by Isabel Mafra, Mónica Honrado and Joana S. Amaral
Foods 2022, 11(8), 1124; https://doi.org/10.3390/foods11081124 - 13 Apr 2022
Cited by 37 | Viewed by 5377
Abstract
Milk is one of the most important nutritious foods, widely consumed worldwide, either in its natural form or via dairy products. Currently, several economic, health and ethical issues emphasize the need for a more frequent and rigorous quality control of dairy products and [...] Read more.
Milk is one of the most important nutritious foods, widely consumed worldwide, either in its natural form or via dairy products. Currently, several economic, health and ethical issues emphasize the need for a more frequent and rigorous quality control of dairy products and the importance of detecting adulterations in these products. For this reason, several conventional and advanced techniques have been proposed, aiming at detecting and quantifying eventual adulterations, preferentially in a rapid, cost-effective, easy to implement, sensitive and specific way. They have relied mostly on electrophoretic, chromatographic and immunoenzymatic techniques. More recently, mass spectrometry, spectroscopic methods (near infrared (NIR), mid infrared (MIR), nuclear magnetic resonance (NMR) and front face fluorescence coupled to chemometrics), DNA analysis (real-time PCR, high-resolution melting analysis, next generation sequencing and droplet digital PCR) and biosensors have been advanced as innovative tools for dairy product authentication. Milk substitution from high-valued species with lower-cost bovine milk is one of the most frequent adulteration practices. Therefore, this review intends to describe the most relevant developments regarding the current and advanced analytical methodologies applied to species authentication of milk and dairy products. Full article
(This article belongs to the Special Issue Reviews on Food Physics and Food (Bio)Chemistry)
Show Figures

Graphical abstract

14 pages, 1831 KiB  
Article
Multiblock Analysis Applied to Fluorescence and Absorbance Spectra to Estimate Total Polyphenol Content in Extra Virgin Olive Oil
by Natalia Hernández-Sánchez, Lourdes Lleó, Belén Diezma, Eva Cristina Correa, Blanca Sastre and Jean-Michel Roger
Foods 2021, 10(11), 2556; https://doi.org/10.3390/foods10112556 - 23 Oct 2021
Cited by 7 | Viewed by 2274
Abstract
A fast and easy methodology to estimate total polyphenol content in extra virgin olive oil was developed by applying the chemometric multiblock method sequential and orthogonalized partial least squares (SO-PLS) in order to combine front-face emission fluorescence spectra (270 nm excitation wavelength) and [...] Read more.
A fast and easy methodology to estimate total polyphenol content in extra virgin olive oil was developed by applying the chemometric multiblock method sequential and orthogonalized partial least squares (SO-PLS) in order to combine front-face emission fluorescence spectra (270 nm excitation wavelength) and absorbance spectra. The hypothesis of this work stated that inner-filter effects in fluorescence spectra that would reduce the estimation performance of a single block model could be overcome by incorporating the absorbance spectral information of the compounds causing them. Different spectral preprocessing algorithms were applied. Double cross-validation with 50 iterations was implemented to improve the robustness of the obtained results. The PLSR model on the single block of fluorescence raw spectra achieved an RMSEP of 177.11 mg·kg−1 as the median value, and the complexity of the model was high, as the median value of latent variables (LVs) was eight. Multiblock SO-PLS models with pretreated fluorescence and absorbance spectra provided better performance, although artefacts could be introduced by transformation. The combination of fluorescence and absorbance raw data decreased the RMSEP median to 134.45 mg·kg−1. Moreover, the complexity of the model was greatly reduced, which contributed to an increase in robustness. The median value of LVs was three for fluorescence data and only one for absorbance data. Validation of the methodology could be addressed by further work considering a higher number of samples and a detailed composition of polyphenols. Full article
Show Figures

Graphical abstract

17 pages, 1387 KiB  
Review
Exploring the Potential of Fluorescence Spectroscopy for the Discrimination between Fresh and Frozen-Thawed Muscle Foods
by Abdo Hassoun
Photochem 2021, 1(2), 247-263; https://doi.org/10.3390/photochem1020015 - 2 Sep 2021
Cited by 27 | Viewed by 5554
Abstract
Substitution of frozen-thawed food products for fresh ones is a significant authenticity issue being extensively investigated over the past few years by various conventional methods, but little success has been achieved. Fluorescence spectroscopy is a sensitive and selective spectroscopic technique that has been [...] Read more.
Substitution of frozen-thawed food products for fresh ones is a significant authenticity issue being extensively investigated over the past few years by various conventional methods, but little success has been achieved. Fluorescence spectroscopy is a sensitive and selective spectroscopic technique that has been widely applied recently to deal with various food quality and authenticity issues. The technique is based on the excitation of certain photosensitive components (known as fluorophores) to fluoresce in the UV and visible spectral ranges. Fluorescence spectroscopy can be performed to obtain simple classical two-dimensional fluorescence spectra (excitation/emission), synchronous or three-dimensional excitation–emission matrices (excitation/emission/fluorescence signal). The technique can be used in front-face or right-angle configurations and can be even combined with hyperspectral imaging, requiring the use of multivariate data analysis to extract useful information. In this review, we summarize the recent progress in applications of fluorescence spectroscopy to differentiate truly fresh foods from frozen-thawed products. The basics of the technique will be briefly presented and some relevant examples, focusing especially on fish and meat products, will be given. It is believed that interdisciplinary collaboration between researchers working with data analysis and spectroscopy, as well as industry and regulatory authorities would help to overcome the current shortcomings, holding the great promise of fluorescence spectroscopy for fighting food fraud in the food industry. Full article
(This article belongs to the Special Issue Autofluorescence Spectroscopy and Imaging II)
Show Figures

Figure 1

16 pages, 7180 KiB  
Article
Changes in Hydrophobic Interactions among Gluten Proteins during Dough Formation
by Sonoo Iwaki, Katsuyuki Hayakawa, Bin-Xiao Fu and Chikako Otobe
Processes 2021, 9(7), 1244; https://doi.org/10.3390/pr9071244 - 19 Jul 2021
Cited by 26 | Viewed by 4492
Abstract
In this study, changes in hydrophobic interactions among gluten proteins were analyzed during dough mixing. Size-exclusion high-performance chromatography and two-dimensional fluorescence difference gel electrophoresis were performed on proteins extracted with 1-propanol by weakening the hydrophobic interaction. The amount of proteins extracted with 30% [...] Read more.
In this study, changes in hydrophobic interactions among gluten proteins were analyzed during dough mixing. Size-exclusion high-performance chromatography and two-dimensional fluorescence difference gel electrophoresis were performed on proteins extracted with 1-propanol by weakening the hydrophobic interaction. The amount of proteins extracted with 30% 1-propanol increased from the start of mixing to peak consistency, suggesting that the hydrophobic interactions among the strongly aggregated proteins weakened and resulted in disaggregation. The amount of proteins extracted with 10% 1-propanol decreased during hydration, indicating that these proteins aggregated through relatively weak hydrophobic interactions. The proteins that extractability decreased were mainly low molecular weight glutenin, α-gliadin, and γ-gliadin. The amount of monomeric proteins extracted with 30% 1-propanol decreased after peak consistency. The decreased protein was mainly ω-gliadin, indicating that ω-gliadin aggregated with other proteins through hydrophobic interactions. A front-face fluorescence analysis was performed on the dough with the addition of 8-anilino-1-naphthalenesulfonic acid or thioflavin T. The fluorescence intensity increased as a result of exposure to the hydrophobic groups of the gluten proteins and the formation of protein aggregates during dough mixing. These results indicate the importance of hydrophobic interactions in dough formation. Full article
(This article belongs to the Special Issue Processing and Properties Analysis of Grain Foods)
Show Figures

Figure 1

13 pages, 2061 KiB  
Article
Front-Face Fluorimeter for the Determination of Cutting Time of Cheese Curd
by Maryna Lazouskaya, Irina Stulova, Aavo Sõrmus, Ott Scheler, Kalle Tiisma, Toomas Vinter, Roman Loov and Martti Tamm
Foods 2021, 10(3), 576; https://doi.org/10.3390/foods10030576 - 10 Mar 2021
Cited by 4 | Viewed by 3058
Abstract
The yield of product (cheese) during the cheese-making process depends on the cutting time of the cheese curd. However, the determination of optimal cutting time on an industrial scale is difficult as current standard methods are destructive or analyse only small volumes and [...] Read more.
The yield of product (cheese) during the cheese-making process depends on the cutting time of the cheese curd. However, the determination of optimal cutting time on an industrial scale is difficult as current standard methods are destructive or analyse only small volumes and not the entire milk to be curdled into cheese. This paper presents a novel front-face fluorimeter (FFF) that is designed to be immersed into a milk batch to enable the determination of the cutting time of cheese curd without the destruction of the sample. The FFF sensor signal corresponds to physical changes in milk during cheese formation and has high predictive power (r > 0.85) and good accuracy (RSE = 30%, considering daily variation between milk samples). The performance of the presented fluorimeter was on par with standard rheological and Berridge methods. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

14 pages, 47318 KiB  
Article
Portable Raman Spectrometer for In Situ Analysis of Asbestos and Fibrous Minerals
by Jasmine Rita Petriglieri, Danilo Bersani, Christine Laporte-Magoni, Mario Tribaudino, Alessandro Cavallo, Emma Salvioli-Mariani and Francesco Turci
Appl. Sci. 2021, 11(1), 287; https://doi.org/10.3390/app11010287 - 30 Dec 2020
Cited by 12 | Viewed by 4680
Abstract
Asbestos inhalation is associated with fatal respiratory diseases and raises concerns from the perspective of workplace safety and environmental impacts. Asbestos and asbestos-like minerals naturally occur in rocks and may become airborne when outcrops or soils are disturbed by anthropic activities. In situ [...] Read more.
Asbestos inhalation is associated with fatal respiratory diseases and raises concerns from the perspective of workplace safety and environmental impacts. Asbestos and asbestos-like minerals naturally occur in rocks and may become airborne when outcrops or soils are disturbed by anthropic activities. In situ detection of these minerals is a crucial step for the risk evaluation of natural sites. We assess here whether a portable Raman spectrometer (pRS) may be used in the identification of asbestos and asbestos-like minerals at the mining front during exploitation. pRS performance was tested at three geologically different mining sites in Italy and New Caledonia and compared with a high-resolution micro-Raman spectrometer (HRS). About 80% of the overall in situ analyses at the mining front were successfully identified by pRS, even when intermixed phases or strongly disaggregated and altered samples were analyzed. Chrysotile and tremolite asbestos, asbestos-like antigorite, and balangeroite were correctly detected during surveys. The major difficulties faced during in situ pRS measurements were fluorescence emission and focussing the laser beam on non-cohesive bundles of fibers. pRS is adequate for discriminating asbestos and asbestos-like minerals in situ. pRS may support risk assessment of mining sites to better protect workers and environment. Full article
(This article belongs to the Special Issue Novel Spectroscopy Applications in Food Detection)
Show Figures

Figure 1

15 pages, 3353 KiB  
Article
Antioxidant, Nutraceutical Properties, and Fluorescence Spectral Profiles of Bee Pollen Samples from Different Botanical Origins
by Daniele Barbieri, Morena Gabriele, Martina Summa, Raffaele Colosimo, Donatella Leonardi, Valentina Domenici and Laura Pucci
Antioxidants 2020, 9(10), 1001; https://doi.org/10.3390/antiox9101001 - 15 Oct 2020
Cited by 52 | Viewed by 6860
Abstract
Bee pollen is made by honey bees (Apis Mellifera) from the pollen of plants and flowers and represents an apiary product enriched in essential amino acids, polyphenols, omega-3, and omega-6 fatty acids. This study investigated the botanical origin, micronutrient profile, and [...] Read more.
Bee pollen is made by honey bees (Apis Mellifera) from the pollen of plants and flowers and represents an apiary product enriched in essential amino acids, polyphenols, omega-3, and omega-6 fatty acids. This study investigated the botanical origin, micronutrient profile, and antioxidant activity of bee pollen samples (n = 10) harvested in Lucca and Massa Carrara (Tuscany, Italy) between 2016 and 2017. The palynological analysis showed that bee pollen samples were composed of nine botanical families. Front-face fluorescence spectroscopy was performed on bee pollen samples in bulk, without any treatment, and in ethanol extracts to determine the characteristic fluorescent profile and, to identify the main chemical compounds with biological activity. The main chemical compounds detected were polyphenols (mainly flavonoids and phenolic acids), hydro-soluble vitamins (B2, B3, B6, and B9), amino acids, and pigments. Furthermore, the antioxidant activity was investigated, and one of the two Viburnum pollens resulted in the highest polyphenols and flavonoids content (20.15 ± 0.15 mg GAE/g fw and 23.46 ± 0.08 mg CE/g fw, respectively). However, Prunus and Eucalyptus families showed the highest in vitro (190.27 ± 8.30 µmol Fe2+/g) and ex vivo (54.61 ± 8.51 CAA unit) antioxidant capacity, respectively. These results suggested that Tuscan bee pollen, depending on the botanical family, is rich in essential nutrients and potential nutraceutical product. Full article
Show Figures

Graphical abstract

Back to TopTop