Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = fresh minced meat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4878 KiB  
Article
Eugenol@Montmorillonite vs. Citral@Montmorillonite Nanohybrids for Gelatin-Based Extruded, Edible, High Oxygen Barrier, Active Packaging Films
by Achilleas Kechagias, Areti A. Leontiou, Yelyzaveta K. Oliinychenko, Alexandros Ch. Stratakos, Konstatninos Zaharioudakis, Charalampos Proestos, Emmanuel P. Giannelis, Nikolaos Chalmpes, Constantinos E. Salmas and Aris E. Giannakas
Polymers 2025, 17(11), 1518; https://doi.org/10.3390/polym17111518 - 29 May 2025
Cited by 1 | Viewed by 1507
Abstract
In the context of the circular economy, the valorization of bio-derived waste has become a priority across various production sectors, including food processing and packaging. Gelatin (Gel), a protein which can be recovered from meat industry byproducts, offers a sustainable solution in this [...] Read more.
In the context of the circular economy, the valorization of bio-derived waste has become a priority across various production sectors, including food processing and packaging. Gelatin (Gel), a protein which can be recovered from meat industry byproducts, offers a sustainable solution in this regard. In this study, pork-derived gelatin was used to develop novel edible active packaging films, designed for meat products. Glycerol (Gl) was used as a plasticizer. Two types of montmorillonite-based nanohybrids were employed as both reinforcing agents and carriers of antioxidant/antibacterial compounds: eugenol-functionalized montmorillonite (EG@Mt) and citral-functionalized montmorillonite (CT@Mt). The active films were formulated as Gel/Gl/xEG@Mt and Gel/Gl/xCT@Mt, where x = 5, 10, or 15 wt.%. Controlled-release kinetics showed that EG@Mt released up to 95% of its adsorbed eugenol, whereas CT@Mt released up to 55% of its adsorbed citral. The films were evaluated using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay and tested for antibacterial activity against Escherichia coli and Listeria monocytogenes. Results demonstrated that the Gel/Gl/xEG@Mt films exhibited superior antioxidant and antibacterial performance compared to the Gel/Gl/xCT@Mt films. All formulations were impermeable to oxygen. Although the incorporation of EG and CT slightly reduced cell viability, values remained above 80%, indicating non-toxicity. In conclusion, the film containing 15 wt.% EG@Mt achieved an oxygen transmission rate of zero, an effective concentration (EC60) of 9.9 mg/L to reach 60% antioxidant activity, and reduced E. coli and L. monocytogenes populations by at least 5.8 log CFU/mL (p < 0.05), bringing them below the detection limit. Moreover, it successfully extended the shelf life of fresh minced pork by two days. Full article
(This article belongs to the Special Issue Nano-Enhanced Biodegradable Polymers for Sustainable Food Packaging)
Show Figures

Figure 1

19 pages, 1887 KiB  
Article
Comparative Analysis of Biochemical Parameters, Thermal Behavior, Rheological Features, and Gelling Characteristics of Thai Ligor Hybrid Chicken and Broiler Meats
by Ngassa Julius Mussa, Chantira Wongnen, Warangkana Kitpipit, Worawan Panpipat, Mingyu Yin, Siriporn Riebroy Kim and Manat Chaijan
Foods 2025, 14(1), 55; https://doi.org/10.3390/foods14010055 - 27 Dec 2024
Cited by 2 | Viewed by 1287
Abstract
Genetic differences typically cause differences in the structure and function of proteins in meat. The objective of this research was to examine the biochemical characteristics and functional behavior of proteins in fresh composite meat from Thai Ligor hybrid chicken (LC) and commercial broiler [...] Read more.
Genetic differences typically cause differences in the structure and function of proteins in meat. The objective of this research was to examine the biochemical characteristics and functional behavior of proteins in fresh composite meat from Thai Ligor hybrid chicken (LC) and commercial broiler chicken (BC). The composite meat samples, which comprise minced breast and thigh without skin from 20 chicken carcasses in a 1:1 (w/w) ratio, were randomly selected for analysis using the completely randomized design (CRD). Results showed that BC meat exhibited higher ultimate pH after 24 h, Ca2+-ATPase activity, and trichloroacetic acid (TCA)-soluble peptide content compared to LC meat (p < 0.05). While both meat types showed non-significant differences in reactive sulfhydryl (SH) levels (p > 0.05), LC meat exhibited higher hydrophobicity compared to BC meat (p < 0.05). Differential scanning calorimetry (DSC) analysis revealed a single transition peak in all samples. LC meat exhibited higher thermal stability than BC meat, with transition peaks at 91 °C and 81 °C, respectively, in non-sodium chloride (NaCl) treated samples. Samples treated with 2.5% NaCl exhibited transition peaks around 70 °C for BC and 79 °C for LC. LC meat showed higher storage modulus (G′) and loss modulus (G″) values than BC meat, suggesting a stronger gel-forming tendency. LC meat gels exhibited higher hardness, cohesiveness, gumminess, and chewiness, and a slightly lower pH (6.14 vs. 5.97) compared to BC meat gels (p < 0.05). LC meat gels displayed larger expressible moisture content (p < 0.05), although the value was approximately 6%. Compared to LC meat gels, BC meat gels appeared slightly whiter (p < 0.05). To compare the lipid oxidation of BC and LC meat gels day by day, the thiobarbituric acid reactive substances (TBARS) of gels stored at 4 °C in polyethylene bags were measured on Days 0, 4, and 8. Both BC and LC meat gels showed acceptable lipid oxidation-based rancid off-flavor after short-term storage at 4 °C, with TBARS values below 2 mg malondialdehyde (MDA) equivalent/kg on Day 8. Understanding these variations in biochemical properties and functional behavior can help optimize processing methods and produce meat products of superior quality that meet consumer preferences. Full article
Show Figures

Figure 1

25 pages, 3938 KiB  
Article
Shelf Life of Minced Pork in Vacuum-Adsorbed Carvacrol@Natural Zeolite Nanohybrids and Poly-Lactic Acid/Triethyl Citrate/Carvacrol@Natural Zeolite Self-Healable Active Packaging Films
by Vassilios K. Karabagias, Aris E. Giannakas, Nikolaos D. Andritsos, Areti A. Leontiou, Dimitrios Moschovas, Andreas Karydis-Messinis, Apostolos Avgeropoulos, Nikolaos E. Zafeiropoulos, Charalampos Proestos and Constantinos E. Salmas
Antioxidants 2024, 13(7), 776; https://doi.org/10.3390/antiox13070776 - 27 Jun 2024
Cited by 6 | Viewed by 1926
Abstract
Enhancing food preservation and safety using environmentally friendly techniques is urgently needed. The aim of this study was to develop food packaging films using biodegradable poly-L-lactic acid (PLA) as biopolymer and carvacrol (CV) essential oil as an antioxidant/antibacterial agent for the replacement of [...] Read more.
Enhancing food preservation and safety using environmentally friendly techniques is urgently needed. The aim of this study was to develop food packaging films using biodegradable poly-L-lactic acid (PLA) as biopolymer and carvacrol (CV) essential oil as an antioxidant/antibacterial agent for the replacement of chemical additives. CV was adsorbed onto natural zeolite (NZ) via a new vacuum adsorption method. The novel nanohybrid CV@NZ with a high CV content contained 61.7%wt. CV. Pure NZ and the CV@NZ nanohybrid were successfully dispersed in a PLA/triethyl citrate (TEC) matrix via a melt extrusion process to obtain PLA/TEC/xCV@NZ and PLA/TEC/xNZ nanocomposite films with 5, 10, and 15%wt CV@NZ or pure NZ content. The optimum resulting film PLA/TEC/10CV@NZ contained 10%wt. CV@NZ and exhibited self-healable properties, 22% higher tensile strength, 40% higher elongation at break, 45% higher water barrier, and 40% higher oxygen barrier than the pure PLA/TEC matrix. This film also had a high CV release content, high CV control release rate as well as 2.15 mg/L half maximal effective concentration (EC50) and 0.27 mm and 0.16 mm inhibition zones against Staphylococcus aureus and Salmonella enterica ssp. enterica serovar Typhimurium, respectively. This film not only succeeded in extending the shelf life of fresh minced pork, as shown by the total viable count measurements in four days but also prevented the lipid oxidation of fresh minced pork and provided higher nutritional values of the minced meat, as revealed by the heme iron content determination. It also had much better and acceptable sensory characteristics than the commercial packaging paper. Full article
Show Figures

Figure 1

17 pages, 2655 KiB  
Article
Pomegranate Peel and Olive Leaf Extracts to Optimize the Preservation of Fresh Meat: Natural Food Additives to Extend Shelf-Life
by Giuseppina Forgione, Giuseppa Anna De Cristofaro, Daniela Sateriale, Chiara Pagliuca, Roberta Colicchio, Paola Salvatore, Marina Paolucci and Caterina Pagliarulo
Microorganisms 2024, 12(7), 1303; https://doi.org/10.3390/microorganisms12071303 - 27 Jun 2024
Cited by 6 | Viewed by 3116
Abstract
Quality and safety are one of the main concerns of the European Union in food preservation. Using chemical additives extends the shelf-life of fresh foods but raises consumer’s concerns about the potential long-term carcinogenic effects. Using natural substances derived from agro-industrial by-products, which [...] Read more.
Quality and safety are one of the main concerns of the European Union in food preservation. Using chemical additives extends the shelf-life of fresh foods but raises consumer’s concerns about the potential long-term carcinogenic effects. Using natural substances derived from agro-industrial by-products, which have significant antimicrobial and antioxidant activities, could extend the shelf-life of fresh foods such as meat. Furthermore, they can provide nutritional improvements without modifying organoleptic properties. This study analyzes the antimicrobial activity of pomegranate peel extract (PPE) and the antioxidant activity of olive leaf extract (OLE), added at concentrations of 10 mg g−1 and 0.25 mg g−1, respectively, to minced poultry and rabbit meat. PPE exhibited in vitro antimicrobial activity against foodborne pathogens starting at 10 mg/well. PPE and OLE determined a reduction in colony count over a storage period of 6 days at 4 °C. Additionally, the combination of PPE and OLE showed antioxidant effects, preserving lipid oxidation and maintaining pH levels. The obtained results demonstrate that PPE and OLE can be recommended as food additives to preserve the quality and extend the shelf-life of meat products. Full article
Show Figures

Figure 1

19 pages, 4380 KiB  
Article
Development of pH Indicator Composite Films Based on Anthocyanins and Neutral Red for Monitoring Minced Meat and Fish in Modified Gas Atmosphere (MAP)
by Marwa Faisal, Tomas Jacobson, Lene Meineret, Peter Vorup, Heloisa N. Bordallo, Jacob Judas Kain Kirkensgaard, Peter Ulvskov and Andreas Blennow
Coatings 2024, 14(6), 725; https://doi.org/10.3390/coatings14060725 - 6 Jun 2024
Cited by 4 | Viewed by 2597
Abstract
Fresh meat and fish are widely consumed foods with short and very short shelf lives, respectively. Efficient supply chains and the judicious use of food packaging are the most effective means of extending shelf life and thus reducing food waste and improving food [...] Read more.
Fresh meat and fish are widely consumed foods with short and very short shelf lives, respectively. Efficient supply chains and the judicious use of food packaging are the most effective means of extending shelf life and thus reducing food waste and improving food safety. Food packaging that allows for the use of a modified atmosphere (MAP) is effective in extending the period where the food is both palatable and safe. However, monitoring the state of aging and the onset of spoilage of the product poses challenges. Microbial counts, pH measurements, and sensory evaluations are all informative but destructive and are therefore only useful for monitoring quality via sampling. More attractive would be a technology that can follow the progress of ageing in an individual product while leaving the food packaging intact. Here, we present a pH indicator to be placed inside each package that may be read by the naked eye. It is a colorimetric indicator with a matrix made of pure amylose (AM; 99% linear α-glucans) and cellulose nanofibers (CNFs). Suitable mechanical properties of films cast of the two polysaccharides were achieved via the optimization of the blending ratio. The films were loaded with either of two pH indicators: anthocyanin extracts from red cabbage (RCA) and the synthetic dye neutral red (NR). Mechanical, thermal, permeability, microstructural, and physical properties were tested for all composite films. Films with 35% CNF (35AC-RCA) and (35AC-NR) were selected for further study. Minced meat was packaged under MAP conditions (70% O2 + 30% CO2), while minced fish was packaged under MAP (70% N2 + 30% CO2) and stored at 5 °C for 20 days. Microbial growth, pH, and sensory scores of the minced meat systems differentiated between fresh (0–6 days) and medium-fresh (7–10 days), and minced fish between fresh (0–10 days) and medium-fresh (11–20 days). The total color difference showed that the RCA indicator was able to differentiate between fresh (red) and medium-fresh (pink-red) minced meat, while for minced fish, this indicator discriminated between three stages: fresh (red), medium-fresh (pink-red), and spoiled (pink-blue). The NR indicator failed to discriminate the freshness of either meat or fish under the effect of MAP. Pearson correlation statistical models showed a correlation between color change of the indicator, pH, content of gases, and gas content. In summary, RCA immobilized in an AM + 35% CNF nanocomposite film can monitor the freshness of packaged minced meat/fish under the effect of MAP via color change that may be evaluated with the naked eye. Full article
(This article belongs to the Special Issue Novel Advances in Food Contact Materials)
Show Figures

Figure 1

21 pages, 1995 KiB  
Article
Carvacrol Microemulsion vs. Nanoemulsion as Novel Pork Minced Meat Active Coatings
by Konstantinos Zaharioudakis, Eleni Kollia, Areti Leontiou, Dimitrios Moschovas, Andreas Karydis-Messinis, Apostolos Avgeropoulos, Nikolaos E. Zafeiropoulos, Efthymia Ragkava, George Kehayias, Charalampos Proestos, Constantinos E. Salmas and Aris E. Giannakas
Nanomaterials 2023, 13(24), 3161; https://doi.org/10.3390/nano13243161 - 18 Dec 2023
Cited by 6 | Viewed by 3009
Abstract
Carvacrol is well documented for its antibacterial and antioxidant effects. However, its high volatility has directed researchers toward nanoencapsulation technology according to bioeconomy and sustainability trends. This study examined and compared free carvacrol (FC), carvacrol microemulsion (MC), carvacrol microemulsion busted with chitosan (MMC), [...] Read more.
Carvacrol is well documented for its antibacterial and antioxidant effects. However, its high volatility has directed researchers toward nanoencapsulation technology according to bioeconomy and sustainability trends. This study examined and compared free carvacrol (FC), carvacrol microemulsion (MC), carvacrol microemulsion busted with chitosan (MMC), and carvacrol nanoemulsions (NC) as active coatings on extending minced pork meat shelf life at 4 ± 1 °C for 9 days, focusing on microbiological, physiochemical, and sensory characteristics. The research involved pre-characterizing droplet sizes, evaluating antioxidants, and determining antibacterial efficacy. The results demonstrated that NC with a 21 nm droplet size exhibited the highest antioxidant and antibacterial activity. All coatings succeeded in extending the preservation of fresh minced pork meat in comparison to the free carvacrol sample (FC). The NC coating showed the highest extension of minced pork meat preservation and maintained meat freshness for 9 days, with a lower TBARs of 0.736 mg MDA/Kg, and effectively reduced mesophilic, lactic acid, and psychotrophic bacterial counts more significantly by 1.2, 2, and 1.3 log, respectively, as compared to FC. Sensory assessments confirmed the acceptability of NC and MCC coatings. Overall, the carvacrol-based nanoemulsion can be considered a novel antioxidant and antimicrobial active coating due to its demonstrated higher efficacy in all the examined tests performed. Full article
(This article belongs to the Special Issue Nanomaterials and Nanostructures for Food Processing and Preservation)
Show Figures

Graphical abstract

4 pages, 414 KiB  
Proceeding Paper
Multidrug-Resistance Cases of Listeria monocytogenes Isolated from Fresh Meats
by Joana Paiva, Vanessa Silva, Patrícia Poeta and Cristina Saraiva
Biol. Life Sci. Forum 2023, 26(1), 122; https://doi.org/10.3390/Foods2023-15071 - 14 Oct 2023
Viewed by 692
Abstract
The aim of this study is to provide an overview of multidrug-resistance cases of Listeria monocytogenes isolated from fresh meat and meat products from the north of Portugal. Samples of fresh meat preparations and meat products from hypermarkets and small traditional local shops [...] Read more.
The aim of this study is to provide an overview of multidrug-resistance cases of Listeria monocytogenes isolated from fresh meat and meat products from the north of Portugal. Samples of fresh meat preparations and meat products from hypermarkets and small traditional local shops were subjected to microbiological analysis and antimicrobial resistance tests. The strains were identified using morphological and molecular methods. Antibiotic resistance was determined using the Kirby–Bauer disk diffusion method. The overall prevalence of L. monocytogenes among screened samples was 32%. A total of nine isolates were obtained from minced meat, displaying a multidrug-resistance profile. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Foods)
Show Figures

Figure 1

24 pages, 1744 KiB  
Article
Evaluation of In Vitro Antimicrobial Activity of Bioactive Compounds and the Effect of Allyl-Isothiocyanate on Chicken Meat Quality under Refrigerated Conditions
by Khabat Noori Hussein, László Friedrich, István Dalmadi and Gabriella Kiskó
Appl. Sci. 2023, 13(19), 10953; https://doi.org/10.3390/app131910953 - 4 Oct 2023
Cited by 7 | Viewed by 2326
Abstract
Natural antimicrobials are effective against both food-borne pathogens and spoilage bacteria. The current study aimed to evaluate the in vitro antimicrobial activity of eight natural bioactive compounds (BACs) and one synthetic compound, butylated hydroxytoluene (BHT), and to evaluate the effect of one selected [...] Read more.
Natural antimicrobials are effective against both food-borne pathogens and spoilage bacteria. The current study aimed to evaluate the in vitro antimicrobial activity of eight natural bioactive compounds (BACs) and one synthetic compound, butylated hydroxytoluene (BHT), and to evaluate the effect of one selected BAC (AITC) on the safety and quality of minced chicken meat. Additionally, physicochemical (pH, color, water-holding capacity (WHC), chemical forms of myoglobin (deoxymyoglobin-DeoMb, oxymyoglobin-OxyMb, and metmyoglobin-MetMb), thiobarbituric-acid-reactive substances (TBARs)), and microbiological properties (in vitro antimicrobial activity and determination of minimum inhibitory concentration (MIC)) were also evaluated through electronic-nose odor detection. Allyl-isothiocyanate (AITC), thymol, eugenol, and geraniol showed the broadest spectrum of in vitro antibacterial activity against one major meat spoilage bacterium and five pathogenic bacteria that were tested. Subsequently, AITC was selected to be applied to fresh minced chicken meat at different concentrations (at concentrations of the MIC (MIC-1), two times the MIC (MIC-2), and four times the MIC (MIC-4)). The chicken meat was then vacuum-packaged and kept for up to 14 days at 4 °C, and its quality properties were checked during storage. In this study, the addition of low concentrations of AITC (MIC-1) maintained the lightness (L*) and increased the WHC of the meat. High concentrations (MIC-2 and MIC-4) caused a significant increase in lightness (L*) and folded yellowness (b*) value, and they significantly reduced the redness (a*) and TBARS values compared to the control meat. The amounts of MetMb and DeoMb were reduced and the quantity of OxyMb was increased as a result of the addition of AITC to the chicken breast. Throughout storage, particularly at MIC-4, AITC showed the lowest numbers of aerobic mesophilic cells, as well as a reduction in Listeria monocytogenes cell numbers and a decrease in Salmonella Typhimurium counts. In addition, the meat containing MIC-4 did not exhibit growth of Pseudomonas lundensis after 10 days. During the storage period, an electronic-nose assay demonstrated a distinction in the odor buildup of AITC across the various meat groups, and meat treated with MIC-4 showed a trend that was clearly opposite to that of untreated meat. These encouraging results demonstrate the potential of AITC to improve the safety and shelf life of meat and meat products. Full article
(This article belongs to the Special Issue Applied Microbial Biotechnology for Poultry Science)
Show Figures

Figure 1

24 pages, 5129 KiB  
Article
Optimizing the Functional Properties of Starch-Based Biodegradable Films
by Theofilos Frangopoulos, Anna Marinopoulou, Athanasios Goulas, Eleni Likotrafiti, Jonathan Rhoades, Dimitrios Petridis, Eirini Kannidou, Alexios Stamelos, Maria Theodoridou, Athanasia Arampatzidou, Alexandra Tosounidou, Lazaros Tsekmes, Konstantinos Tsichlakis, Giorgos Gkikas, Eleftherios Tourasanidis and Vassilis Karageorgiou
Foods 2023, 12(14), 2812; https://doi.org/10.3390/foods12142812 - 24 Jul 2023
Cited by 22 | Viewed by 5638
Abstract
A definitive screening design was used in order to evaluate the effects of starch, glycerol and montmorillonite (MMT) concentrations, as well as the drying temperature, drying tray type and starch species, on packaging film’s functional properties. Optimization showed that in order to obtain [...] Read more.
A definitive screening design was used in order to evaluate the effects of starch, glycerol and montmorillonite (MMT) concentrations, as well as the drying temperature, drying tray type and starch species, on packaging film’s functional properties. Optimization showed that in order to obtain films with the minimum possible thickness, the maximum elongation at break, the maximum tensile strength, as well as reduced water vapor permeability and low opacity, a combination of factors should be used as follows: 5.5% wt starch concentration, 30% wt glycerol concentration on a dry starch basis, 10.5% wt MMT concentration on a dry starch basis, 45 °C drying temperature, chickpea as the starch species and plexiglass as the drying tray type. Based on these results, starch films were prepared, and fresh minced meat was stored in them for 3 days. It was shown that the incorporation of MMT at 10.5% wt on a dry starch basis in the packaging films led to a decreased mesophilic and psychrotrophic bacteria growth factor compared to commercial packaging. When assessed for their biodegradability, the starch films disintegrated after 10 days of thermophilic incubation under simulated composting conditions. Finally, to prove their handling capability during industrial production, the starch films were rewound in a paper cylinder using an industrial-scale rewinding machine. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

19 pages, 6027 KiB  
Article
Facile Fabrication of Anthocyanin-Nanocellulose Hydrogel Indicator Label for Intelligent Evaluation of Minced Pork Freshness
by Xiangyong Meng, Qinqin Shen, Teng Song, Honglei Zhao, Yong Zhang, Aiqing Ren and Wenbin Yang
Foods 2023, 12(13), 2602; https://doi.org/10.3390/foods12132602 - 5 Jul 2023
Cited by 14 | Viewed by 2880
Abstract
In order to develop a reliable and rapid method for meat freshness detection, nanocellulose (TOCNF) prepared via the TEMPO (2,2,6,6-tetramethylpiperidine oxidation) oxidation method was used as raw material to prepare hydrogels using Zn2+ coordination and binding. Physicochemical properties such as water absorption [...] Read more.
In order to develop a reliable and rapid method for meat freshness detection, nanocellulose (TOCNF) prepared via the TEMPO (2,2,6,6-tetramethylpiperidine oxidation) oxidation method was used as raw material to prepare hydrogels using Zn2+ coordination and binding. Physicochemical properties such as water absorption and porosity were analyzed. It was further used to select suitable hydrogels for the preparation of indication labels after anthocyanin adsorption, and it was applied in the freshness detection of fresh minced pork. Five percent TOCNF (w/w) aqueous solution was homogenized by high shear for 4 min, and 20% (w/w) zinc chloride solution was added to it, so that the concentration of zinc ions could reach 0.25 mol/L. After standing for 24 h, the hydrogel was obtained with good water absorption and a porous three-dimensional network structure. The activation energies of volatile base nitrogen (TVBN) and anthocyanin indicating label color changes were 59.231 kJ/mol and 69.453 kJ/mol, respectively. The difference between the two is within 25 kJ/mol, so the prepared indicator label can accurately visualize the shelf life of fresh pork. Full article
Show Figures

Figure 1

22 pages, 2290 KiB  
Article
Mushroom–Legume-Based Minced Meat: Physico-Chemical and Sensory Properties
by Md. Anisur Rahman Mazumder, Shanipa Sukchot, Piyawan Phonphimai, Sunantha Ketnawa, Manat Chaijan, Lutz Grossmann and Saroat Rawdkuen
Foods 2023, 12(11), 2094; https://doi.org/10.3390/foods12112094 - 23 May 2023
Cited by 24 | Viewed by 6162
Abstract
A growing number of health-conscious consumers are looking for animal protein alternatives with similar texture, appearance, and flavor. However, research and development still needs to find alternative non-meat materials. The aim of this study was to develop a mushroom-based minced meat substitute (MMMS) [...] Read more.
A growing number of health-conscious consumers are looking for animal protein alternatives with similar texture, appearance, and flavor. However, research and development still needs to find alternative non-meat materials. The aim of this study was to develop a mushroom-based minced meat substitute (MMMS) from edible Pleurotus sajor-caju (PSC) mushrooms and optimize the concentration of chickpea flour (CF), beetroot extract, and canola oil. CF was used to improve the textural properties of the MMMS by mixing it with PSC mushrooms in ratios of 0:50, 12.5:37.5, 25:25, 37.5:12.5, and 50:0. Textural and sensory attributes suggest that PSC mushrooms to CF in a ratio of 37.5:12.5 had better textural properties, showing hardness of 2610 N and higher consumer acceptability with protein content up to 47%. Sensory analysis suggests that 5% (w/w) canola oil showed the most acceptable consumer acceptability compared to other concentrations. Color parameters indicate that 0.2% beetroot extract shows higher whiteness, less redness, and higher yellowness for both fresh and cooked MMMS. This research suggests that MMMS containing PSC, CF, canola oil, and beetroot extract could be a suitable alternative and sustainable food product which may lead to higher consumer adoption as a meat substitute. Full article
(This article belongs to the Special Issue Functionality and Food Applications of Plant Proteins (Volume II))
Show Figures

Figure 1

11 pages, 1596 KiB  
Article
Effect of Frozen to Fresh Meat Ratio in Minced Pork on Its Quality
by Igor Tomasevic, Franziska Witte, Rike Elisabeth Kühling, Lisa M. Berger, Monika Gibis, Jochen Weiss, Anja Röser, Matthias Upmann, Eike Joeres, Andreas Juadjur, Ute Bindrich, Volker Heinz and Nino Terjung
Appl. Sci. 2023, 13(4), 2323; https://doi.org/10.3390/app13042323 - 10 Feb 2023
Cited by 3 | Viewed by 3153
Abstract
The meat industry is typically using a mixture of fresh and frozen meat batters for minced meat production. Our goal was to find the exact threshold for fresh to frozen meat ratio capable of controlling the meat temperature during processing, but without having [...] Read more.
The meat industry is typically using a mixture of fresh and frozen meat batters for minced meat production. Our goal was to find the exact threshold for fresh to frozen meat ratio capable of controlling the meat temperature during processing, but without having an adverse effect on the sensory quality of minced pork. To achieve this, the percentage of frozen meat used for the minced pork production was increased from 0% (control) to 50% (maximum) in 10% increments. To keep the minced meat temperature in control and make the processing resistant to fat smearing, the addition of 30% of frozen meat to the meat batter is sufficient. The soluble protein content, instrumental cutting force, and the sensory perceived firmness, juiciness, and inner cohesion were not affected by the addition of frozen meat. However, it has contributed to a significant increase of the drip loss and the amount of non-intact cells (ANIC). With the addition of frozen meat into the minced pork, the compliance to ANIC regulation by the German regulatory authorities is technologically (practically) almost impossible. Full article
(This article belongs to the Special Issue Quality and Safety Control of Meat Products)
Show Figures

Figure 1

12 pages, 289 KiB  
Article
Banana Pseudo-Stem Increases the Water-Holding Capacity of Minced Pork Batter and the Oxidative Stability of Pork Patties
by Diego E. Carballo, Irma Caro, Cristina Gallego, Ana Rebeca González, Francisco Javier Giráldez, Sonia Andrés and Javier Mateo
Foods 2021, 10(9), 2173; https://doi.org/10.3390/foods10092173 - 13 Sep 2021
Cited by 5 | Viewed by 5807
Abstract
Banana pseudo-stem (BPS), which is rich in fibre and polyphenols, is a potential functional ingredient for the food industry. In this study, BPS was added at concentrations of 1.5, 3.0, and 4.5 g/kg to a minced pork batter to evaluate its performance as [...] Read more.
Banana pseudo-stem (BPS), which is rich in fibre and polyphenols, is a potential functional ingredient for the food industry. In this study, BPS was added at concentrations of 1.5, 3.0, and 4.5 g/kg to a minced pork batter to evaluate its performance as a filler and to pork burger patties to evaluate its performance as a natural antioxidant. The effects of BPS were compared with those of carrageenan and ascorbate, which are a conventional binder and antioxidant, respectively. The performance of BPS was similar to that of carrageenan in terms of the cooking yield and texture of the cooked batter. BPS reduced the brightness of fresh patties and appeared to reduce oxidative discolouration during the frozen storage of raw patties. Moreover, BPS reduced the levels of thiobarbituric acid reactive substances (TBARS) during the refrigerated and frozen storage of cooked patties. A greater decrease in TBARS formation was observed with 4.5 g BPS/kg compared with 0.5 g sodium ascorbate/kg during refrigerated storage. In contrast to ascorbate, BPS promoted the presence of lipid-derived volatile compounds induced by thermal breakdown in the headspace of cooked patties. Nonetheless, this effect was reduced as the amount of BPS in the patties increased. In cooked minced meat products, BPS could increase cooking yields and lipid oxidative stability during storage and might result in a more intense flavour. Full article
(This article belongs to the Special Issue Innovation Trends for the Meat Industry)
Show Figures

Graphical abstract

20 pages, 1729 KiB  
Article
Effect of α-Terpineol on Chicken Meat Quality during Refrigerated Conditions
by Khabat Noori Hussein, Barbara Csehi, Surányi József, Horváth Ferenc, Gabriella Kiskó, István Dalmadi and László Friedrich
Foods 2021, 10(8), 1855; https://doi.org/10.3390/foods10081855 - 11 Aug 2021
Cited by 8 | Viewed by 4178
Abstract
The present study was designed to evaluate the in vitro antimicrobial properties of nine bioactive compounds (BACs). Applying the disc paper and minimum inhibitory concentration (MIC) assays, we found that the BACs with the widest spectrum of in vitro antibacterial activity against the [...] Read more.
The present study was designed to evaluate the in vitro antimicrobial properties of nine bioactive compounds (BACs). Applying the disc paper and minimum inhibitory concentration (MIC) assays, we found that the BACs with the widest spectrum of in vitro antibacterial activity against the studied bacteria were carvacrol and α-terpineol (αTPN). Subsequently, αTPN was selected and applied at different concentrations into the fresh minced chicken meat. The meat was then vacuum packaged and stored for 14 days at 4 °C. Physicochemical properties, lipid oxidation (thiobarbituric acid reactive substances, TBARS), electronic-nose-based smell detection, and microbiological characteristics were monitored. At day 14, meat treated with higher concentrations of αTPN (MIC-2 and MIC-4) exhibited a significantly increased pH and lightness (L*), increased yellowness (b*), decreased redness (a*), caused a significant decrease in water holding capacity (WHC), and decreased lipid oxidation by keeping TBARS scores lower than the control. Although αTPN showed perceptibly of overlapped aroma profiles, the E-nose was able to distinguish the odor accumulation of αTPN between the different meat groups. During the 2-week storage period, αTPN, particularly MIC-4, showed 5.3 log CFU/g reduction in aerobic mesophilic counts, causing total inhibition to the Pseudomonas lundessis, Listeria monocytogenes, and Salmonella Typhimurium. These promising results highlight that αTPN is exploitable to improve the shelf life and enhance the safety of meat and meat products. Full article
Show Figures

Graphical abstract

13 pages, 680 KiB  
Article
Detection of Meat Adulteration Using Spectroscopy-Based Sensors
by Lemonia-Christina Fengou, Alexandra Lianou, Panagiοtis Tsakanikas, Fady Mohareb and George-John E. Nychas
Foods 2021, 10(4), 861; https://doi.org/10.3390/foods10040861 - 15 Apr 2021
Cited by 49 | Viewed by 7919
Abstract
Minced meat is a vulnerable to adulteration food commodity because species- and/or tissue-specific morphological characteristics cannot be easily identified. Hence, the economically motivated adulteration of minced meat is rather likely to be practiced. The objective of this work was to assess the potential [...] Read more.
Minced meat is a vulnerable to adulteration food commodity because species- and/or tissue-specific morphological characteristics cannot be easily identified. Hence, the economically motivated adulteration of minced meat is rather likely to be practiced. The objective of this work was to assess the potential of spectroscopy-based sensors in detecting fraudulent minced meat substitution, specifically of (i) beef with bovine offal and (ii) pork with chicken (and vice versa) both in fresh and frozen-thawed samples. For each case, meat pieces were minced and mixed so that different levels of adulteration with a 25% increment were achieved while two categories of pure meat also were considered. From each level of adulteration, six different samples were prepared. In total, 120 samples were subjected to visible (Vis) and fluorescence (Fluo) spectra and multispectral image (MSI) acquisition. Support Vector Machine classification models were developed and evaluated. The MSI-based models outperformed the ones based on the other sensors with accuracy scores varying from 87% to 100%. The Vis-based models followed in terms of accuracy with attained scores varying from 57% to 97% while the lowest performance was demonstrated by the Fluo-based models. Overall, spectroscopic data hold a considerable potential for the detection and quantification of minced meat adulteration, which, however, appears to be sensor-specific. Full article
(This article belongs to the Special Issue Detection of Food Fraud Using Analytical Methods)
Show Figures

Graphical abstract

Back to TopTop