Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = fretting regime

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1887 KiB  
Proceeding Paper
Experimental Evaluation of Coefficient of Friction for Fretting Regimes
by Shumaila Fatima, Shahid Mehmood, Muhammad Awais Hamza, Atta Ur Rahman, Hafiz Samama Sumair, Soban Ullah, Muhammad Ammar Nasir, Muhammad Ehtisham and Husnain Zulfiqar Ali
Mater. Proc. 2025, 23(1), 9; https://doi.org/10.3390/materproc2025023009 - 31 Jul 2025
Viewed by 161
Abstract
This study investigates the coefficient of friction (COF) and wear behavior in fretting regimes—stick, stick–slip, and gross sliding—under dry and oil-lubricated conditions. Fretting tests were conducted by increasing oscillation amplitude from a few micrometers to 48 µm. In dry conditions, displacement amplitude initially [...] Read more.
This study investigates the coefficient of friction (COF) and wear behavior in fretting regimes—stick, stick–slip, and gross sliding—under dry and oil-lubricated conditions. Fretting tests were conducted by increasing oscillation amplitude from a few micrometers to 48 µm. In dry conditions, displacement amplitude initially rose rapidly, stabilizing after about 5 million load cycles, indicating steady-state behavior. The friction ratio (FR) surged early, peaking between 0.7 and 1.0, before declining to stable values, suggesting a shift from adhesive to stable frictional interaction. The minimal slip amplitude confirmed the predominance of the stick regime. Conversely, in oil-lubricated conditions, displacement amplitude stabilized after an initial increase, achieving higher amplitudes than in dry tests. The FR started below 0.2, gradually increasing to a peak around 10,000 load cycles for higher oscillation amplitudes (e.g., 15 µm), reflecting the lubricant’s role in reducing metal-to-metal contact. COF curves in lubricated tests showed smoother transitions and lower peak values compared to dry tests. These findings highlight the lubricant’s effectiveness in minimizing adhesion and enhancing sliding efficiency, offering insights for optimizing material performance in engineering applications. Full article
Show Figures

Figure 1

13 pages, 6579 KiB  
Article
Influence of Chloride Concentration on Fretting Wear Behavior of Inconel 600 Alloy
by Mengyang Zhang, Qinglei Jiang, Yizhou Zhang, Yinqiang Chen, Baoli Guo and Long Xin
Materials 2024, 17(12), 2950; https://doi.org/10.3390/ma17122950 - 17 Jun 2024
Cited by 1 | Viewed by 1186
Abstract
The nickel-based alloy Inconel 600, strengthened by solution treatment, finds extensive application as a heat exchange pipe material in steam generators within nuclear power plants, owing to its exceptional resistance to high-temperature corrosion. However, fretting corrosion occurs at the contact points between the [...] Read more.
The nickel-based alloy Inconel 600, strengthened by solution treatment, finds extensive application as a heat exchange pipe material in steam generators within nuclear power plants, owing to its exceptional resistance to high-temperature corrosion. However, fretting corrosion occurs at the contact points between the pipe and support frame due to gas–liquid flow, leading to wear damage. This study investigates the fretting wear behavior and damage mechanism of the nickel-based alloy Inconel 600 and 304 stainless steel friction pairs under point contact conditions in a water environment. Characterization was performed using laser confocal scanning microscopy and scanning electron microscopy equipped with energy-dispersive spectroscopy. Results indicate that the friction coefficient remains consistent across different chloride ion concentrations, while the wear volume increases with increasing chloride concentrations. Notably, friction coefficient oscillations are observed in the gross slip regime (GSR). Moreover, the stability of the oxide layer formed in water is compromised, diminishing its protective effect against wear. In the partial slip regime (PSR), friction coefficient oscillations are absent. An oxide layer forms within the wear scar, with significantly fewer cracks compared to those within the oxide layer in the GSR. It is worth noting that in GSR, the friction coefficient oscillates. Full article
Show Figures

Figure 1

20 pages, 18484 KiB  
Article
Effect of Low-Temperature Plasma Carburization on Fretting Wear Behavior of AISI 316L Stainless Steel
by Lu Sun, Yuandong Li, Chi Cao, Guangli Bi and Xiaomei Luo
Coatings 2024, 14(2), 158; https://doi.org/10.3390/coatings14020158 - 25 Jan 2024
Cited by 7 | Viewed by 1991
Abstract
AISI 316L stainless steel has received considerable attention as a common material for key ball valve components; however, its properties cannot be improved through traditional phase transformation, and fretting wears the contact interface between valve parts. A carburized layer was prepared on the [...] Read more.
AISI 316L stainless steel has received considerable attention as a common material for key ball valve components; however, its properties cannot be improved through traditional phase transformation, and fretting wears the contact interface between valve parts. A carburized layer was prepared on the surface of AISI 316L stainless steel by using double-glow low-temperature plasma carburization technology. This study reveals the effect of double-glow low-temperature plasma carburization technology on the fretting wear mechanism of AISI 316L steel under different normal loads and displacements. The fretting wear behavior and energy dissipation of the AISI 316L steel and the carburized layer were studied on an SRV-V fretting friction and wear machine with ball–plane contact. The wear mark morphology was analyzed by using scanning electron microscopy (SEM), the phase structure of the carburized layer was characterized with X-ray diffractometry (XRD), and the wear profile and wear volume were evaluated with laser confocal microscopy. The carburized layer contains a single Sc phase, a uniform and dense structure, and a metallurgically combined matrix. After plasma carburizing, the sample exhibited a maximum surface hardness of 897 ± 18 HV0.2, which is approximately four times higher than that of the matrix (273 ± 33 HV0.2). Moreover, the surface roughness was approximately doubled. The wear depth, wear rate, and frictional dissipation energy coefficient of the carburized layer were significantly reduced by up to approximately an order of magnitude compared with the matrix, while the wear resistance and fretting wear stability of the carburized layer were significantly improved. Under different load conditions, the wear mechanism of the AISI 316L steel changed from adhesive wear and abrasive wear to adhesive wear, fatigue delamination, and abrasive wear. Meanwhile, the wear mechanism of the carburized layer changed from adhesive wear to adhesive wear and fatigue delamination, accompanied by a furrowing effect. Under variable displacement conditions, both the AISI 316L steel and carburized layer mainly exhibited adhesive wear and fatigue peeling. Oxygen elements accumulated in the wear marks of the AISI 316L steel and carburized layer, indicating oxidative wear. The fretting wear properties of the AISI 316L steel and carburized layer were determined using the coupled competition between mechanical factors and thermochemical factors. Low-temperature plasma carburization technology improved the stability of the fretting wear process and changed the fretting regime of the AISI 316L steel and could be considered as anti-wearing coatings of ball valves. Full article
Show Figures

Figure 1

13 pages, 4231 KiB  
Article
Influence of Profile Geometry on Frictional Energy Dissipation in a Dry, Compliant Steel-on-Steel Fretting Contact: Macroscopic Modeling and Experiment
by Emanuel Willert
Machines 2023, 11(4), 484; https://doi.org/10.3390/machines11040484 - 18 Apr 2023
Cited by 2 | Viewed by 2046
Abstract
Dry, frictional steel-on-steel contacts under small-scale oscillations are considered experimentally and theoretically. As indenting bodies, spheres, and truncated spheres are used to retrace the transition from smooth to sharp contact profile geometries. The experimental apparatus is built as a compliant setup, with the [...] Read more.
Dry, frictional steel-on-steel contacts under small-scale oscillations are considered experimentally and theoretically. As indenting bodies, spheres, and truncated spheres are used to retrace the transition from smooth to sharp contact profile geometries. The experimental apparatus is built as a compliant setup, with the characteristic macroscopic values of stiffness being comparable to or smaller than the contact stiffness of the fretting contact. A hybrid macroscopic–contact model is formulated to predict the time development of the macroscopic contact quantities (forces and global relative surface displacements), which are measured in the experiments. The model is well able to predict the macroscopic behavior and, accordingly, the frictional hysteretic losses observed in the experiment. The change of the indenter profile from spherical to truncated spherical “pushes” the fretting contact towards the sliding regime if the nominal normal force and tangential displacement oscillation amplitude are kept constant. The transition of the hysteretic behavior, depending on the profile geometry from the perfectly spherical to the sharp flat-punch profile, occurs for the truncated spherical indenter within a small margin of the radius of its flat face. Already for a flat face radius which is roughly equal to the contact radius for the spherical case, the macroscopic hysteretic behavior cannot be distinguished from a flat punch contact with the same radius. The compliance of the apparatus (i.e., the macrosystem) can have a large influence on the energy dissipation and the fretting regime. Below a critical value for the stiffness, the fretting contact exhibits a sharp transition to the “sticking” regime. However, if the apparatus stiffness is large enough, the hysteretic behavior can be controlled by changing the profile geometry. Full article
(This article belongs to the Special Issue Dry Friction: Theory, Analysis and Applications)
Show Figures

Figure 1

15 pages, 2487 KiB  
Article
Impact of Molecule Concentration, Diffusion Rates and Surface Passivation on Single-Molecule Fluorescence Studies in Solution
by Olessya Yukhnovets, Henning Höfig, Nuno Bustorff, Alexandros Katranidis and Jörg Fitter
Biomolecules 2022, 12(3), 468; https://doi.org/10.3390/biom12030468 - 18 Mar 2022
Cited by 4 | Viewed by 3263 | Correction
Abstract
For single-molecule studies in solution, very small concentrations of dye-labelled molecules are employed in order to achieve single-molecule sensitivity. In typical studies with confocal microscopes, often concentrations in the pico-molar regime are required. For various applications that make use of single-molecule Förster resonance [...] Read more.
For single-molecule studies in solution, very small concentrations of dye-labelled molecules are employed in order to achieve single-molecule sensitivity. In typical studies with confocal microscopes, often concentrations in the pico-molar regime are required. For various applications that make use of single-molecule Förster resonance energy transfer (smFRET) or two-color coincidence detection (TCCD), the molecule concentration must be set explicitly to targeted values and furthermore needs to be stable over a period of several hours. As a consequence, specific demands must be imposed on the surface passivation of the cover slides during the measurements. The aim of having only one molecule in the detection volume at the time is not only affected by the absolute molecule concentration, but also by the rate of diffusion. Therefore, we discuss approaches to control and to measure absolute molecule concentrations. Furthermore, we introduce an approach to calculate the probability of chance coincidence events and demonstrate that measurements with challenging smFRET samples require a strict limit of maximal sample concentrations in order to produce meaningful results. Full article
(This article belongs to the Special Issue Single-Molecule Protein Dynamics)
Show Figures

Figure 1

15 pages, 9458 KiB  
Article
The Effect of Ball Burnishing on Dry Fretting
by Slawomir Swirad and Pawel Pawlus
Materials 2021, 14(22), 7073; https://doi.org/10.3390/ma14227073 - 21 Nov 2021
Cited by 17 | Viewed by 2153
Abstract
Experiments were conducted under a dry gross fretting regime. Steel discs were put in contact with ceramic balls. Before tribological tests, discs were subjected to ball burnishing with different pressures. Due to ball burnishing, a decrease in surface amplitude and an increase in [...] Read more.
Experiments were conducted under a dry gross fretting regime. Steel discs were put in contact with ceramic balls. Before tribological tests, discs were subjected to ball burnishing with different pressures. Due to ball burnishing, a decrease in surface amplitude and an increase in microhardness occurred. Ball burnishing caused decreases in the friction force and volumetric wear of up to 45% in comparison to sliding pairs containing milled discs. The friction force and volumetric wear were higher for a higher roughness of disc. Full article
(This article belongs to the Special Issue Tribology: Friction and Wear of Engineering Materials (Second Volume))
Show Figures

Figure 1

11 pages, 3441 KiB  
Article
Tribological Behavior of Novel CNTs-Based Lubricant Grease in Steady-State and Fretting Sliding Conditions
by Adolfo Senatore, Haiping Hong, Veronica D’Urso and Hammad Younes
Lubricants 2021, 9(11), 107; https://doi.org/10.3390/lubricants9110107 - 29 Oct 2021
Cited by 21 | Viewed by 3655
Abstract
The tribological behavior of novel 7.5 wt% carbon nanotube-based lubricant greases in PAO (polyalphaolefin) oil with and without 1.0 wt% MoS2, together with several other commercial greases such as calcium, lithium, were studied. The test results showed a marked reduction of [...] Read more.
The tribological behavior of novel 7.5 wt% carbon nanotube-based lubricant greases in PAO (polyalphaolefin) oil with and without 1.0 wt% MoS2, together with several other commercial greases such as calcium, lithium, were studied. The test results showed a marked reduction of frictional coefficient achieved by the CNTs based grease samples with an average benefit of around 30% compared to conventional greases. The steady state test under 1.00 GPa average contact pressure in a mixed lubrication regime and the fretting test showed the best results in terms of friction reduction obtained by CNTs greases. Steady state tests at higher average contact pressure of 1.67 GPa proved to have a lower friction coefficient for CNTs grease containing MoS2; otherwise CNTs grease without MoS2 showed an average value of CoF comparable to calcium and lithium greases, both in a boundary and a mixed regime. The protection against wear, a considerable decrease (−60%) of reference parameter was measured with CNTs grease with MoS2 (NLGI 2) in comparison with the worst conventional grease and −22% in comparison with the best conventional grease. The data indicated that our novel carbon nanotube greases show superior tribological properties and will have promising applications in the corresponding industry. Full article
(This article belongs to the Special Issue Grease)
Show Figures

Graphical abstract

13 pages, 4811 KiB  
Article
The Effect of Displacement Amplitude on Fretting Wear Behavior and Damage Mechanism of Alloy 690 in Different Gaseous Atmospheres
by Long Xin, Lanzheng Kang, Weiwei Bian, Mengyang Zhang, Qinglei Jiang and Tetsuo Shoji
Materials 2021, 14(19), 5778; https://doi.org/10.3390/ma14195778 - 2 Oct 2021
Cited by 11 | Viewed by 2648
Abstract
The effect of displacement amplitude on fretting wear behavior and damage mechanisms of alloy 690 in air and nitrogen atmospheres was investigated in detail. The results showed that in air, the friction coefficient gradually increased with the increase in displacement amplitude which conformed [...] Read more.
The effect of displacement amplitude on fretting wear behavior and damage mechanisms of alloy 690 in air and nitrogen atmospheres was investigated in detail. The results showed that in air, the friction coefficient gradually increased with the increase in displacement amplitude which conformed to the universal law. In nitrogen, however, it had the highest point at the displacement amplitude of 60 μm due to very strong adhesion. Whether in air or nitrogen, the wear volume gradually increased with the increase in displacement amplitude. The wear volume in air was larger than that in nitrogen except at 30 μm. At 30 μm, the wear volume in air was slightly smaller. With an increase in displacement amplitude, a transformation of fretting running status between partial slip, mixed stick-slip, and final gross slip occurred along with the change of Ft-D curves from linear, to elliptic, to, finally, parallelogrammical. Correspondingly, the fretting regime changed from a partial slip regime to a mixed regime to a gross slip regime. With the increase in displacement amplitude, the transition from partial slip to gross slip in nitrogen was delayed as compared with in air due to the strong adhesion actuated by low oxygen content in a reducing environment. Whether in air or nitrogen, the competitive relation between fretting-induced fatigue and fretting-induced wear was prominent. The cracking velocity was more rapid than the wear. Fretting-induced fatigue dominated at 30 μm in air but at 30–60 μm in nitrogen. Fretting-induced wear won the competition at 45–90 μm in air but at 75–90 μm in nitrogen. Full article
(This article belongs to the Special Issue Friction and Wear of Materials Surfaces)
Show Figures

Figure 1

18 pages, 4576 KiB  
Article
Optimizing the Efficiency of a Cytocompatible Carbon-Dots-Based FRET Platform and Its Application as a Riboflavin Sensor in Beverages
by Roberto Sotolongo-García, Eustolia Rodríguez-Velázquez, Manuel Alatorre-Meda, Mercedes T. Oropeza-Guzmán, Antonio Tirado-Guízar and Georgina Pina-Luis
Nanomaterials 2021, 11(8), 1981; https://doi.org/10.3390/nano11081981 - 31 Jul 2021
Cited by 15 | Viewed by 3205
Abstract
In this work, the Förster resonance energy transfer (FRET) between carbon dots (CDs) as energy donors and riboflavin (RF) as an energy acceptor was optimized and the main parameters that characterize the FRET process were determined. The results were successfully applied in the [...] Read more.
In this work, the Förster resonance energy transfer (FRET) between carbon dots (CDs) as energy donors and riboflavin (RF) as an energy acceptor was optimized and the main parameters that characterize the FRET process were determined. The results were successfully applied in the development of an ultrasensitive ratiometric fluorescent sensor for the selective and sensitive determination of RF in different beverages. Water-soluble CDs with a high quantum yield (54%) were synthesized by a facile and direct microwave-assisted technique. The CDs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), Zeta potential, and UV-visible and molecular fluorescence spectroscopy. The study of the FRET process at two donor concentrations showed that the energy transfer efficiency decreases as the donor concentration increases, confirming its dependence on the acceptor:donor ratio in nanoparticle-based systems. The results show the importance of optimizing the FRET process conditions to improve the corresponding output signal. The variation in the ratiometric signal with the concentration of RF showed linearity in a concentration range of 0 to 11 µM with R2 = 0.9973 and a detection limit of 0.025 µM. The developed nanosensor showed good selectivity over other possible types of interference. The sensor was then applied for the determination of RF in beverage samples using the standard addition method with recoveries between 96% and 106%. Preliminary cytocompatibility tests carried out with breast cancer cells (MDA-MB-231) revealed the nanosensor to be cytocompatible in its working concentration regime, even after long incubation times with cells. Altogether, the developed RF determination method was found to be fast, low-cost, highly sensitive, and selective and can be extended to other samples of interest in the biological and food sectors. Moreover, thanks to its long-lasting cytocompatibility, the developed platform can also be envisaged for other applications of biological interest, such as intracellular sensing and staining for live cell microscopy. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Sensor Applications)
Show Figures

Graphical abstract

20 pages, 10083 KiB  
Article
A Numerical Study on the Effect of Variable Wear Coefficient on Fretting Wear Characteristics
by Shengjie Wang and Magd Abdel Wahab
Materials 2021, 14(8), 1840; https://doi.org/10.3390/ma14081840 - 8 Apr 2021
Cited by 8 | Viewed by 2565
Abstract
Fretting wear is a common phenomenon that happens between contact parts when there is an oscillatory relative movement. To investigate wear characteristics history in the fretting process, the finite element method (FEM) is commonly applied to simulate the fretting by considering the wear [...] Read more.
Fretting wear is a common phenomenon that happens between contact parts when there is an oscillatory relative movement. To investigate wear characteristics history in the fretting process, the finite element method (FEM) is commonly applied to simulate the fretting by considering the wear in the model. In most literature publications, the wear coefficient is considered as a constant, which is not a real case based on the experimental results. To consider the variation of wear coefficient, a double-linear model is applied in this paper, and the tribologically transformed structure (TTS) phase is considered in the study of the wear coefficient variation model. By using these models for variable wear coefficient for both flat and cylinder, the difference of wear characteristics, plastic strain, and stress between variable wear coefficient model (VWCM) and constant wear coefficient model (CWCM) are analyzed. The results show that the variable wear coefficient has no significant effect on the wear characteristic at the end of the process in the gross sliding regime. However, in the partial slip regime, the effect of variable wear coefficient on wear characteristics is significant. Due to the difference in contact geometry in the fretting process between VWCM and CWCM, the tangential and shear stress and equivalent plastic strain also show differences during the fretting process. Full article
Show Figures

Figure 1

14 pages, 5028 KiB  
Article
An Experimental Study on the Fretting Corrosion Behaviours of Three Material Pairs at Modular Interfaces for Hip Joint Implants
by Jian Pu, Dongsheng Wu, Yali Zhang, Xiaogang Zhang and Zhongmin Jin
Lubricants 2021, 9(2), 12; https://doi.org/10.3390/lubricants9020012 - 21 Jan 2021
Cited by 14 | Viewed by 3657
Abstract
The fretting corrosion behaviours of Al2O3 ceramic/Ti6Al4V alloy, 316 L stainless/Ti6Al4V alloy, and CoCrMo alloy/Ti6Al4V alloy pairs were studied in an in-house developed fretting-corrosion tester. The fretting behaviours were characterized by the Ft-D-N and F [...] Read more.
The fretting corrosion behaviours of Al2O3 ceramic/Ti6Al4V alloy, 316 L stainless/Ti6Al4V alloy, and CoCrMo alloy/Ti6Al4V alloy pairs were studied in an in-house developed fretting-corrosion tester. The fretting behaviours were characterized by the Ft-D-N and Ft/Fn curves. The morphology of the worn surface was analyzed by energy dispersive X-ray spectrometry (EDX), a scanning electron microscope (SEM), and a white light interferometer (WLI). The fretting regimes were found to vary from slip regime (SR) to mixed fretting regime (MFR), with an increase in loads for the Al2O3/Ti6Al4V and 316 L/Ti6Al4V pairs, while for the CoCrMo/Ti6Al4V pair the fretting always remained in SR. The damage mechanism of the Al2O3/Ti6Al4V pair was mainly abrasive wear and corrosive wear, while for the 316 L/Ti6Al4V pair and CoCrMo/Ti6Al4V pair, the wear mechanism was mainly adhesive wear and corrosive wear with slight abrasive wear. The electrochemical impedance spectrum results show that the material transfer layer formed on the surface of the material can protect the material from corrosion for the 316 L/Ti6Al4V and CoCrMo/Ti6Al4V pairs. Full article
Show Figures

Figure 1

28 pages, 4179 KiB  
Article
Dual-Channel Stopped-Flow Apparatus for Simultaneous Fluorescence, Anisotropy, and FRET Kinetic Data Acquisition for Binary and Ternary Biological Complexes
by Roberto F. Delgadillo, Katie A. Carnes, Nestor Valles-Villarreal, Omar Olmos, Kathia Zaleta-Rivera and Lawrence J. Parkhurst
Biosensors 2020, 10(11), 180; https://doi.org/10.3390/bios10110180 - 19 Nov 2020
Cited by 1 | Viewed by 5130
Abstract
The Stopped-Flow apparatus (SF) tracks molecular events by mixing the reactants in sub-millisecond regimes. The reaction of intrinsically or extrinsically labeled biomolecules can be monitored by recording the fluorescence, F(t), anisotropy, r(t), polarization, p(t), [...] Read more.
The Stopped-Flow apparatus (SF) tracks molecular events by mixing the reactants in sub-millisecond regimes. The reaction of intrinsically or extrinsically labeled biomolecules can be monitored by recording the fluorescence, F(t), anisotropy, r(t), polarization, p(t), or FRET, F(t)FRET, traces at nanomolar concentrations. These kinetic measurements are critical to elucidate reaction mechanisms, structural information, and even thermodynamics. In a single detector SF, or L-configuration, the r(t), p(t), and F(t) traces are acquired by switching the orientation of the emission polarizer to collect the IVV and IVH signals however it requires two-shot experiments. In a two-detector SF, or T-configuration, these traces are collected in a single-shot experiment, but it increases the apparatus’ complexity and price. Herein, we present a single-detector dual-channel SF to obtain the F(t) and r(t) traces simultaneously, in which a photo-elastic modulator oscillates by 90° the excitation light plane at a 50 kHz frequency, and the emission signal is processed by a set of electronic filters that split it into the r(t) and F(t) analog signals that are digitized and stored into separated spreadsheets by a custom-tailored instrument control software. We evaluated the association kinetics of binary and ternary biological complexes acquired with our dual-channel SF and the traditional methods; such as a single polarizer at the magic angle to acquire F(t), a set of polarizers to track F(t), and r(t), and by energy transfer quenching, F(t)FRET. Our dual-channel SF economized labeled material and yielded rate constants in excellent agreement with the traditional methods. Full article
(This article belongs to the Special Issue Nanobiosensors Based on Energy Transfer)
Show Figures

Figure 1

20 pages, 11526 KiB  
Article
The Effect of Surface Texture on Lubricated Fretting
by Agnieszka Lenart, Pawel Pawlus, Andrzej Dzierwa, Slawomir Wos and Rafal Reizer
Materials 2020, 13(21), 4886; https://doi.org/10.3390/ma13214886 - 30 Oct 2020
Cited by 11 | Viewed by 2554
Abstract
Experiments were conducted using an Optimol SRV5 tester in lubricated friction conditions. Steel balls from 100Cr6 material of 60 HRC hardness were placed in contact with 42CrMo4 steel discs of 47 HRC hardness and diversified surface textures. Tests were carried out at a [...] Read more.
Experiments were conducted using an Optimol SRV5 tester in lubricated friction conditions. Steel balls from 100Cr6 material of 60 HRC hardness were placed in contact with 42CrMo4 steel discs of 47 HRC hardness and diversified surface textures. Tests were carried out at a 25–40% relative humidity. The ball diameter was 10 mm, the amplitude of oscillations was set to 0.1 mm, and the frequency was set to 80 Hz. Tests were performed at smaller (45 N) and higher (100 N) normal loads and at smaller (30 °C) and higher (90 °C) temperatures. During each test, the normal load and temperature were kept constant. We found that the disc surface texture had significant effects on the friction and wear under lubricated conditions. When a lower normal load was applied, the coefficient of friction and wear volumes were smaller for bigger disc surface heights. However, for a larger normal load a higher roughness corresponded to a larger coefficient of friction. Full article
(This article belongs to the Special Issue Friction and Wear of Materials Surfaces)
Show Figures

Figure 1

15 pages, 9081 KiB  
Article
Effects of Normal Force on the Tribocorrosion Behavior of a Nickel-Based Superalloy in Alkaline Solution: An Electrochemical Study
by Long Xin and Liwu Jiang
Materials 2020, 13(18), 3959; https://doi.org/10.3390/ma13183959 - 7 Sep 2020
Cited by 1 | Viewed by 1722
Abstract
The tribocorrosion behavior of Inconel 690TT in NaOH (pH = 9.8) solution at different normal forces was investigated by an electrochemical method. The results indicated that normal force had a great effect on the tribocorrosion behavior and mechanism. When normal force increased from [...] Read more.
The tribocorrosion behavior of Inconel 690TT in NaOH (pH = 9.8) solution at different normal forces was investigated by an electrochemical method. The results indicated that normal force had a great effect on the tribocorrosion behavior and mechanism. When normal force increased from 15 to 30 N, fretting regime was in gross slip regime (GSR), and wear volume gradually increased. When normal force further increased to 45 N, wear volume significantly decreased due to the fretting regime changing from GSR to partial slip regime (PSR). When fretting ran in GSR, the corrosion resistance decreased with the negative shift of open circuit potential (OCP). However, when the fretting regime changed to PSR, the corrosion reaction significantly decreased due to the adhesive wear. Fretting wear broke the passive film at the contacting surface, which caused the worn surface to be more active and prone to corrosion. However, the broken passive film was quickly repaired in subsequent oxidation. The break and repair of passive film strongly depended on normal force. In GSR, the increase in normal force aggravated the break of passive film. In PSR, the passive film was not easy to break with a further increase of normal force. Full article
Show Figures

Figure 1

18 pages, 10026 KiB  
Article
The Effect of Disc Surface Topography on the Dry Gross Fretting Wear of an Equal-Hardness Steel Pair
by Agnieszka Lenart, Pawel Pawlus and Andrzej Dzierwa
Materials 2019, 12(19), 3250; https://doi.org/10.3390/ma12193250 - 4 Oct 2019
Cited by 8 | Viewed by 2968
Abstract
Experimental investigations were carried out with an Optimol SRV5 tribological tester in a flat-on-sphere scheme. The balls co-acted with the discs in a gross sliding fretting regime. The balls and discs were made from the same steel with a very similar hardness. Tests [...] Read more.
Experimental investigations were carried out with an Optimol SRV5 tribological tester in a flat-on-sphere scheme. The balls co-acted with the discs in a gross sliding fretting regime. The balls and discs were made from the same steel with a very similar hardness. Tests were conducted at 25–35% relative humidity, 30 °C, and a constant normal load and number of cycles (18,000). The discs had different textures after various machining treatments. It was found that the total wear level of the tribological assembly was proportional to the disc surface amplitude. The influence of the disc roughness on the coefficient of friction was evident only for the smallest stroke of 0.1 mm, and the frequency of oscillation affected this dependency. Full article
(This article belongs to the Special Issue Tribology: Friction and Wear of Engineering Materials)
Show Figures

Figure 1

Back to TopTop