Study on Soil Corrosion Resistance Reinforced with Reactive Powder Concrete in Chloride Environment
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Raw Materials and Preparation Maintenance
2.1.1. Raw Materials
2.1.2. Specimen Preparation and Curing
2.2. Dry–Wet Alternations and Freeze–Thaw Cycles
2.3. Measurement Method
2.3.1. Measurement of Slump Flow
2.3.2. Measurement of Setting Time
2.3.3. Measurement of Ultrasonic Velocity
2.3.4. Measurement of Mass Loss and Electrochemical Parameters
3. Results and Discussions
3.1. Working Performance of Residue-Soil-Reinforced RPC
3.2. Effect of Dry–Wet Alternations on Corrosion Resistance of Residue-Soil-Reinforced RPC
3.2.1. Mass Loss Rate of Residue-Soil-Reinforced RPC
3.2.2. Ultrasonic Velocity of Residue-Soil-Reinforced RPC
3.2.3. Electrical Resistivity of Residue-Soil-Reinforced RPC
3.2.4. Electrochemical Performance of Residue-Soil-Reinforced RPC
3.3. Effect of Freeze–Thaw Cycles on Corrosion Properties of Residue-Soil-Reinforced RPC
3.3.1. Mass Loss Rate of Residue-Soil-Reinforced RPC
3.3.2. Ultrasonic Velocity of Residue-Soil-Reinforced RPC
3.3.3. Electrical Resistivity of Residue-Soil-Reinforced RPC
3.3.4. Electrochemical Performance of Residue-Soil-Reinforced RPC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Lu, H.; Liu, M.; Cai, L.; Wei, N.; Liu, Y. Microanalytical characterizations, mechanical strength and water resistance performance of solidified dredged sludge with industrial solid waste and architecture residue soil. Case Stud. Constr. Mater. 2022, 17, e01492. [Google Scholar] [CrossRef]
- Xu, S.; He, W. Analysis of Resource Utilization of Construction Residue-Take Ningbo City as an Example. China Resour. Compr. Util. 2022, 08, 99–101. [Google Scholar]
- Ding, Y.; Zhao, J.; Liu, J.; Zhou, J.; Cheng, L.; Zhao, J.; Shao, Z.; Iris, Ç.; Pan, B.; Li, X.; et al. A review of China’s municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization. J. Clean. Prod. 2021, 293, 126144. [Google Scholar] [CrossRef]
- Song, Q.; Zhu, Z.; Wang, J.; Long, B.; Luo, W.; Jia, Z.; Wang, M. Status Quo of Resource Utilization of Urban Engineering Dregs. China Resour. Compr. Util. 2021, 39, 90–92. [Google Scholar]
- Zhu, P.; Liu, M. Non-uniform Corrosion Mechanism and residual life forecast of marine engineering concrete reinforcement. J. Eng. Res. 2023, 11, 100053. [Google Scholar] [CrossRef]
- Li, S.; Jin, Z.; Pang, B.; Li, J. Durability performance of an RC beam under real marine all corrosion zones exposure for 7 years. Case Stud. Constr. Mater. 2022, 17, e01516. [Google Scholar] [CrossRef]
- Feng, G.; Jin, Z.; Zhu, D.; Xiong, C.; Li, Z.; Wang, X. Corrosion propagation of steel reinforcement in pre-cracked mortar attacked by seawater using wire beam electrode. Corros. Sci. 2022, 208, 110655. [Google Scholar] [CrossRef]
- Shao, W.; Wang, Y.; Shi, D. Corrosion-fatigue life prediction of reinforced concrete square piles in marine environments. Eng. Fail. Anal. 2022, 138, 106324. [Google Scholar] [CrossRef]
- Xu, J.; Wu, J.; Chen, S.; Diao, B.; Zhao, T. Fatigue life prediction of fatigue damaged and chloride corroded RC beams. J. Build. Struct. 2022, 43, 69–76. [Google Scholar]
- Liu, Q.; Hu, Z.; Lu, X.; Yang, J.; Azim, I.; Sun, W. Prediction of Chloride Distribution for Offshore Concrete Based on Statistical Analysis. Materials 2020, 13, 174. [Google Scholar] [CrossRef]
- Ge, W.; Wang, A.; Zhang, Z.; Ge, Y.; Chen, Y.; Li, W.; Jiang, H.; Shuai, H.; Sun, C.; Yao, S.; et al. Study on the workability, mechanical property and water absorption of reactive powder concrete. Case Stud. Constr. Mater. 2023, 18, e01777. [Google Scholar] [CrossRef]
- Kočí, V.; Vejmelková, E.; Koňáková, D.; Pommer, V.; Grzeszczyk, S.; Matuszek-Chmurowska, A.; Mordak, A.; Černý, R. Basic physical, mechanical, thermal and hygric properties of reactive powder concrete with basalt and polypropylene fibers after high-temperature exposure. Constr. Build. Mater. 2023, 374, 130922. [Google Scholar] [CrossRef]
- Ambika, D.; Nandhini, V.; Santha Rubini, V.; Poovizhi, G.; Dhinu Priya, S. An exploration on the durability properties of reactive powder concrete. Mater. Today Proc. 2021, 45, 529–534. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, Y.; Peng, X. Experimental Study on Mechanical Properties of Concrete at Super-Early Age. Materials 2022, 15, 7582. [Google Scholar] [CrossRef]
- Peng, X.; Yang, Q.; Cao, H.; Wang, H. Mathematical Model for Early-Aged UHPFRC Compressive Strength Changes. Coatings 2023, 13, 525. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, A.; Zhang, L.; Wang, Q.; Li, K.; Wang, H. Study on the performance of low water-binder ratio cement mortar with excavated soil exposed to NaCl freeze-thaw environment. Mater. Res. Express 2021, 8, 095511. [Google Scholar] [CrossRef]
- Wei, C.; Rong, H.; Song, W.; Qi, Z.; Li, X.; Wang, H. Influence of muck on mechanical properties of C30 concrete. Concrete 2016, 6, 148–150. [Google Scholar]
- Yu, Z.; Gao, K.; An, M.; Han, S. Influence of micro-structure on the strength and resistance to chloride ion permeability of reactive powder concrete. J. Xi’an Univ. Arch. Technol. 2013, 45, 31–37. [Google Scholar]
- Green, W. Steel reinforcement corrosion in concrete-an overview of some fundamentals. Corros. Eng. Sci. Technol. 2020, 55, 289–302. [Google Scholar] [CrossRef]
- Sun, S. Research on the whole process of corrosion damage of reinforced concrete based on electrochemical impedance spectroscopy. ShiJiazhuang TieDao Univ. 2020, 4–7. [Google Scholar] [CrossRef]
- Ejbouh, A.; Ech-chebab, A.; Hassi, S.; Galai, M.; Benqlilou, H.; Touhami, M. Durability assessment of LC3-based reinforced concrete under combined chloride-sulfate environment via the EIS technique. Constr. Build. Mater. 2023, 366, 130194. [Google Scholar] [CrossRef]
- Ribeiro, D.; Abrantes, J. Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach. Constr. Build. Mater. 2016, 11, 98–194. [Google Scholar] [CrossRef]
- John, D.; Searson, P.; Dawson, J. Use of AC impedance technique in studies on steel in concrete in immersed conditions. Br. Corros. J. 2013, 16, 102–106. [Google Scholar] [CrossRef]
- GB/T2419-2005; Test Method for Fluidity of Cement Mortar. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2005.
- GB/T1346-2011; Test Methods for Water Requirement of Normal Consistency, Setting Time and Soundness of the Portland Cement. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2011.
- Wang, H.; Shi, F.; Shen, J.; Zhang, A.; Zhang, L.; Huang, H.; Liu, J.; Jin, K.; Feng, L.; Tang, Z. Research on the self-sensing and mechanical properties of aligned stainless steel fiber reinforced reactive powder concrete. Cem. Concr. Compos. 2021, 119, 104001. [Google Scholar] [CrossRef]
- Sun, H.; Cheng, W.; Xu, H.; Cai, Z.; Yin, M.; Shi, F. Influence of CO2 Curing on the Alkali-Activated Compound Mineral Admixtures’ Corrosion Resistance to NaCl Dry-Wet Alternations. Coatings 2023, 139, 67. [Google Scholar] [CrossRef]
- Yang, H. Influence of Mineral Powder and Fiber on Work and Mechanical Properties of Reactive Powder Concrete. Multipurp. Util. Miner. Resour. 2023, 2, 197–204. [Google Scholar]
- Ge, W.; Zhang, Z.; Ashour, A.; Li, W.; Jiang, H.; Hu, Y.; Shuai, H.; Sun, C.; Li, S.; Liu, Y.; et al. Hydration characteristics, hydration products and microstructure of reactive powder concrete. J. Build. Eng. 2023, 69, 106306. [Google Scholar] [CrossRef]
- Huang, C. Effect of polycarboxylate superplasticizer content on properties of reactive powder concrete. Adhesion 2022, 49, 116–119. [Google Scholar]
- Gong, K.; Wu, M.; Xie, F.; Liu, G.; Sun, D. Effect of dry/wet ratio and pH on the stress corrosion cracking behavior of rusted X100 steel in an alternating dry/wet environment. Constr. Build. Mater. 2020, 260, 120478. [Google Scholar] [CrossRef]
- Li, R.; Yang, J.; Yang, W.; Liu, Y.; Yang, Z. Degradation Model of Compressive Strength of Concrete under the Action of Steel Bar Rust Expansion. China Concr. 2022, 156, 16–21. [Google Scholar]
- Cui, L.; Wang, H. Research on the Mechanical Strengths and the Following Corrosion Resistance of Inner Steel Bars of RPC with Rice Husk Ash and Waste Fly Ash. Coatings 2021, 11, 1480. [Google Scholar] [CrossRef]
- Decky, M.; Papanova, Z.; Juhas, M.; Kudelcikova, M. Evaluation of the Effect of Average Annual Temperatures in Slovakia between 1971 and 2020 on Stresses in Rigid Pavements. Land 2022, 11, 764. [Google Scholar] [CrossRef]
- Liu, Z. Analysis on the Mechanism of Concrete Shrinkage Cracking Under Cooling. Jiangxi Build. Mater. 2023, 1, 3–8. [Google Scholar]
- Wang, H.; Zhang, A.; Zhang, L.; Liu, J.; Han, Y.; Wang, J. Research on the Influence of Carbonation on the Content and State of Chloride Ions and the Following Corrosion Resistance of Steel Bars in Cement Paste. Coatings 2020, 10, 1071. [Google Scholar] [CrossRef]
- Liang, Z.; Peng, X.; Wang, H. The Influence of Aspect Ratio of Steel Fibers on the Conductive and Mechanical Properties of Compound Cement Reactive Powder Concrete. Coatings 2023, 13, 331. [Google Scholar] [CrossRef]
- Mei, K.; He, Z.; Yi, B.; Lin, X.; Wang, J.; Wang, H.; Liu, J. Study on electrochemical characteristics of reinforced concrete corrosion under the action of carbonation and chloride. Case Stud. Constr. Mater. 2022, 17, e01351. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, A.; Wang, Q.; Han, Y.; Li, K.; Gao, X.; Tang, Z. Corrosion resistance of wollastonite modified magnesium phosphate cement paste exposed to freeze-thaw cycles and acid-base corrosion. Case Stud. Constr. Mater. 2020, 20, e00421. [Google Scholar] [CrossRef]
- Xia, D.; Yu, S.; Yu, J.; Feng, C.; Li, B.; Zheng, Z.; Wu, H. Damage characteristics of hybrid fiber reinforced concrete under the freeze-thaw cycles and compound-salt attack. Case Stud. Constr. Mater. 2023, 18, e01814. [Google Scholar] [CrossRef]
- Chen, D.; Deng, Y.; Shen, J.; Sun, G.; Shi, J. Study on damage rules on concrete under corrosion of freeze-thaw and saline solution. Constr. Build. Mater. 2021, 304, 124617. [Google Scholar] [CrossRef]
Particle Size (%) | 0.3 | 0.6 | 1 | 4 | 8 | 64 | 360 | |
---|---|---|---|---|---|---|---|---|
Types | ||||||||
Cement | 0 | 0.33 | 2.66 | 15.01 | 28.77 | 93.59 | 100 | |
Residue soil | 31.2 | 41.2 | 48.8 | 82.3 | 100 | 100 | 100 |
Types | Chemical Composition (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | MgO | CaO | SO3 | R2O | P2O5 | Organic Matter | Loss | |
OPC | 20.86 | 5.47 | 3.94 | 1.73 | 62.23 | 2.66 | 0.48 | 0 | 0 | 2.63 |
SAC | 46.07 | 13.68 | 4.81 | 3.27 | 12.09 | 0.26 | 4.1 | 0.31 | 5.2 | 11.5 |
Group | Water | Cement | Sand | Water Reducer | Residue Soil |
---|---|---|---|---|---|
1 (0%) | 219.9 | 1466.5 | 1173.3 | 47.8 | 0 |
2 (2.5%) | 219.9 | 1393.2 | 1173.3 | 47.8 | 73.4 |
3 (5%) | 219.9 | 1319.9 | 1173.3 | 47.8 | 146.6 |
4 (7.5%) | 219.9 | 1246.5 | 1173.3 | 47.8 | 219.9 |
5 (10%) | 219.9 | 1173.3 | 1173.3 | 47.8 | 293.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Cai, X.; Peng, X.; Wang, H.; Wang, P. Study on Soil Corrosion Resistance Reinforced with Reactive Powder Concrete in Chloride Environment. Coatings 2023, 13, 1134. https://doi.org/10.3390/coatings13071134
Wang H, Cai X, Peng X, Wang H, Wang P. Study on Soil Corrosion Resistance Reinforced with Reactive Powder Concrete in Chloride Environment. Coatings. 2023; 13(7):1134. https://doi.org/10.3390/coatings13071134
Chicago/Turabian StyleWang, Haozhen, Xin Cai, Xi Peng, Hui Wang, and Pengqian Wang. 2023. "Study on Soil Corrosion Resistance Reinforced with Reactive Powder Concrete in Chloride Environment" Coatings 13, no. 7: 1134. https://doi.org/10.3390/coatings13071134
APA StyleWang, H., Cai, X., Peng, X., Wang, H., & Wang, P. (2023). Study on Soil Corrosion Resistance Reinforced with Reactive Powder Concrete in Chloride Environment. Coatings, 13(7), 1134. https://doi.org/10.3390/coatings13071134