Fluorescence of Intrinsic Milk Chromophores as a Novel Verification Method of UV-C Treatment of Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk Sample Preparation and Processing Method
2.2. Fluorescence Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Chromophore Area 1 (CA 1)
4.2. Chromophore Area 2 (CA 2)
4.3. Chromophore Area 3 (CA 3)
4.4. Chromophore Area 4 (CA 4)
4.5. Future Research
4.6. Future Spectroscopic Setup Improvements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Delorme, M.M.; Guimarães, J.T.; Coutinho, N.M.; Balthazar, C.F.; Rocha, R.S.; Silva, R.; Margalho, L.P.; Pimentel, T.C.; Silva, M.C.; Freitas, M.Q.; et al. Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends Food Sci. Technol. 2020, 102, 146–154. [Google Scholar] [CrossRef]
- Tchonkouang, R.D.; Lima, A.R.; Quintino, A.C.; Cristofoli, N.L.; Vieira, M.C. UV-C Light: A Promising Preservation Technology for Vegetable-Based Nonsolid Food Products. Foods 2023, 12, 3227. [Google Scholar] [CrossRef] [PubMed]
- Sampedro, F.; McAloon, A.; Yee, W.; Fan, X.; Geveke, D.J. Cost Analysis and Environmental Impact of Pulsed Electric Fields and High Pressure Processing in Comparison with Thermal Pasteurization. Food Bioprocess Technol. 2014, 7, 1928–1937. [Google Scholar] [CrossRef]
- (NDA) EFSA Panel on Dietetic Products. Safety of UV-treated milk as a novel food pursuant to Regulation (EC) No 258/97. EFSA J. 2016, 14, 4370. [Google Scholar] [CrossRef]
- Artichowicz, W.; Luczkiewicz, A.; Sawicki, J.M. Analysis of the Radiation Dose in UV-Disinfection Flow Reactors. Water 2020, 12, 231. [Google Scholar] [CrossRef]
- Hassanpour, A.; Jalali, A.; Raisee, M.; Naghavi, M.R. Development and modeling of a novel type of photoreactors with exterior ultraviolet (UV) reflector for water treatment applications. Sci. Rep. 2023, 13, 7696. [Google Scholar] [CrossRef]
- Ashok, A.; Khedikar, I. Overview of Water Disinfection by UV Technology—A Review. 2016. Available online: https://www.researchgate.net/publication/348183369_Overview_of_Water_Disinfection_by_UV_Technology_-A_Review?channel=doi&linkId=5ff2de4a92851c13fee7e408&showFulltext=true (accessed on 28 February 2024).
- Wold, J.P.; Skaret, J.; Dalsgaard, T.K. Assessment of the action spectrum for photooxidation in full fat bovine milk. Food Chem. 2015, 179, 68–75. [Google Scholar] [CrossRef]
- Christensen, J.; Becker, E.M.; Frederiksen, C. Fluorescence spectroscopy and PARAFAC in the analysis of yogurt. Chemom. Intell. Lab. Syst. 2005, 75, 201–208. [Google Scholar] [CrossRef]
- Andersen, C.M.; Vishart, M.; Holm, V.K. Application of Fluorescence Spectroscopy in the Evaluation of Light-Induced Oxidation in Cheese. J. Agric. Food Chem. 2005, 53, 9985–9992. [Google Scholar] [CrossRef]
- Christensen, J.; Povlsen, V.T.; Sørensen, J. Application of Fluorescence Spectroscopy and Chemometrics in the Evaluation of Processed Cheese During Storage. J. Dairy Sci. 2003, 86, 1101–1107. [Google Scholar] [CrossRef]
- Mortensen, G.; Sørensen, J.; Stapelfeldt, H. Effect of modified atmosphere packaging and storage conditions on photooxidation of sliced Havarti cheese. Eur. Food Res. Technol. 2003, 216, 57–62. [Google Scholar] [CrossRef]
- Mortensen, G.; Sørensen, J.; Danielsen, B.; Stapelfeldt, H. Effect of specific wavelengths on light-induced quality changes in Havarti cheese. J. Dairy Res. 2003, 70, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Becker, E.M.; Christensen, J.; Frederiksen, C.; Haugaard, V. Front-Face Fluorescence Spectroscopy and Chemometrics in Analysis of Yogurt: Rapid Analysis of Riboflavin. J. Dairy Sci. 2003, 86, 2508–2515. [Google Scholar] [CrossRef] [PubMed]
- Wold, J.; Jørgensen, K.; Lundby, F. Nondestructive Measurement of Light-induced Oxidation in Dairy Products by Fluorescence Spectroscopy and Imaging. J. Dairy Sci. 2002, 85, 1693–1704. [Google Scholar] [CrossRef] [PubMed]
- Dalsgaard, T.K.; Otzen, D.; Nielsen, J.H.; Larsen, L.B. Changes in structures of milk proteins upon photo-oxidation. J. Agric. Food Chem. 2007, 55, 10968–10976. [Google Scholar] [CrossRef]
- Veberg, A.; Olsen, E.; Nilsen, A.; Wold, J. Front-Face Fluorescence Measurement of Photosensitizers and Lipid Oxidation Products During the Photooxidation of Butter. J. Dairy Sci. 2007, 90, 2189–2199. [Google Scholar] [CrossRef]
- Karoui, R.; Dufour, É.; De Baerdemaeker, J. Front face fluorescence spectroscopy coupled with chemometric tools for monitoring the oxidation of semi-hard cheeses throughout ripening. Food Chem. 2007, 101, 1305–1314. [Google Scholar] [CrossRef]
- Wold, J.P.; Veberg, A.; Lundby, F.; Nilsen, A.N.; Moan, J. Influence of storage time and color of light on photooxidation in cheese: A study based on sensory analysis and fluorescence spectroscopy. Int. Dairy J. 2006, 16, 1218–1226. [Google Scholar] [CrossRef]
- Wold, J.P.; Bro, R.; Veberg, A.; Lundby, F.; Nilsen, A.N.; Moan, J. Active Photosensitizers in Butter Detected by Fluorescence Spectroscopy and Multivariate Curve Resolution. J. Agric. Food Chem. 2006, 54, 10197–10204. [Google Scholar] [CrossRef]
- Andersen, C.M.; Wold, J.P.; Mortensen, G. Light-induced changes in semi-hard cheese determined by fluorescence spectroscopy and chemometrics. Int. Dairy J. 2006, 16, 1483–1489. [Google Scholar] [CrossRef]
- Astilean, S.; Iliut, M.; Iosin, M. Monitoring the effects of ultraviolet and visible light on Rb and vitamin A in milk. Environ. Eng. Manag. J. 2013, 12, 2443–2448. [Google Scholar] [CrossRef]
- Scheidegger, D.; Larsen, G.; Kivatinitz, S.C. Oxidative consequences of UV irradiation on isolated milk proteins: Effects of hydrogen peroxide and bivalent metal ions. Int. Dairy J. 2016, 55, 64–71. [Google Scholar] [CrossRef]
- da Silva, J.F.; Morais, A.T.D.B.; Santos, W.G.; Ahrné, L.M.; Cardoso, D.R. UV-C light promotes the reductive cleavage of disulfide bonds in β-Lactoglobulin and improves in vitro gastric digestion. Food Res. Int. 2023, 168, 112729. [Google Scholar] [CrossRef] [PubMed]
- Morais, A.T.D.B.; Morais, S.T.B.; Feitor, J.F.; Santos, W.G.; Catunda, L.G.d.S.; Walkling-Ribeiro, M.; Ahrne, L.; Cardoso, D.R. Impact of Physicochemical Modifications in Casein Promoted by UV-C on the Peptide Profile of Gastric Digestion and the Transepithelial Transport of Peptides. J. Agric. Food Chem. 2023, 71, 7495–7507. [Google Scholar] [CrossRef] [PubMed]
- Kristo, E.; Hazizaj, A.; Corredig, M. Structural changes imposed on whey proteins by UV irradiation in a continuous UV light reactor. J. Agric. Food Chem. 2012, 60, 6204–6209. [Google Scholar] [CrossRef]
- Scheidegger, D.; Pecora, R.; Radici, P.; Kivatinitz, S. Protein oxidative changes in whole and skim milk after ultraviolet or fluorescent light exposure. J. Dairy Sci. 2010, 93, 5101–5109. [Google Scholar] [CrossRef]
- Wold, J.P.; Veberg, A.; Nilsen, A.; Iani, V.; Juzenas, P.; Moan, J. The role of naturally occurring chlorophyll and porphyrins in light-induced oxidation of dairy products. A study based on fluorescence spectroscopy and sensory analysis. Int. Dairy J. 2005, 15, 343–353. [Google Scholar] [CrossRef]
- Papagiorgis, P.; Manoli, A.; Michael, S.; Bernasconi, C.; Bodnarchuk, M.I.; Kovalenko, M.V.; Othonos, A.; Itskos, G. Unraveling the Radiative Pathways of Hot Carriers upon Intense Photoexcitation of Lead Halide Perovskite Nanocrystals. ACS Nano 2019, 13, 5799–5809. [Google Scholar] [CrossRef]
- Leviton, A.; Pallansch, M.J. Binding of Riboflavin and Riboflavin Phosphate by the Proteins of Milk. J. Dairy Sci. 1960, 43, 1713–1724. [Google Scholar] [CrossRef]
- Koop, J.; Monschein, S.; Macheroux, E.P.; Knaus, T.; Macheroux, P. Determination of free and bound riboflavin in cow’s milk using a novel flavin-binding protein. Food Chem. 2014, 146, 94–97. [Google Scholar] [CrossRef]
- Mukherjee, A.; Walker, J.; Weyant, K.B.; Schroeder, C.M. Characterization of Flavin-based fluorescent proteins: An emerging class of fluorescent reporters. PLoS ONE 2013, 8, e64753. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Kim, H.J.; Min, D.B. Photosensitizing effect of riboflavin, lumiflavin, and lumichrome on the generation of volatiles in soy milk. J. Agric. Food Chem. 2006, 54, 2359–2364. [Google Scholar] [CrossRef]
- Brothersen, C.; McMahon, D.; Legako, J.; Martini, S. Comparison of milk oxidation by exposure to LED and fluorescent light. J. Dairy Sci. 2016, 99, 2537–2544. [Google Scholar] [CrossRef] [PubMed]
- Cladman, W.; Scheffer, S.; Goodrich, N.; Griffiths, M.W. Shelf-life of Milk Packaged in Plastic Containers with and Without Treatment to Reduce Light Transmission. Int. Dairy J. 1998, 8, 629–636. [Google Scholar] [CrossRef]
- Dahm, D.J. Explaining some light scattering properties of milk using representative layer theory. J. Near Infrared Spectrosc. 2013, 21, 323–339. [Google Scholar] [CrossRef]
- Kikugawa, K.; Beppu, M. Involvement of lipid oxidation products in the formation of fluorescent and cross-linked proteins. Chem. Phys. Lipids 1987, 44, 277–296. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosch, W.; Schieberle, P. Food Chemistry; Springer: Berlin/Heidelberg, Germany, 2009; Available online: https://books.google.com.cy/books?id=xteiARU46SQC (accessed on 11 March 2024).
- Bhat, P.V.; Roller, P.P.; De Luca, L.M. Chemical and biological studies on 5,6-epoxyretinol, retinol, and their phosphoryl esters. J. Lipid Res. 1981, 22, 1069–1078. [Google Scholar] [CrossRef]
- Feng, X.; Li, C.; Ullah, N.; Cao, J.; Lan, Y.; Ge, W.; Hackman, R.M.; Li, Z.; Chen, L. Susceptibility of whey protein isolate to oxidation and changes in physicochemical, structural, and digestibility characteristics. J. Dairy Sci. 2015, 98, 7602–7613. [Google Scholar] [CrossRef]
- Davies, M.J. Protein oxidation and peroxidation. Biochem. J. 2016, 473, 805–825. [Google Scholar] [CrossRef]
- Hellwig, M. The Chemistry of Protein Oxidation in Food. Angew. Chem. Int. Ed. 2019, 58, 16742–16763. [Google Scholar] [CrossRef]
- Fry, S.C. Isodityrosine, a new cross-linking amino acid from plant cell-wall glycoprotein. Biochem. J. 1982, 204, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yang, Y.; Ding, Y.; Ge, Y.; Xu, Y.; Xie, Y.; Shi, Y.; Le, G. Dityrosine in food: A review of its occurrence, health effects, detection methods, and mitigation strategies. Compr. Rev. Food Sci. Food Saf. 2023, 22, 355–379. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.L.; Shi, Y.; Ding, Y.; Ran, Y.; Le, G. Dietary oxidized tyrosine (O-Tyr) stimulates TGF-β1-induced extracellular matrix production via the JNK/p38 signaling pathway in rat kidneys. Amino Acids 2017, 49, 241–260. [Google Scholar] [CrossRef] [PubMed]
- Dreaden, T.M.; Chen, J.; Rexroth, S.; Barry, B.A. N-Formylkynurenine as a Marker of High Light Stress in Photosynthesis. J. Biol. Chem. 2011, 286, 22632–22641. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, Y.; Katsuragi, Y.; Izumi, T.; Sakiyama, F. Fluorescence characteristics of kynurenine and N′-formylkynurenine, their use as reporters of the environment of tryptophan 62 in hen egg-white Lysozyme. J. Biochem. 1982, 92, 129–141. [Google Scholar] [CrossRef]
- Mrštná, K.; Krčmová, L.K.; Švec, F. Advances in kynurenine analysis. Clin. Chim. Acta 2023, 547, 117441. [Google Scholar] [CrossRef]
- Hamdy, M.S.; Scott, E.L.; Carr, R.H.; Sanders, J.P.M. A novel photocatalytic conversion of tryptophan to kynurenine using black light as a light source. Catal. Lett. 2012, 142, 338–344. [Google Scholar] [CrossRef]
- Zhuravlev, A.V.; Vetrovoy, O.V.; Savvateeva-Popova, E.V. Enzymatic and non-enzymatic pathways of kynurenines’ dimerization: The molecular factors for oxidative stress development. PLoS Comput. Biol. 2018, 14, e1006672. [Google Scholar] [CrossRef]
- Murotomi, K.; Umeno, A.; Shichiri, M.; Tanito, M.; Yoshida, Y. Significance of Singlet Oxygen Molecule in Pathologies. Int. J. Mol. Sci. 2023, 24, 2739. [Google Scholar] [CrossRef]
- Walrant, P.; Santus, R. N-formyl-kynurenine, a tryptophan photooxidation product, as a photodynamic sensitizer. Photochem. Photobiol. 1974, 19, 411–417. [Google Scholar] [CrossRef]
- Walrant, P.; Santus, R.; Grossweiner, L.I. Photosensitizing properties of N-formylkynurenine. Photochem. Photobiol. 1975, 22, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Juzeniene, A.; Nielsen, K.P.; Moan, J. Biophysical aspects of photodynamic therapy. J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 7–28. [Google Scholar] [CrossRef] [PubMed]
- Tasso, T.T.; Schlothauer, J.C.; Junqueira, H.C.; Matias, T.A.; Araki, K.; Liandra-Salvador, É.; Antonio, F.C.T.; Homem-De-Mello, P.; Baptista, M.S. Photobleaching Efficiency Parallels the Enhancement of Membrane Damage for Porphyrazine Photosensitizers. J. Am. Chem. Soc. 2019, 141, 15547–15556. [Google Scholar] [CrossRef] [PubMed]
- Freire, P.; Zamora, A.; Castillo, M. Synchronous Front-Face Fluorescence Spectra: A Review of Milk Fluorophores. Foods 2024, 13, 812. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.A.; Jameson, D.M. Time-resolved methods in biophysics. 8. Frequency domain fluorometry: Applications to intrinsic protein fluorescence. Photochem. Photobiol. Sci. 2008, 7, 1301–1312. [Google Scholar] [CrossRef]
- Smith, G.J. The fluorescence of dihydroxyphenylalanine: The effects of protonation-deprotonation. Color. Technol. 1999, 115, 346–349. [Google Scholar] [CrossRef]
- Zhao, Z.; Engholm-Keller, K.; Poojary, M.M.; Boelt, S.G.; Rogowska-Wrzesinska, A.; Skibsted, L.H.; Davies, M.J.; Lund, M.N. Generation of Aggregates of α-Lactalbumin by UV-B Light Exposure. J. Agric. Food Chem. 2020, 58, 6701–6714. [Google Scholar] [CrossRef]
- Dalsgaard, T.K.; Nielsen, J.H.; Brown, B.E.; Stadler, N.; Davies, M.J. Dityrosine, 3,4-dihydroxyphenylalanine (DOPA), and radical formation from tyrosine residues on milk proteins with globular and flexible structures as a result of riboflavin-mediated photo-oxidation. J. Agric. Food Chem. 2011, 59, 7939–7947. [Google Scholar] [CrossRef]
- Roufik, S.; Gauthier, S.F.; Dufour, É.; Turgeon, S.L. Interactions between Bovine β-lactoglobulin A and various bioactive peptides as studied by front-face fluorescence spectroscopy. J. Agric. Food Chem. 2006, 54, 4962–4969. [Google Scholar] [CrossRef]
- Renard, D.; Lefebvre, J.; Griffin, M.; Griffin, W. Effects of pH and salt environment on the association of β-lactoglobulin revealed by intrinsic fluorescence studies. Int. J. Biol. Macromol. 1998, 22, 41–49. [Google Scholar] [CrossRef]
- Shiota, M.; Ikeda, N.; Konishi, H.; Yoshioka, T. Photooxidative Stability of Ice Cream Prepared from Milk Fat. J. Food Sci. 2002, 67, 1200–1207. [Google Scholar] [CrossRef]
- Postelmans, A.; Aernouts, B.; Jordens, J.; Van Gerven, T.; Saeys, W. Milk homogenization monitoring: Fat globule size estimation from scattering spectra of milk. Innov. Food Sci. Emerg. Technol. 2020, 60, 102311. [Google Scholar] [CrossRef]
- Guamán-Lozada, D.F.; Vasco, D.C.; Rivera, M.P.; Bonilla, G.P. Effect of milk film thickness on the efficiency of UVC radiated sterilization of raw cow’s milk. Int. J. Food Prop. 2023, 26, 1497–1505. [Google Scholar] [CrossRef]
- O’Connor, T.P.; O’Brien, N.M. Lipid Oxidation. Adv. Dairy Chem. 2006, 2, 557–600. [Google Scholar] [CrossRef]
- Jiang, S.; Luo, W.; Peng, Q.; Wu, Z.; Li, H.; Li, H.; Yu, J. Effects of Flash Evaporation Conditions on the Quality of UHT Milk by Changing the Dissolved Oxygen Content in Milk. Foods 2022, 11, 2371. [Google Scholar] [CrossRef]
- Owusu-Apenten, R. Colorimetric analysis of protein sulfhydyl groups in milk: Applications and processing effects. Crit. Rev. Food Sci. Nutr. 2005, 45, 1–23. [Google Scholar] [CrossRef]
- Taylor, M.; Richardson, T. Antioxidant Activity of Skim Milk: Effect of Heat and Resultant Sulfhydryl Groups. J. Dairy Sci. 1980, 63, 1783–1795. [Google Scholar] [CrossRef]
- Ellouze, M.; Vial, C.; Attia, H.; Ayadi, M.A. Effect of pH and heat treatment on structure, surface characteristics and emulsifying properties of purified camel β-casein. Food Chem. 2021, 365, 130421. [Google Scholar] [CrossRef]
- Ullah, R.; Khan, S.; Ali, H.; Bilal, M.; Saleem, M. Identification of cow and buffalo milk based on Beta carotene and vitamin-A concentration using fluorescence spectroscopy. PLoS ONE 2017, 12, e0178055. [Google Scholar] [CrossRef]
- Alvarado, U.; Zamora, A.; Liu, J.; Saldo, J.; Castillo, M. Rapid Quantification of Riboflavin in Milk by Front-Face Fluorescence Spectroscopy: A Preliminary Study. Foods 2019, 9, 6. [Google Scholar] [CrossRef]
- Ayala, N.; Zamora, A.; González, C.; Saldo, J.; Castillo, M. Predicting lactulose concentration in heat-treated reconstituted skim milk powder using front-face fluorescence. Food Control 2017, 73, 110–116. [Google Scholar] [CrossRef]
- Babu, K.; Amamcharla, J. Application of front-face fluorescence spectroscopy as a tool for monitoring changes in milk protein concentrate powders during storage. J. Dairy Sci. 2018, 101, 10844–10859. [Google Scholar] [CrossRef] [PubMed]
- Fagan, C.; Ferreira, T.; Payne, F.; O’donnell, C.; O’callaghan, D.; Castillo, M. Preliminary evaluation of endogenous milk fluorophores as tracer molecules for curd syneresis. J. Dairy Sci. 2011, 94, 5350–5358. [Google Scholar] [CrossRef] [PubMed]
- Herbert, S.; Riou, N.M.; Devaux, M.F.; Riaublanc, A.; Bouchet, B.; Gallant, D.J.; Dufour, É. Monitoring the identity and the structure of soft cheeses by fluorescence spectroscopy. Lait 2000, 80, 621–634. [Google Scholar] [CrossRef]
- Liu, J.; Zamora, A.; Castillo, M.; Saldo, J. Using front-face fluorescence spectroscopy for prediction of retinol loss in milk during thermal processing. LWT 2018, 87, 151–157. [Google Scholar] [CrossRef]
- Liu, J.; Zamora, A.; Castillo, M.; Saldo, J. Modeling of the changes in bovine milk caused by ultra-high pressure homogenization using front-face fluorescence spectroscopy. J. Food Eng. 2018, 233, 88–97. [Google Scholar] [CrossRef]
- Liu, X.; Metzger, L. Application of Fluorescence Spectroscopy for Monitoring Changes in Nonfat Dry Milk During Storage. J. Dairy Sci. 2007, 90, 24–37. [Google Scholar] [CrossRef]
- Shaikh, S.; O’Donnell, C. Applications of fluorescence spectroscopy in dairy processing: A review. Curr. Opin. Food Sci. 2017, 17, 16–24. [Google Scholar] [CrossRef]
- Verma, M.; Singh, D.K.; Senthilkumaran, P.; Joseph, J.; Kandpal, H.C. Ultrasensitive and fast detection of denaturation of milk by Coherent backscattering of light. Sci. Rep. 2014, 4, 7257. [Google Scholar] [CrossRef]
- Batesttin, C.; Ângelo, F.; Rocha, R.; Anjos, V.; Bell, M. High resolution raman spectroscopy of raw and UHT bovine and Goat milk. Meas. Food 2022, 6, 100029. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Yao, W. Application of Raman spectroscopy in a correlation study between protein oxidation/denaturation and conformational changes in beef after repeated freeze–thaw. Int. J. Food Sci. Technol. 2022, 57, 719–727. [Google Scholar] [CrossRef]
- Muik, B.; Lendl, B.; Molina-Díaz, A.; Ayora-Cañada, M.J. Direct monitoring of lipid oxidation in edible oils by Fourier transform Raman spectroscopy. Chem. Phys. Lipids 2005, 134, 173–182. [Google Scholar] [CrossRef] [PubMed]
Dosage | Run Time | Volume | Total Biological Replicates | Technical Replicates per Sample |
---|---|---|---|---|
0 J/L (Control) | 00 min-00 s | 16.00 L | 5 | 3 |
100 J/L | 01 min-02 s | 15.75 L | 5 | 3 |
200 J/L | 02 min-02 s | 15.50 L | 5 | 3 |
300 J/L | 02 min-59 s | 15.25 L | 5 | 3 |
400 J/L | 03 min-55 s | 15.00 L | 5 | 3 |
500 J/L | 04 min-49 s | 14.75 L | 5 | 3 |
600 J/L | 05 min-41 s | 14.50 L | 5 | 3 |
700 J/L | 06 min-31 s | 14.25 L | 5 | 3 |
800 J/L | 07 min-19 s | 14.00 L | 5 | 3 |
900 J/L | 08 min-05 s | 13.75 L | 5 | 3 |
1000 J/L | 08 min-49 s | 13.50 L | 5 | 3 |
1045 J/L | 09 min-03 s | 13.25 L | 5 | 3 |
1100 J/L | 09 min-21 s | 13.00 L | 5 | 3 |
1200 J/L | 10 min-00 s | 12.75 L | 5 | 3 |
1300 J/L | 10 min-37 s | 12.50 L | 5 | 3 |
1400 J/L | 11 min-13 s | 12.25 L | 5 | 3 |
1500 J/L | 11 min-46 s | 12.00 L | 5 | 3 |
1600 J/L | 12 min-17 s | 11.75 L | 5 | 3 |
1700 J/L | 12 min-47 s | 11.50 L | 5 | 3 |
1800 J/L | 13 min-14 s | 11.25 L | 5 | 3 |
1900 J/L | 13 min-40 s | 11.00 L | 5 | 3 |
2000 J/L | 14 min-03 s | 10.75 L | 5 | 3 |
Chromophores Area | Ex (nm) | Em (nm) | Ex Bandwith (nm) | Em Bandwith (nm) | Filter at Reader | Increment | Integration Time |
---|---|---|---|---|---|---|---|
CA 1 | 450 | 480–700 | 3.00 | 3.00 | LP495 nm | 1 nm | 0.1 s |
CA 2 | 380 | 400–480 | 3.00 | 4.98 | LP400 nm | 1 nm | 0.1 s |
CA 3 | 322 | 350–500 | 3.00 | 3.00 | n/a | 1 nm | 0.1 s |
CA 4 | 280 | 300–420 | 3.00 | 3.00 | n/a | 1 nm | 0.1 s |
Chromophore Area | UV-C Dose (J/L) | FI | Difference in FI (Statistical Significance) |
---|---|---|---|
CA 1 | 0–400 | 13% increase | <0.0001 |
1000–1045 | 10% decrease | <0.05 | |
CA 3 | 0–300 | 52% increase | <0.0001 |
800–900 | 17% increase | <0.05 | |
1000–1045 | 25% decrease | <0.0001 | |
1500–1600 | 40% decrease | <0.0001 | |
CA 4 | 0–300 | 60% increase | <0.0001 |
1500–1600 | 70% decrease | <0.0001 |
Chromophore | Excitation (nm) | Emission (nm) | Product (Light) | Reference |
---|---|---|---|---|
N-formylkynurenine | 330 | 400 | Isolated milk proteins (Visible light) | [16] |
N-formylkynurenine | 325 | 435 | Milk (UV-C) | [27] |
N-formylkynurenine | 325 | 420 | Isolated milk proteins (UV-C) | [23] |
N-formylkynurenine | 350 | 420 | Isolated milk proteins (UV-C) | [23] |
Dityrosine | 325 | 410 | Milk (UV-C) | [27] |
Dityrosine | 315 | 410 | Isolated milk proteins (UV-C) | [23] |
Vitamin A | 322 | 411 | Cheese (Visible light) | [11] |
Vitamin A | 330 | 410 | Cheese (Visible light) | [10] |
Vitamin A | 322 | 410 | Milk (UV-C) | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souroullas, K.; Manoli, A.; Itskos, G.; Apostolou, T.; Papademas, P. Fluorescence of Intrinsic Milk Chromophores as a Novel Verification Method of UV-C Treatment of Milk. Foods 2024, 13, 2887. https://doi.org/10.3390/foods13182887
Souroullas K, Manoli A, Itskos G, Apostolou T, Papademas P. Fluorescence of Intrinsic Milk Chromophores as a Novel Verification Method of UV-C Treatment of Milk. Foods. 2024; 13(18):2887. https://doi.org/10.3390/foods13182887
Chicago/Turabian StyleSouroullas, Kallis, Andreas Manoli, Grigorios Itskos, Theofylaktos Apostolou, and Photis Papademas. 2024. "Fluorescence of Intrinsic Milk Chromophores as a Novel Verification Method of UV-C Treatment of Milk" Foods 13, no. 18: 2887. https://doi.org/10.3390/foods13182887
APA StyleSouroullas, K., Manoli, A., Itskos, G., Apostolou, T., & Papademas, P. (2024). Fluorescence of Intrinsic Milk Chromophores as a Novel Verification Method of UV-C Treatment of Milk. Foods, 13(18), 2887. https://doi.org/10.3390/foods13182887