Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = freeze–thaw/wet–dry environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 16466 KiB  
Article
Study on the Influencing Factors of UHPC Durability and Its Microscopic Performance Characterization
by Risheng Wang, Yongzhuang Zhang, Hongrui Wu and Xueni Jiang
Materials 2025, 18(14), 3268; https://doi.org/10.3390/ma18143268 - 10 Jul 2025
Viewed by 278
Abstract
Considering the harsh marine environment characterized by dry–wet cycles, freeze–thaw action, chloride penetration, and sulfate attack, four optimized ultra-high-performance concrete (UHPC) mix designs were developed. Durability was assessed via electric flux, dry–wet cycles, and rapid freeze–thaw tests to evaluate the effects of curing [...] Read more.
Considering the harsh marine environment characterized by dry–wet cycles, freeze–thaw action, chloride penetration, and sulfate attack, four optimized ultra-high-performance concrete (UHPC) mix designs were developed. Durability was assessed via electric flux, dry–wet cycles, and rapid freeze–thaw tests to evaluate the effects of curing methods, aggregate types, and mineral admixtures on key durability indicators, including chloride ion permeability, compressive strength loss, and mass loss. Scanning electron microscopy (SEM) examined microstructural changes under various conditions. Results showed that curing method significantly affected chloride ion permeability and sulfate resistance. High-temperature curing (70 ± 2 °C) reduced 28-day chloride ion electric flux by about 50%, and the compressive strength loss rate of specimens subjected to sulfate attack decreased by 2.7% to 45.7% compared to standard curing. Aggregate type had minimal impact on corrosion resistance, while mineral admixtures improved durability more effectively. Frost resistance was excellent, with mass loss below 0.87% after 500 freeze–thaw cycles. SEM analysis revealed that high-temperature curing decreased free cement particles, and mineral admixtures refined pore structure, enhancing matrix compactness. Among all mixtures, Mix Proportion 4 demonstrated the best overall durability. This study offers valuable insights for UHPC design in aggressive marine conditions. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

26 pages, 6397 KiB  
Review
Evaluation of the Service Performance of Soil–Bentonite Vertical Cut-Off Walls at Heavy Metal Contaminated Sites: A Review
by Ke Wang and Yan Zhang
Appl. Sci. 2025, 15(9), 5215; https://doi.org/10.3390/app15095215 - 7 May 2025
Viewed by 680
Abstract
Soil–bentonite (SB) vertical cut-off walls are widely utilized to mitigate the transport of soil contaminants in groundwater. Evaluating their long-term service performance is crucial for ensuring environmental safety and effective pollution control. The evaluation model for the long-term service performance of contaminant cut-off [...] Read more.
Soil–bentonite (SB) vertical cut-off walls are widely utilized to mitigate the transport of soil contaminants in groundwater. Evaluating their long-term service performance is crucial for ensuring environmental safety and effective pollution control. The evaluation model for the long-term service performance of contaminant cut-off walls considers key processes such as convection, diffusion, dispersion, and adsorption. These processes are closely linked to the physicochemical properties of the cut-off walls, which are influenced by the surrounding complex environment, ultimately impacting their long-term performance. This study delves into the long-term service performance of SB vertical cut-off walls. It focuses on the key factors that influence this performance and the measures that can enhance it. Moreover, it offers a detailed analysis of how the performance of seepage cut-off walls in soil–bentonite materials evolves under various environmental influences. These influences include chemical exposure, freeze–thaw cycles, and dry–wet cycles. Additionally, it outlines existing service performance evaluation methods and identifies their shortcomings. By leveraging the advantages of in situ testing methods, this paper proposes the establishment of a comprehensive evaluation system for the service performance of vertical cut-off walls based on in situ test parameters. The proposed evaluation system aims to provide a scientific assessment of the long-term service performance of SB vertical cut-off walls. Full article
Show Figures

Figure 1

28 pages, 7825 KiB  
Review
Mechanism and Performance Control Methods of Sulfate Attack on Concrete: A Review
by Chuanchuan Zhang, Julun Li, Miao Yu, Yue Lu and Shizhong Liu
Materials 2024, 17(19), 4836; https://doi.org/10.3390/ma17194836 - 30 Sep 2024
Cited by 13 | Viewed by 5369
Abstract
For concrete structures in marine or groundwater environments, sulfate attack is a major factor contributing to the degradation of concrete performance. This paper analyzes the existing literature on the chemical reactions and physical crystallization effects of sulfate attack on cement-based materials, summarizing the [...] Read more.
For concrete structures in marine or groundwater environments, sulfate attack is a major factor contributing to the degradation of concrete performance. This paper analyzes the existing literature on the chemical reactions and physical crystallization effects of sulfate attack on cement-based materials, summarizing the degradation mechanisms of corroded concrete. Experiments have been conducted to study the performance evolution of concrete under sulfate attack, considering both external environmental factors and internal factors of the cement-based materials. External environmental factors, such as the temperature, humidity, concentration, and type of sulfate solutions, wet-dry cycles, freeze-thaw cycles, chloride coupling effects, and stray currents significantly impact sulfate attack on concrete. Internal factors, including internal sources of corrosion, the chemical composition of the cement, water-cement ratio, and the content of C-S-H gel and Ca(OH)2, influence the density and sulfate resistance of the cement-based materials. Additionally, five typical methods for enhancing the sulfate resistance of concrete are summarized. Finally, the paper identifies current challenges in the study of corroded concrete and proposes directions for future research. Full article
Show Figures

Figure 1

23 pages, 27188 KiB  
Article
Durability Performance of CGF Stone Waste Road Base Materials under Dry–Wet and Freeze–Thaw Cycles
by Zimou Wang, Junjie Yang and Yalei Wu
Materials 2024, 17(17), 4272; https://doi.org/10.3390/ma17174272 - 29 Aug 2024
Cited by 1 | Viewed by 1020
Abstract
The disposal of stone waste derived from the stone industry is a worldwide problem. The shortage of landfills, as well as transport costs and environmental pollution, pose a crucial problem. Additionally, as a substitute for cement that has high carbon emissions, energy consumption, [...] Read more.
The disposal of stone waste derived from the stone industry is a worldwide problem. The shortage of landfills, as well as transport costs and environmental pollution, pose a crucial problem. Additionally, as a substitute for cement that has high carbon emissions, energy consumption, and pollution, the disposal of stone wastes by utilizing solid waste-based binders as road base materials can achieve the goal of “waste for waste”. However, the mechanical properties and deterioration mechanism of solid waste-based binder solidified stone waste as a road base material under complex environments remains incompletely understood. This paper reveals the durability performance of CGF all-solid waste binder (consisting of calcium carbide residue, ground granulated blast furnace slag, and fly ash) solidified stone waste through the macro and micro properties under dry–wet and freeze–thaw cycling conditions. The results showed that the dry–wet and freeze–thaw cycles have similar patterns of impacts on the CGF and cement stone waste road base materials, i.e., the stress–strain curves and damage forms were similar in exhibiting the strain-softening type, and the unconfined compressive strengths all decreased with the number of cycles and then tended to stabilize. However, the influence of dry–wet and freeze–thaw cycles on the deterioration degree was significantly different; CGF showed excellent resistance to dry–wet cycles, whereas cement was superior in freeze–thaw resistance. The deterioration grade of CGF and cement ranged from 36.15 to 47.72% and 39.38 to 47.64%, respectively, after 12 dry–wet cycles, whereas it ranged from 57.91 to 64.48% and 36.61 to 40.00% after 12 freeze–thaw cycles, respectively. The combined use of MIP and SEM confirmed that the deterioration was due to the increase in the porosity and cracks induced by dry–wet and freeze–thaw cycles, which in turn enhanced the deterioration phenomenon. This can be ascribed to the fact that small pores occupy the largest proportion and contribute to the deterioration process, and the deterioration caused by dry–wet cycles is associated with the formation of large pores through the connection of small pores, while the freeze–thaw damage is due to the increase in medium pores that are more susceptible to water intrusion. The findings provide theoretical instruction and technical support for utilizing solid waste-based binders for solidified stone waste in road base engineering. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 4839 KiB  
Article
Research on the Corrosion Resistance of Reactive Powder Concrete with Straw Fibers under Chloride Environment
by An Wang, Weixiang Sun, Miao Lu, Xi Peng, Hui Wang and Yao Ji
Coatings 2024, 14(8), 961; https://doi.org/10.3390/coatings14080961 - 1 Aug 2024
Cited by 1 | Viewed by 1747
Abstract
Reactive powder concrete (RPC) is widely used in large-scale bridges, and its durability in coastal areas has become a significant concern. Straw fibers have been evidenced to improve the mechanical properties of concrete, while research on their influence on the chloride corrosion resistance [...] Read more.
Reactive powder concrete (RPC) is widely used in large-scale bridges, and its durability in coastal areas has become a significant concern. Straw fibers have been evidenced to improve the mechanical properties of concrete, while research on their influence on the chloride corrosion resistance of RPC is deficient. Therefore, it is essential to establish the relationships between the quantities and parameters of straw fibers and the properties of the resulting concrete. In this study, the mass loss rates (MLRs), the relative dynamic modulus of elasticity (RDME), the electrical resistance (R), the AC impedance spectrum (ACIS), and the corrosion rates of steel-bar-reinforced RPC mixed with 0%–4% straw fibers by volume of RPC were investigated. A scanning electron microscope (SEM) and X-ray diffraction (XRD) were used to analyze the corrosion of steel bars. The reinforced RPC specimens were exposed to a 3% NaCl dry-wet alternations (D-As) and 3% NaCl freeze-thaw cycles (F-Cs) environment. The results show that, after adding 1%–4% straw fibers, the setting time and slump flow of fresh RPC were reduced by up to 16.92% and 12.89%. The MLRs were −0.44%–0.43% and −0.38%–0.42%, respectively, during the D-As and F-Cs. The relationship between the RDME and the fiber volume ratio was the quadratic function, and it was improved by 9.34%–13.94% and 3.01%–5.26% after 10 D-As and 100 F-Cs, respectively. Incorporating 4% straw fibers reduced the R values of the reinforced RPC specimens by up to 22.90% and decreased the corrosion rates after 10 D-As and 100 F-Cs by 26.08% and 82.29%, respectively. The impedance value was also increased. Moreover, a dense, ultra-fine iron layer and α-FeO(OH) were observed in the rust of rebars by SEM and XRD, as the corrosion resistance of rebars was enhanced. The results indicate that straw fibers improved the corrosion resistance of RPC, which can serve as a protective material to inhibit concrete cracking and thereby prevent rebar oxidation. This study provides theoretical support for the investigation of surface phenomena in reinforced RPC with straw fibers. Full article
Show Figures

Figure 1

23 pages, 8900 KiB  
Article
Experimental Study on the Strength Deterioration and Mechanism of Stabilized River Silt Reinforced with Cement and Alginate Fibers
by Ying Wang, Chaojie Wang, Zhenhua Hu and Rong Sun
Materials 2024, 17(13), 3124; https://doi.org/10.3390/ma17133124 - 26 Jun 2024
Cited by 2 | Viewed by 1414
Abstract
River silt deposited by water in coastal areas is unsuitable for engineering construction. Thus, the in situ stabilization treatment of river silt as the bearing layer has been an important research area in geotechnical engineering. The strength degradation behavior and mechanism of stabilized [...] Read more.
River silt deposited by water in coastal areas is unsuitable for engineering construction. Thus, the in situ stabilization treatment of river silt as the bearing layer has been an important research area in geotechnical engineering. The strength degradation behavior and mechanism of stabilized river silt reinforced with cement and alginate fibers (AFCS) in different engineering environments are crucial for engineering applications. Therefore, freeze–thaw (F–T) cycle tests, wetting-drying (W–D) cycle tests, water immersion tests and seawater erosion tests were conducted to explore the strength attenuation of stabilized river silt reinforced with the same cement content (9% by wet weight) and different fiber contents (0%, 0.3%, 0.6% and 0.9% by weight of wet soil) and fiber lengths (3 mm, 6 mm and 9 mm). The reinforcement and damage mechanism of AFCS was analyzed by scanning electron microscopy (SEM) imaging. The results indicate that the strength of AFCS was improved from 84% to 180% at 15 F–T cycle tests, and the strength of AFCS was improved by 26% and 40% at 30 W–D cycles, which showed better stability and excellent characteristics owing to the hygroscopic characteristics of alginate fiber arousing the release of calcium and magnesium ions within the alginate. Also, the strength attenuation of AFCS was reduced with the increase in the length and content of alginate fibers. Further, the strength of specimens in the freshwater environment was higher than that in the seawater environment at the same fiber content, and the softening coefficient of AFCS in the freshwater environment was above 0.85, indicating that the AFCS had good water stability. The optimal fiber content was found to be 0.6% based on the unconfined compressive strength (UCS) reduction in specimens cured in seawater and a freshwater environment. And the strength of AFCS was improved by about 10% compared with that of cement-stabilized soil (CS) in a seawater environment. A stable spatial network structure inside the soil was formed, in which the reinforcing effect of fibers was affected by mechanical connection, friction and interfacial bonding. However, noticeable cracks developed in the immersed and F–T specimens. These microscopic characteristics contributed to decreased mechanical properties for AFCS. The results of this research provide a reference for the engineering application of AFCS. Full article
Show Figures

Figure 1

15 pages, 4116 KiB  
Article
Performance of Eco-Friendly Zero-Cement Particle Board under Harsh Environment
by Arman Hatami Shirkouh, Farshad Meftahi, Ahmed Soliman, Stéphane Godbout and Joahnn Palacios
Appl. Sci. 2024, 14(7), 3118; https://doi.org/10.3390/app14073118 - 8 Apr 2024
Cited by 3 | Viewed by 2196
Abstract
The increasing scarcity of virgin natural resources and the need for sustainable waste management in densely populated urban areas have heightened the importance of developing new recycling technologies. One promising approach involves recycling agricultural waste in construction applications and transforming it into secondary [...] Read more.
The increasing scarcity of virgin natural resources and the need for sustainable waste management in densely populated urban areas have heightened the importance of developing new recycling technologies. One promising approach involves recycling agricultural waste in construction applications and transforming it into secondary products. This is anticipated to reduce the demand for new resources and lower the environmental impact, aligning with industrial ecology principles. Combined with a low carbon emission binder (i.e., alkali-activated), utilizing agro-waste to produce zero-cement particle boards is a promising method for green construction. Traditionally, particle boards are engineered from wood or agricultural waste products that are pressed and bonded with a binder, such as cement or synthetic resins. However, alternative binders replace cement in zero-cement particle boards to address environmental concerns, such as the carbon dioxide emissions associated with cement production. This study investigated the effects of accelerated aging on the performance of alkali-activated agro-waste particle boards. Accelerated aging conditions simulate natural aging phenomena. Repeated wetting–drying and freezing–thawing cycles increased water absorption and thickness swelling and reduced flexural strength. The thermal performance of the alkali-activated particle boards did not exhibit significant changes. Hence, it was confirmed that agro-waste has a high potential for utilization in producing particle boards provided that the working environment is carefully selected to optimize performance. Full article
(This article belongs to the Special Issue Alkali-Activated Materials: Advances and Novel Applications)
Show Figures

Figure 1

19 pages, 7092 KiB  
Article
Computational Evaluation of the Fracture Behavior of Porous Asphalt Concrete Exposed to Moisture and Salt Erosion
by Yuheng Liang, Jiaqi Chen and Liang Li
Materials 2024, 17(7), 1505; https://doi.org/10.3390/ma17071505 - 26 Mar 2024
Cited by 4 | Viewed by 1173
Abstract
Salt erosion has an adverse impact on the durability of asphalt pavements. Porous asphalt concrete is particularly susceptible to the influence of salt. In this study, a finite element model was developed to investigate the fracture behavior of PAC exposed to salt erosion. [...] Read more.
Salt erosion has an adverse impact on the durability of asphalt pavements. Porous asphalt concrete is particularly susceptible to the influence of salt. In this study, a finite element model was developed to investigate the fracture behavior of PAC exposed to salt erosion. The 2D heterogeneous structure of PAC was generated with an image-aided approach to computationally study the fracture behavior of PAC. Laboratory SCB tests were conducted to validate the finite element model. The simulation results of the SCB tests indicate that the peak load of the PAC decreased by 21.8% in dry-wet cycles and 26.1% in freeze-thaw cycles compared to the control group. The salt solution accelerated the degradation of the durability of PAC under both dry-wet cycles and freeze-thaw cycle conditions, which is consistent with laboratory tests. After flushing treatment before the drying phase, the peak load of the PAC in salt environments increased by 5.3% compared to that of the samples with no flushing. Salt erosion also results in a higher average value of scalar stiffness degradation (SDEG), and the damaged elements were primarily the cohesive elements in the fracture of the PAC. Additionally, the influence of crucial factors including the void content, adhesion and cohesion, and loading rate on the fracture behavior of the PAC was analyzed. As the void content increases, the average SDEG value of the cohesive elements increases and surpasses the average SDEG value of the adhesive elements at a void content of approximately 9%. The performance of the fine aggregate matrix (FAM) has a much greater impact than the FAM-aggregate interface on the durability of the PAC. And there were more damaged CZM elements with the increase in the loading rate. Salt erosion results in higher SDEG values and a larger number of cohesive damaged elements at each loading rate. Full article
(This article belongs to the Special Issue Advance in Sustainable Construction Materials)
Show Figures

Figure 1

19 pages, 6293 KiB  
Article
The Corrosion Resistance of Concrete-Filled Steel Tubes with the Assembly Unit of Na2MoO4 and Benzotriazole
by Di Wang, Zhiqiang Xu, Na Xu, Zengliang Hu, Hui Wang and Feiting Shi
Coatings 2024, 14(3), 349; https://doi.org/10.3390/coatings14030349 - 14 Mar 2024
Cited by 3 | Viewed by 1848
Abstract
Steel pipes are commonly used to strengthen the concrete’s load-bearing capacity. However, they are prone to corrosion in salt erosion environments. In this study, the influence of Na2MoO4 and benzotriazole on concrete-filled steel tubes’ corrosion performance is investigated. The steel [...] Read more.
Steel pipes are commonly used to strengthen the concrete’s load-bearing capacity. However, they are prone to corrosion in salt erosion environments. In this study, the influence of Na2MoO4 and benzotriazole on concrete-filled steel tubes’ corrosion performance is investigated. The steel pipes’ mass loss rates (MRs), ultrasonic velocity, electrical resistance, and the AC impedance spectrum and Tafel curves of concrete-filled steel tubes were used to characterize the degree of corrosion in the steel pipes. Scanning electron microscopy–energy-dispersive spectrometry and X-ray diffraction were used for studying the composition of steel pipe rust. The research results revealed that the NaCl freeze–thaw cycles (F-C) and NaCl dry–wet alternation (D-A) actions had a reducing effect on the mass and ultrasonic velocity of the concrete-filled steel tubes. After 300 NaCl F-C and 30 NaCl D-A, the MRs were 0%~0.00470% and 0%~0.00666%. The corresponding ultrasonic velocities were 0%~21.1% and 0%~23.6%. When a rust inhibitor was added, the results were the opposite. The MRs decreased by 0%~80.3% and 0%~81.6% with the added Na2MoO4 and benzotriazole. Meanwhile, the corresponding ultrasonic velocities were 0%~8.1% and 0%~8.3%. The steel tubes were corroded after 300 NaCl F-C and 30 NaCl D-A. The addition of rust inhibitors improved the corrosion resistance of the concrete-filled steel tubes by increasing the electrical resistance before NaCl erosion. The corrosion area rate decreased by using the rust inhibitors. The corrosion resistance effect of benzotriazole was higher than that of Na2MoO4. The concrete-filled steel tube with an assembly unit comprising 5 kg/m3 of Na2MoO4 and 15 kg/m3 of benzotriazole had the best corrosion resistance under the erosion induced by NaCl F-C and D-A. Rust inhibitors reduced the content of iron-containing crystals and iron elements. The specimens with 5 kg/m3 Na2MoO4 and 15 kg/m3 benzotriazole had the lowest concentration of iron-containing crystals and iron elements. Full article
Show Figures

Figure 1

14 pages, 1826 KiB  
Article
Experimental Investigation into Lightweight High Strength Concrete with Shale and Clay Ceramsite for Offshore Structures
by Pei Li, Jie Li, Ling Fan, Shendong Mi, Junyi Li, Haoqi Liu, Shuquan Peng and Wanqi Huang
Sustainability 2024, 16(3), 1148; https://doi.org/10.3390/su16031148 - 30 Jan 2024
Cited by 5 | Viewed by 1977
Abstract
To develop lightweight high-strength concrete (LWHSC) for offshore structures in a harsh seawater environment, LWHSC with shale and clay ceramsites was designed. LWHSC was experimentally investigated in terms of density, compressive strength, and durability in a coastal environment. Then, its feasibility for offshore [...] Read more.
To develop lightweight high-strength concrete (LWHSC) for offshore structures in a harsh seawater environment, LWHSC with shale and clay ceramsites was designed. LWHSC was experimentally investigated in terms of density, compressive strength, and durability in a coastal environment. Then, its feasibility for offshore structures was also assessed. The results show that the compressive strength and oven dry density of LWHSC appropriately improve with increases in cement content, while they are reduced by the replacement of shale ceramsite with clay ceramsite. The compressive strength of LWHSC also increases first and then decreases with an increase in the pre-wetting of shale and clay ceramsites. Their optional pre-wetting time is about 0.5 h. LWHSC exhibits a higher brittleness compared with conventional concrete. LWHSC has increases in the resistances of freeze–thaw, carbonization, water penetration, and chloride penetration when the shale and clay ceramsite light aggregates decrease in the concrete. The LWHSC prepared in this paper is suitable for the harsh seawater environment of offshore oil platforms but is limited to the southern region where there is no requirement for the freeze–thaw resistance of concrete. The results of this study can provide some reference for the application of LWHSC in offshore structures and other similar aspects of engineering. Full article
Show Figures

Figure 1

18 pages, 5262 KiB  
Article
Effect of Nanosilica on the Strength and Durability of Cold-Bonded Fly Ash Aggregate Concrete
by Xiuzhong Peng, Qinghua Wang and Jing Wu
Sustainability 2023, 15(21), 15413; https://doi.org/10.3390/su152115413 - 30 Oct 2023
Cited by 3 | Viewed by 1693
Abstract
Cold-bonded Fly Ash Aggregate (CFAA), as an alternative to natural coarse aggregates, can prepare more lightweight, economical, and sustainable concrete. However, CFAA concrete has insufficient durability, which hinders its application in a salt-corrosion environment. Nanosilica (NS) has an advantage of high activity and [...] Read more.
Cold-bonded Fly Ash Aggregate (CFAA), as an alternative to natural coarse aggregates, can prepare more lightweight, economical, and sustainable concrete. However, CFAA concrete has insufficient durability, which hinders its application in a salt-corrosion environment. Nanosilica (NS) has an advantage of high activity and is generally used as an efficient mineral admixture in engineering. This study aims to improve the strength and durability of CFAA concrete by incorporating NS. To this end, compression tests, splitting tensile tests, and microscopic analyses were performed to investigate the mechanical properties of the concrete containing different NS dosages. Subsequently, the dry–wet and freeze–thaw durability tests were conducted to evaluate the salt-corrosion resistance and the frost resistance in the water, Na2SO4 solution, and Na2CO3 solution. The results show the compressive and splitting tensile strength peak at 2 wt% NS dosage. In this instance, the concrete has an optimum microstructure and exhibits desirable salt-corrosion resistance in the late stage of dry–wet cycles. During freeze–thaw cycles, NS could improve the frost resistance of the concrete but scarcely diminished internal damage under sulfate attack. The study explores the long-term performance of NS-modified CFAA concrete, providing a simple and effective method to mitigate the concrete deterioration in a harsh environment. Full article
(This article belongs to the Special Issue Advanced Concrete and Construction Materials)
Show Figures

Figure 1

14 pages, 3195 KiB  
Article
The Corrosion Resistance of Reinforced Reactive Powder Concrete with Secondary Aluminum Ash Exposed to NaCl Action
by Hong Jiang, Kewei Wang and Hui Wang
Materials 2023, 16(16), 5615; https://doi.org/10.3390/ma16165615 - 14 Aug 2023
Cited by 8 | Viewed by 1623
Abstract
Secondary aluminum ash (SAA) is a type of common solid waste which leads to pollution without treatment. Due to its chemical reactivity, the application of SAA to reactive powder concrete (RPC) may help solidify this solid waste while increasing its performance. However, RPC [...] Read more.
Secondary aluminum ash (SAA) is a type of common solid waste which leads to pollution without treatment. Due to its chemical reactivity, the application of SAA to reactive powder concrete (RPC) may help solidify this solid waste while increasing its performance. However, RPC is usually in active service when used with steel bars. NaCl can corrode the steel bars when reinforced RPC is used in a coastal environment. In this study, the corrosion resistance of reinforced RPC was investigated. The specimens were exposed to an environment of NaCl with freeze–thaw cycles (F-Cs) and dry–wet alternations (D-As). The corresponding mass loss rates (MRs), the electrochemical impedance spectroscopy (EIS) curves and the dynamic modulus of elasticity (DME) were measured. The results show that the MR and the DME of reinforced RPC decrease with increasing values of F-C and D-A. F-C and D-A increases lead to increased electrical resistance (R). The real part value corresponding to the extreme point of the EIS curve is increased by 0~213.7% when the SAA is added. The relationship between the imaginary part and the real part of the EIS fits the quadratic function. The equivalent circuit of the reinforced RPC is obtained from the EIS curves. The R of the rust is calculated by using the equivalent circuit. The rust’s R decreases in the quadratic function with the mass ratio of the SAA. After 200 NaCl F-Cs, the MR, the DME and the R vary within the ranges of 23.4~113.6%, −2.93~−4.76% and 4.92~13.55%. When 20 NaCl D-As are finished, the MR, the DME and the R vary within the ranges of 34.7~202.8%, −13.21~−14.93% and 120.48~486.39%. The corrosion area rates are 2.3~68.7% and 28.7~125.6% higher after exposure to 200 NaCl F-Cs and 20 NaCl D-As. When the SAA is mixed, the MR is decreased by 0~13.12%, the DME increases by 0~3.11%, the R of the reinforced RPC increases by 26.01~152.43% and the corrosion area rates are decreased by 21.39~58.62%. This study will provide a novel method for solidifying SAA while improving the chlorine salt resistance of RPC. Full article
(This article belongs to the Special Issue Advances in Corrosion Resistance of Metal Materials)
Show Figures

Figure 1

18 pages, 3744 KiB  
Article
Influence of NaCl Solution External Erosion on Corrosion Resistance of RPC Reinforced with Straw Fiber
by Zihao Cao, Kewei Wang, Xi Peng, Hui Wang and Rongming Huang
Coatings 2023, 13(8), 1308; https://doi.org/10.3390/coatings13081308 - 26 Jul 2023
Cited by 7 | Viewed by 1562
Abstract
Straw fiber, as a kind of waste if not properly treated, will pollute the environment. It can be used in cement-based materials as a plant fiber material. Agricultural solid-waste straw fiber has good tensile properties and is expected to be used as a [...] Read more.
Straw fiber, as a kind of waste if not properly treated, will pollute the environment. It can be used in cement-based materials as a plant fiber material. Agricultural solid-waste straw fiber has good tensile properties and is expected to be used as a fiber-reinforced material for reactive powder concrete (RPC) and to improve the corrosion resistance of RPC. In this paper, the ultrasonic velocity through specimens, the electrical resistance, the AC impedance spectroscopy and tafel curve were analyzed. The corrosion resistance of the steel bar under the chloride salt freeze–thaw cycles and dry–wet alternations was systematically studied. The result shows that adding a certain content of straw fiber can improve its corrosion resistance. Under the action of two chloride salt environments, the lowest mass loss rate was 0.82% for the sample with 3% straw fiber content and the mass growth rate of the specimens with 4% straw fiber is the highest aqt 0.9%. In terms of ultrasonic velocity, the lowest loss rate was 5.68% for specimens with fiber content of 2%. The specimens were subjected to 0 dry–wet alternations and freeze–thaw cycles; the highest electrical resistance is 19.96 kΩ when the fiber content is 1% and the lowest electrical resistance is 11.105 kΩ when the fiber content is 2%. Under the dry–wet alternations, the content of straw fiber and its corrosion resistance are: 1% > 4% > 0% > 3% > 2%. Under freeze–thaw cycles, the content of straw fiber and its corrosion resistance were as follows: 1% > 0% > 4% > 3% > 2%. Full article
Show Figures

Figure 1

19 pages, 5416 KiB  
Article
Study on Soil Corrosion Resistance Reinforced with Reactive Powder Concrete in Chloride Environment
by Haozhen Wang, Xin Cai, Xi Peng, Hui Wang and Pengqian Wang
Coatings 2023, 13(7), 1134; https://doi.org/10.3390/coatings13071134 - 22 Jun 2023
Cited by 2 | Viewed by 1885
Abstract
The accumulation of residue soil (generally composed of soil, residue, or mud consolidation) is one of the important causes of damage to the environment limiting urban development. At present, the recycling rate of residue soil in developed countries is as high as 90%, [...] Read more.
The accumulation of residue soil (generally composed of soil, residue, or mud consolidation) is one of the important causes of damage to the environment limiting urban development. At present, the recycling rate of residue soil in developed countries is as high as 90%, while in China it is less than 5%. In marine construction, reinforced concrete often suffers from corrosion, which leads to a decrease in the service life and durability of the structure. Reactive powder concrete (RPC) with high strength and good corrosion resistance can solve these problems. In order to efficiently dispose of residue soil, protect the environment, and promote urbanization development, this study uses residue soil as a raw material to replace some cement in RPC, and studies the corrosion resistance of it (under dry–wet alternations and freeze–thaw cycles). In this study, five types of reinforced RPC with different residue soil contents (0%, 2.5%, 5%, 7.5%, and 10%) are prepared. Firstly, the working performance of blank freshly mixed residue soil RPC slurry is analyzed. Then, the corrosion resistance of residue-soil-reinforced RPC under the dry–wet alternations with 3% NaCl and freeze–thaw cycles is analyzed through parameters such as mass loss rate, electrical resistivity, ultrasonic velocity, AC impedance spectroscopy, and Tafel. The results show that under the dry–wet alternations, when the residue soil content is 10%, the corrosion rate and corrosion depth of the residue-soil-reinforced RPC are the minimum, at 43,744.84 g/m2h and 640.22 mm/year, respectively. Under the freeze–thaw cycles, the corrosion rate and corrosion depth of the 10% residue soil content group are higher than that of the 5%, being 52,592.87 g/m2h and 769.71 mm/year, respectivley. Compared to the other groups, the reinforced RPC with 10% residue soil content shows good corrosion resistance in both dry–wet alternations and freeze–thaw cycles. Replacing some of the cement in RPC with residual soil to control the amount of residual soil at 10% of the total mass of RPC can effectively improve the corrosion resistance of residue-soil-reinforced RPC and maximize the consumption of residue soil. This plan provides a feasible method for residue soil treatment in the construction industry, while also providing inspiration for research on the corrosion resistance of concrete in marine buildings. Full article
(This article belongs to the Special Issue Surface Engineering and Mechanical Properties of Building Materials)
Show Figures

Figure 1

11 pages, 3139 KiB  
Article
Study on Long Term Property of Soft Soil Solidified with Industrial Waste Residue and Regenerated Fine Aggregate
by Anhui Wang, Wanying Dong, Qiwei Zhan and Juanlan Zhou
Materials 2023, 16(6), 2447; https://doi.org/10.3390/ma16062447 - 19 Mar 2023
Cited by 11 | Viewed by 1983
Abstract
The long-term properties of solidified soft soil, including an immersion test, the dry–wet cycle and the freeze–thaw cycle, were systematically studied. Firstly, the immersion stability of solidified soft soil was confirmed. The appearance of soft soil solidified by a solidified agent and raw [...] Read more.
The long-term properties of solidified soft soil, including an immersion test, the dry–wet cycle and the freeze–thaw cycle, were systematically studied. Firstly, the immersion stability of solidified soft soil was confirmed. The appearance of soft soil solidified by a solidified agent and raw fine aggregate did not change significantly, and it was still intact without damage when the soaking time increased up to 28 d. Secondly, the mass and compressive strength loss of solidified soft soil were determined. When the number of dry–wet cycles was one, three, five and seven, the accumulated-mass loss rate was 1.4%, 3.0%, 4.5% and 6.0%, respectively, and the compressive-strength loss rate was −10.3%, 13.9%, 41.2% and 53.6%, respectively. Compared with solidified soft soil under standard curing environments, solidified soft soil after seven dry–wet cycles showed small cracks, and the structural compactness began to decline. Finally, the influence of the freeze–thaw cycle on the mass, compressive strength and microstructure of solidified soft soil was confirmed. When the number of freeze–thaw cycles was 5, 10, 15 and 20, the accumulated-mass loss rate was 12.6%, 16.7%, 17.9% and 18.8%, respectively. The microstructure of the solidified soft soil was damaged, and the increase in porosity was the main reason for its strength reduction or even failure. Nevertheless, soft soil with a solidified agent and recycled fine aggregate had no obvious damage to the microstructure, and the freeze–thaw resistance was relatively superior. Full article
(This article belongs to the Special Issue Preparation and Properties of New Cementitious Materials)
Show Figures

Figure 1

Back to TopTop