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Abstract: The accumulation of residue soil (generally composed of soil, residue, or mud consolidation)
is one of the important causes of damage to the environment limiting urban development. At present,
the recycling rate of residue soil in developed countries is as high as 90%, while in China it is less
than 5%. In marine construction, reinforced concrete often suffers from corrosion, which leads to
a decrease in the service life and durability of the structure. Reactive powder concrete (RPC) with
high strength and good corrosion resistance can solve these problems. In order to efficiently dispose
of residue soil, protect the environment, and promote urbanization development, this study uses
residue soil as a raw material to replace some cement in RPC, and studies the corrosion resistance of
it (under dry–wet alternations and freeze–thaw cycles). In this study, five types of reinforced RPC
with different residue soil contents (0%, 2.5%, 5%, 7.5%, and 10%) are prepared. Firstly, the working
performance of blank freshly mixed residue soil RPC slurry is analyzed. Then, the corrosion resistance
of residue-soil-reinforced RPC under the dry–wet alternations with 3% NaCl and freeze–thaw cycles
is analyzed through parameters such as mass loss rate, electrical resistivity, ultrasonic velocity, AC
impedance spectroscopy, and Tafel. The results show that under the dry–wet alternations, when
the residue soil content is 10%, the corrosion rate and corrosion depth of the residue-soil-reinforced
RPC are the minimum, at 43,744.84 g/m2h and 640.22 mm/year, respectively. Under the freeze–thaw
cycles, the corrosion rate and corrosion depth of the 10% residue soil content group are higher than
that of the 5%, being 52,592.87 g/m2h and 769.71 mm/year, respectivley. Compared to the other
groups, the reinforced RPC with 10% residue soil content shows good corrosion resistance in both
dry–wet alternations and freeze–thaw cycles. Replacing some of the cement in RPC with residual
soil to control the amount of residual soil at 10% of the total mass of RPC can effectively improve the
corrosion resistance of residue-soil-reinforced RPC and maximize the consumption of residue soil.
This plan provides a feasible method for residue soil treatment in the construction industry, while
also providing inspiration for research on the corrosion resistance of concrete in marine buildings.

Keywords: residue soil; RPC; dry–wet alternations; freeze–thaw cycles; corrosion resistance

1. Introduction

Construction residue soil is an important part of construction waste, which is generally
composed of soil, residue, or mud consolidation. Research shows that, with the acceleration
of the global urbanization process, the construction industry has produced a large amount
of residue soil, and billions of tons of residue soil are treated annually [1]. The residue soil
will occupy land, pollute the environment, and affect urban development if it is not treated.
Furthermore, the recycling rate of residue soil in developed regions, such as the European
Union, South Korea, the United States, and Japan, is as high as 90% or above, while in
contrast, the comprehensive recycling rate of residue soil in China is no more than 5% [2–4].
The low recycling rate of residue soil in China has become a serious problem. In addition,
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marine buildings suffer from serious corrosion by the corrosive environment [5–7], and
ordinary reinforced concrete will be corroded and destroyed after 10 to 30 years in the
ocean [8–10]. These factors can lead to a decrease in the service life and durability of marine
buildings, and even their collapse. Ge [11] mentioned that using silicon powder instead of
cement in reactive powder concrete (RPC) can improve its strength, impermeability, and
corrosion resistance. Kočí [12] proposed that the compressive strength of RPC can usually
reach 200 MPa and it can maintain the integrity of the structure for a long time. In this
regard, reactive powder concrete (RPC) [13–15], which has the characteristics of ultra-high
strength, high toughness, and durability, may become the key to solving these problems.

At present, there is little research on the corrosion resistance of residue soil concrete
around the world. Yu and Wang [16] found that the compressive strength and flexural
strength of cement mortar will deteriorate when residue soil is added into the cement.
Moreover, it shows the highest and lowest strength when the residue soil content is 5% and
15%, respectivley. Wei [17] studied the influence of residue soil content on the performance
of C30 concrete. The research showed that the initial slump flow of concrete decreased with
the increase in residue soil content.

RPC corrosion resistance is judged by chloride ion permeability. There is little research
on the corrosion resistance of RPC doped with residue soil around the world; however, one
study [18] measured the diffusion coefficient of chloride ions of RPC with the NEL method
as 22.17 × 1014 m2/s.

For reinforced concrete, there is a lot of research on corrosion resistance around the
world. Green [19] found that there is a linear relationship between the reinforcement
corrosion rate and the chloride ion content on the reinforcement surface. Feng [7] studied
the corrosion propagation behavior of steel reinforcement using a novel custom-designed
wire beam electrode (WBE) covered with uncracked and cracked mortar. The study showed
that the WBE technique can effectively monitor passivation and pitting corrosion, especially
for the propagation of corrosion. To sum up, there is a lot of research on residue soil concrete,
including the working and mechanical properties of RPC around the world. However,
there are few studies on the corrosion resistance of residue-soil-reinforced RPC. There are
also few relevant reports on its corrosion resistance in the marine environment.

The corrosion of steel bars is an electrochemical process [20]. The passive film on the
surface of reinforced concrete in marine construction is constantly eroded by chloride ions.
This leads to dullness and the corrosion of reinforced concrete. After the failure of passive
films, the exposed iron base forms the anode and a large passive area forms the cathode.
The anode and cathode finally produce a potential difference. Thus, the corrosion pattern
of the small cathode and large anode is formed. At this moment, rust pits will form on the
surface of the steel bars, and they will expand rapidly.

The corrosion of reinforced concrete can be reflected through the parameters of elec-
trochemical detection. Among these parameters, the AC impedance spectrum is a more
widely used technology. The AC impedance spectrum allows the impedance to vary with
the frequency perturbation of the input AC. At different frequencies, the impedance will
approach some kind of electrical resistivity or electrical capacitance. Therefore, the core of
electrochemical impedance spectrum (EIS) technology can be obtained, in which the entire
electrochemistry of the process can be represented by impedance [21–23]. Furthermore, the
measured Tafel curve can also indicate the degree to which the electrode potential needs
to be changed in order to achieve a given current. Thus, the corrosion degree of reinforce-
ment can be reflected by the ultrasonic velocity, electrical resistivity, AC impedance, and
Tafel curve.

In this experiment, five groups of reinforced RPCs are prepared with different residue
soil contents (0%, 2.5%, 5%, 7.5%, and 10%). Firstly, the working performance (the setting
time and slump flow) of the newly mixed concrete slurry is analyzed. Then, the steel bar
is placed into the residue soil RPC to study the parameters of the ultrasonic velocity, the
AC electrical resistivity, and the AC impedance spectrum. Finally, the corrosion resistance
of RPC in the dry–wet alternations with 3% NaCl and freeze–thaw cycles is analyzed by
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using these parameters. This study provides a good scheme for the residue soil reclamation
treatment and corrosion resistance research of marine construction.

2. Experimental Procedure
2.1. Raw Materials and Preparation Maintenance
2.1.1. Raw Materials

Ordinary Portland cement P·O42.5, produced by Xiangshan Conch Cement Co., Ltd.,
Ningbo, China, is applied in this study. P·O cement has an initial setting time of 45 min
and a final setting time of 390 min. Additionally, P·O cement has a specific surface area
of 365 m2/kg. The residue soil produced by the construction of a subway line in Ningbo
is used in this study. Moreover, the residue soil has a particle size of 11µm and a specific
surface area of 190 m2/kg. The aggregate is quartz sand. The particle sizes are 1~0.71 mm,
0.59~0.35 mm, and 0.15~0.297 mm, and the mass ratio of the sand is 1:1.5:0.8. Polycarboxylic
acid superplasticizer (SP) is used in this study as an admixture to improve the fluidity of
raw material mixing, and the water-reducing rate can reach 40%. The quartz sand and
water-reducing agent were produced by Shanghai Yingshan New Material Technology Co.,
Ltd., Shanghai, China. Reinforcement of 6.5 mm diameter is used in this study, and the steel
mesh is made of stainless steel. Table 1 shows the cumulative raw material passing rate of
the cement and residue soil. Table 2 shows the chemical composition of the raw materials.

Table 1. Cumulative pass rate of raw materials (%).

Types
Particle Size (%)

0.3 0.6 1 4 8 64 360

Cement 0 0.33 2.66 15.01 28.77 93.59 100
Residue soil 31.2 41.2 48.8 82.3 100 100 100

Table 2. Chemical composition of raw materials (%).

Types
Chemical Composition (%)

SiO2 Al2O3 Fe2O3 MgO CaO SO3 R2O P2O5 Organic Matter Loss

OPC 20.86 5.47 3.94 1.73 62.23 2.66 0.48 0 0 2.63
SAC 46.07 13.68 4.81 3.27 12.09 0.26 4.1 0.31 5.2 11.5

2.1.2. Specimen Preparation and Curing

The residue soil contents of five groups of residue-soil-reinforced RPC prepared in
this study are 0%, 2.5%, 5%, 7.5%, and 10%, respectively, with six specimens in each group.
The specimens are prepared according to GB/T 50081-2019. All weighed raw materials are
poured into a UJZ-15 mortar mixer to be stirred for 40s. Then, the time is recorded, and
the initial setting time of the specimens is calculated. The mixed concrete is poured into
oiled plastic molds, obtaining specimens with sizes of 50 mm × 50 mm × 50 mm when the
slump flow test is completed. All specimens are cured at a temperature of 20 ± 2 ◦C and a
relative humidity above 95% (GB50204-2015) after demolding. All specimens are taken out
and numbered after 2 days. Figure 1 shows a diagram of the specimens. Table 3 shows the
coordination of each group.
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Figure 1. A schematic diagram of the specimen.

Table 3. The mix ratio of concrete.

Group Water Cement Sand Water Reducer Residue Soil

1 (0%) 219.9 1466.5 1173.3 47.8 0
2 (2.5%) 219.9 1393.2 1173.3 47.8 73.4
3 (5%) 219.9 1319.9 1173.3 47.8 146.6

4 (7.5%) 219.9 1246.5 1173.3 47.8 219.9
5 (10%) 219.9 1173.3 1173.3 47.8 293.3

Note: The unit is g. The masses of coarse sand, medium sand, and fine sand in each group were 355.5 g, 533.3 g,
and 284.4 g, respectively.

2.2. Dry–Wet Alternations and Freeze–Thaw Cycles

The specimens numbered 1, 2 and, 3 in a group are subjected to dry–wet alternations
with 3% NaCl and the specimens numbered 4, 5, and 6 are subjected to freeze–thaw cycles
with chlorine salt.

To simulate dry–wet alternations with 3% NaCl, specimens are put into the solution
(3% NaCl) to soak for 12 h. Subsequently, the specimens are placed into the electric blast
drying oven (with the temperature set to 80 ◦C) for 36 h, with 2 d as a cycle, which is
repeated 10 times.

To simulate freeze–thaw cycles of chlorine salts, specimens are put into the freeze–
thaw cycle box (temperature range from −18 to 5 ◦C, with a deviation within 2 ◦C). One
cycle is set for 3 h of freeze–thaw and the cycle repeats 100 times. Furthermore, since
the specimen has been wet and saturated during curing before circulation, no additional
soaking is required.

2.3. Measurement Method
2.3.1. Measurement of Slump Flow

The slump flow of mixed concrete is measured using the jumping table. The jumping
table is produced by Wuxi Prospecting Instrument Factory, Zhejiang Province, and its
model number is NLD-3. The power supply voltage of the jumping table is 220 V, the
vibration drop distance is 10 mm ± 0.2 mm, the vibration frequency is 1 Hz, and the
diameter of the table is 300 mm ± 1 mm. The specific operation process refers to the GB/T
2419-2005 Chinese standard [24].

2.3.2. Measurement of Setting Time

The setting time is determined by the setting time tester in this study. The pressure
area of the probe of the setting time tester is 30 mm2. Moreover, the initial setting time
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corresponds to pressure 0.7 MPa. According to Equation (1), the pressure corresponding to
the initial setting time is 21 N.

fp =
Np

Ap
(1)

In Equation (1), fp is the pressure corresponding to the initial setting time, Ap is the
pressure area of the probe, and Np is the pressurized pressure.

The specific operation process refers to the GB/T 1346-2011 Chinese standard [25].
Figure 2 shows the setting time tester and concrete specimens.
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2.3.3. Measurement of Ultrasonic Velocity

Ultrasonic velocity is measured using a JITAI990 ultrasonic detector in this study. The
detector can produce sounds ranging from 1000 m/s to 9999 m/s. Vaseline is applied to
both sides of the concrete and the probe is stuck on the axis positions. Ultrasonic velocity
signals are collected after all of these steps are completed. The detailed measurement
process of ultrasonic velocity can be found in Wang’s study [26]. Figure 3 is a picture of the
JITAI990 ultrasonic detector.
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2.3.4. Measurement of Mass Loss and Electrochemical Parameters

The original rust on the surface of the steel bars is removed by using a sanding process
when measuring the mass loss of the specimen. In this study, the original steel bars are
then polished with a sand blaster. After polishing, the steel bars are cleaned with citric
acid and moved to be dried and weighed. Later, standard cure samples with polished steel
bars are applied in the simulated environment. Finally, the mass loss is measured, and the
specific measurement process is that of the study of Wang [26].

The AC electrical resistivity is measured using a TH2810D LCR digital bridge. The
test voltage is 1 V, and the test frequency is 104 Hz. The steel bar and stainless-steel mesh
are used as the two electrodes. Moreover, the digital bridge makes good contact with the
electrode. A Princeton electrochemical workstation is used to measure the AC impedance
spectrum. The initial AC frequency set in this study is 100,000 Hz, the end AC frequency
is 1 Hz, and the voltage is 0.01 V, which meets the conditions of small disturbance. The
electrochemical workstation is connected to the electrode of the specimen. The specific
measurement process of the AC electrical resistivity and AC impedance spectrum is that of
the study of Wang [27]. Figure 4 shows a schematic diagram of the AC electrical resistivity
measurement. Figure 5 shows a photo of the electrochemical workstation.
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3. Results and Discussions
3.1. Working Performance of Residue-Soil-Reinforced RPC

Figure 6 shows the initial setting time (h) and the slump flow (cm) of RPC with
different residue soil contents. It can be seen that the initial setting time increases with the
increase in residue soil content. The initial setting time changes little when the residue
soil content is 0%~5%, and the initial setting time continues to rise when the residue soil
content is more than 5%. This is because the residue soil has a much larger surface area
than cement in the process of replacing the cement. As a result, the water absorption of
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the residue soil is stronger than that of cement [28,29], and it affects the hydration process
of cement and prolongs the initial setting time of RPC. The initial setting time increases
sharply when the residue soil content changes from 5% to 7.5%. This is because the initial
setting time is affected by low ambient temperature when the residue soil content is 7.5%.
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It can also be seen that the slump flow decreased with the increase in residue soil
content (from the base of 217.5 mm, slightly increased to 250 mm, and finally dropped
to 171 mm). Residue soil has a great influence on the slump flow when its content is less
than 5%. Furthermore, when the residue soil content is higher than 5%, the influence is
small. This is because the residue soil absorbs the water-reducing agent molecules with the
increase in its content [30]. Moreover, water-reducing agent molecules have intercalation
in residue soil. The water-reducing agent is consumed by the residue soil, which leads
to a reduction in the water-reducing agent acting on the cement and finally results in a
reduction in the slump flow.

3.2. Effect of Dry–Wet Alternations on Corrosion Resistance of Residue-Soil-Reinforced RPC
3.2.1. Mass Loss Rate of Residue-Soil-Reinforced RPC

Figure 7 shows the mass loss rate of different residue soil contents during dry–wet
alternations. As shown in Figure 7, there is no positive or negative correlation between
the residue soil content and the mass loss rate. The mass loss rate of RPC with 5% residue
soil content is the lowest. Furthermore, the mass loss rate of RPC with residue soil content
in each group and the blank control group increases first and then decreases under the
dry–wet alternations. Obviously, there is mass loss after five dry–wet alternations. This
is because the steel bars are eroded by chloride ions, which leads to the expansion of
the steel bars and the peeling of the concrete surface [31]. The mass loss of 10 dry–wet
alternations is not as high as that of 5. This indicates that the mass of concrete after 10 dry–
wet alternations is greater than that of 5. This is because the mass loss is greater with the
influence of temperature stress when the frequency of dry–wet alternations is low.



Coatings 2023, 13, 1134 8 of 19
Coatings 2023, 13, x FOR PEER REVIEW 8 of 19 
 

 

0 5 10

0.0

0.5

1.0

1.5

2.0

2.5

M
as

s l
os

s r
at

e 
(%

)

D-W alternations

 Residue soil content (0%)
 Residue soil content (2.5%)
 Residue soil content (5%)
 Residue soil content (7.5%)
 Residue soil content (10%)

 
Figure 7. Mass loss rate with different residue soil contents during dry–wet alternations. 

3.2.2. Ultrasonic Velocity of Residue-Soil-Reinforced RPC 
Figure 8 shows the ultrasonic velocity in different periods. It can be seen from Figure 

8 that ultrasonic velocity increases continuously during the curing period. Moreover, ul-
trasonic velocity reaches the maximum when the curing time is 28 d. In each group, the 
RPC with 5% residue soil content has the highest ultrasonic velocity, which is 4.45 km/s. 
The ultrasonic velocity decreases in all of the groups when dry–wet alternation begins. 
This is because, after repeated immersion in 3% NaCl solution, the chloride ions corrode 
the steel bars inside of the concrete. This generates rust swelling stress [32] and, because 
the tensile strength of concrete is less than the rust swelling stress, resulting in cracks ap-
pearing inside of the concrete, the ultrasonic velocity decreases [33]. Decky [34] calculates 
the thermal stress value of cement concrete pavement slabs with a thickness of 12~32 cm 
and analyzes their sensitivity to different subgrade reaction moduli. The temperature 
stress level of cement concrete slabs has been determined. When the annual temperature 
changes from 4.5 to 11.5 °C, a tensile stress in the range of 0.3 to 0.7 MPa will be generated 
inside of the cement concrete slab. Therefore, temperature stress can also aggravate the 
cracking of concrete [34,35]. The decrease in ultrasonic velocity before 5 dry–wet alterna-
tions is greater than that before 10. This is because the corrosion products of steel bars 
play a part in filling the micro-cracks in concrete. The reinforced RPC with 5% residue soil 
content has the largest ultrasonic velocity after 10 dry–wet alternations, which indicates 
that the reinforced RPC with 5% residue soil content has the largest compaction. The ul-
trasonic velocity of reinforced RPC with 7.5% residue soil content is the second largest, 
which is 3.72 km/s. It is close in size to the ultrasonic velocity of reinforced RPC with 10% 
residue soil content. The ultrasonic velocity of reinforced RPC with 2.5% residue soil con-
tent is the smallest, which is 3.52 km/s. This indicates that reinforced RPC with 2.5% resi-
due soil has the smallest compaction. The results are consistent with the mass loss rate 
chart. 

Figure 7. Mass loss rate with different residue soil contents during dry–wet alternations.

3.2.2. Ultrasonic Velocity of Residue-Soil-Reinforced RPC

Figure 8 shows the ultrasonic velocity in different periods. It can be seen from Figure 8
that ultrasonic velocity increases continuously during the curing period. Moreover, ultra-
sonic velocity reaches the maximum when the curing time is 28 d. In each group, the RPC
with 5% residue soil content has the highest ultrasonic velocity, which is 4.45 km/s. The
ultrasonic velocity decreases in all of the groups when dry–wet alternation begins. This is
because, after repeated immersion in 3% NaCl solution, the chloride ions corrode the steel
bars inside of the concrete. This generates rust swelling stress [32] and, because the tensile
strength of concrete is less than the rust swelling stress, resulting in cracks appearing inside
of the concrete, the ultrasonic velocity decreases [33]. Decky [34] calculates the thermal
stress value of cement concrete pavement slabs with a thickness of 12~32 cm and analyzes
their sensitivity to different subgrade reaction moduli. The temperature stress level of
cement concrete slabs has been determined. When the annual temperature changes from
4.5 to 11.5 ◦C, a tensile stress in the range of 0.3 to 0.7 MPa will be generated inside of
the cement concrete slab. Therefore, temperature stress can also aggravate the cracking
of concrete [34,35]. The decrease in ultrasonic velocity before 5 dry–wet alternations is
greater than that before 10. This is because the corrosion products of steel bars play a part
in filling the micro-cracks in concrete. The reinforced RPC with 5% residue soil content
has the largest ultrasonic velocity after 10 dry–wet alternations, which indicates that the
reinforced RPC with 5% residue soil content has the largest compaction. The ultrasonic
velocity of reinforced RPC with 7.5% residue soil content is the second largest, which is
3.72 km/s. It is close in size to the ultrasonic velocity of reinforced RPC with 10% residue
soil content. The ultrasonic velocity of reinforced RPC with 2.5% residue soil content is the
smallest, which is 3.52 km/s. This indicates that reinforced RPC with 2.5% residue soil has
the smallest compaction. The results are consistent with the mass loss rate chart.
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3.2.3. Electrical Resistivity of Residue-Soil-Reinforced RPC

Figure 9 shows the variation of the electrical resistivity in different periods. As shown
in Figure 9, the reinforced RPC with 5% and 10% residue soil content have higher electrical
resistivity. Furthermore, there is no positive or negative correlation between the residue
soil content and the electrical resistivity. The electrical resistivity of each group shows a
trend of first decreasing and then increasing again with curing and dry–wet alternations.
The electrical resistivity reaches its maximum when the curing time is 28 d. The electrical
resistivity of all of the groups decreases after curing for 3 d to 6 d, and the RPC with
5% residue soil content decreases the most. This is because the moisture content in the
residue-soil-reinforced RPC increases with the increase in curing time, resulting in the
electrical conductivity increasing and the electrical resistivity decreasing. The electrical
resistivity of each group increases after curing for 6 d to 28 d. This is because the gradual
hydration of the residue-soil-reinforced RPC results in the increase in compactness and
the gradual disconnection of pores, which eventually leads to an increase in the electrical
resistivity. It can be seen that hydration has a great effect on electrical resistivity. At the
beginning of the dry–wet alternations (28 d later), the electrical resistivity begins to decline,
which is because the ions in the NaCl solution enter the residue-soil-reinforced RPC and
continuously accumulate. At this moment, the electrical resistivity starts to depend on the
total amount of charge, and the more the total amount of charge, the lower the electrical
resistivity is [36]. The electrical resistivity of all of the groups increases again after five
dry–wet alternations. This is because the total charge inside of the residue-soil-reinforced
RPC is saturating. Subsequently, hydration is still occurring. At this moment, hydration
makes the electrical resistivity increase again.
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3.2.4. Electrochemical Performance of Residue-Soil-Reinforced RPC

Figures 10 and 11 show the AC impedance spectrum scatter distribution after 0 and
10 dry–wet alternations, respectively. In Figures 10 and 11, the abscissa Zr (Ω) represents
the electrical resistivity, characterizing the corrosion resistance of the residue-soil-reinforced
RPC [37], and Zi (Ω) represents the electrical reactance.
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Figure 14. Bar chart of corrosion rate and corrosion depth under 10 dry-wet 
alternations. 

Figure 10. The AC impedance spectrum of 0 dry−wet alternations.
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Figure 11. The AC impedance spectrum of 10 dry−wet alternations.

It can be seen from Figure 10 that the impedance values of each group are scattered and
irregular after 0 dry–wet alternations. Furthermore, the order of magnitude of the electrical
resistivity and the electrical capacitance is extremely large. This indicates that the concrete
protective layer of the specimen protects the matrix well and has a strong charge storage
ability before the dry–wet alternations [37]. Moreover, the electrical capacitance decreases
first and then increases with the increase in the electrical resistivity when the residue soil
content is the same. The image moves first to the left and then to the right, and the electrical
resistivity value corresponding to the lowest point represents its corrosion resistance with
the increase in residue soil content. The higher the electrical resistivity values, the better the
corrosion resistance is, which indicates that the residue soil corrosion resistance is better
than that of cement. In addition, the corrosion resistance is the best when the residue soil
content is 10%. However, the electrical resistivity value of the specimens is smaller than that
of the blank control group when the residue soil content is 2.5%. Therefore, concrete with
2.5% residue soil content should be avoided in order to achieve better corrosion resistance
in engineering practice.

The corrosion rate of metals can be expressed by the corrosion current density, and the
Tafel curve, shown in Figures 12 and 13, can be obtained by converting it with Faraday’s
law Equations (2) and (3).

v =
10M

n × 9.65 × 104

3.6

× I = 3.73 × 10−4 M
n

I (2)

d =
v
ρ

(3)

In Equation (2), v stands for the corrosion velocity, and its unit is g/m2h. M represents
the atomic weight of the metal, and its unit is g. n represents the atomic valence of the
metal. I represents the corrosion current density, and its unit is µA/cm2. In Equation (3), d
indicates the depth of corrosion, and its unit is mm/year. v stands for corrosion velocity,
and its unit is g/m2h. ρ represents the density of the metal, and its unit is g/cm3.

Figure 12 shows the Tafel curve under 0 dry–wet alternations. Figure 13 shows the
Tafel curve under 10 dry–wet alternations. It is not difficult to see that the two branching
curves form a complete Tafel curve. The bifurcation point of the curve can reflect the
corrosion performance of the specimens [38,39]. It can be seen from Figures 12 and 13
that there is no positive or negative correlation between the residue soil content and the
potential of bifurcation points.
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According to the Tafel curve, the voltage and the electrical current of the residue-soil-
reinforced RPC in each group are analyzed. Figure 14 shows a bar chart of the corrosion
rate and corrosion depth of different residue soil contents under 10 dry–wet alternations. It
can be seen from Figure 14 that the corrosion rate and the corrosion depth are not positively
correlated with the residue soil content. The corrosion depth of reinforcement increases
first and then decreases with the increase in residue soil content. When the residue content
is 5%, the maximum corrosion depth is 9043.32 mm/year. When the residue content is 10%,
the minimum corrosion depth is 640.21 mm/year. This indicates that residue soil content
in a certain range will accelerate the corrosion rate of reinforcement. Moreover, the blank
control group and the 10% residue soil content group have better corrosion resistance.
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Figure 14. Bar chart of corrosion rate and corrosion depth under 10 dry−wet alternations.

3.3. Effect of Freeze–Thaw Cycles on Corrosion Properties of Residue-Soil-Reinforced RPC
3.3.1. Mass Loss Rate of Residue-Soil-Reinforced RPC

Figure 15 shows the mass loss rate of different residue soil contents during freeze–thaw
cycles. It can be seen from Figure 15 that the mass loss rate of each group increases under
the freeze–thaw cycle, and when the number of cycles increases from 50 to 100, the mass
loss rate increases by an average of 0.72 times. One of the reasons for this is that the NaCl
solution inside of the concrete freezes during circulation, resulting in concrete expansion,
cracking, and spalling, which finally leads to mass loss [40]. The second reason is that,
although the crack is open, the crack also absorbs water instead of part of the mass loss,
resulting in the mass loss of 100 cycles being close to, but less than, 1 time. Furthermore,
the mass loss rate of reinforced RPC with 10% residue soil content is the smallest. Because
the mass loss rate represents the surface erosion of the residue-soil-reinforced RPC and
characterizes its corrosion resistance, the reinforced RPC with 10% residue soil content has
the best corrosion resistance.

3.3.2. Ultrasonic Velocity of Residue-Soil-Reinforced RPC

Figure 16 shows the ultrasonic velocity during curing and freeze–thaw cycles. It
can be seen from Figure 16 that the ultrasonic velocity first increases and then decreases
during the curing and freeze–thaw cycles. Moreover, the group with 10% residue soil
content and the blank control group have the largest increase. The ultrasonic velocity of
each group begins to decrease after the freeze–thaw cycles. The ultrasonic velocity under
100 freeze–thaw cycles is slightly lower than that of 50. This is because the inside of the
residue-soil-reinforced RPC is gradually damaged, resulting in micro-cracks, and these
micro-cracks grow larger and larger [41]. This is because the ultrasonic propagation velocity
in the solution (3% NaCl) with micro-cracks is lower than that in the solid interior of the
initial specimen, thus, the ultrasonic velocity decreases [27]. The ultrasonic velocity of the
reinforced RPC with 10% residue soil content is the largest, which is 4.24 km/s. Therefore,
the RPC with 10% residue soil content has the largest compaction.
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3.3.3. Electrical Resistivity of Residue-Soil-Reinforced RPC

Figure 17 shows the electrical resistivity of each group during different periods. It
can be seen from Figure 17 that the electrical resistivity of each group increases with the
increase in curing time. Moreover, when comparing 100 freeze–thaw cycles to that of 50,
the electrical resistivity growth of each group slows down (5%, 7.5%, and 10%) or even
decreases (0% and 2.5%) to different degrees. This is because, although the hydration of
concrete is still occurring, the rate of hydration is slower, and the improvement of the
concrete compactness is not as significant as it was in the early stage. After 100 freeze–
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thaw cycles, the largest electrical resistivity of the group with 7.5% residue soil content
is 387.82 Ω·m, followed by that of 10% residue soil content, which is 319.65 Ω·m. This
indicates that the reinforced RPC with 7.5% and 10% residue soil contents have the better
resistance to chloride ion erosion.
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3.3.4. Electrochemical Performance of Residue-Soil-Reinforced RPC

Figure 18 shows the AC electrical resistivity scatter distribution of 0 freeze–thaw cycles.
In the figure, Zr represents the electrical resistance and reflects the degree of corrosion.
As with the dry–wet alternations, the AC impedance scatter distribution of 0 freeze–thaw
cycles is irregular. This indicates that the concrete protective layer of the test block before
the freeze–thaw cycle protects the matrix well and has a strong charge storage ability.

Figure 19 shows the Tafel curve under 0 freeze–thaw cycles. It can be seen from the
curve that mixing residue soil into RPC can effectively improve the corrosion resistance of
specimens before the freeze–thaw cycle.

Figure 20 shows a bar chart of the corrosion rate and corrosion depth of different
residue soil contents under 0 freeze–thaw cycles. It can be seen from Figure 20 that the
annual corrosion depth of the RPCs with 0%, 5%, and 10% residue soil contents is less than
1000 mm, which shows good corrosion resistance.
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4. Conclusions

The multiple properties, including the working performance (slump flow and initial
setting time), mass loss rate, and electrochemical parameters (electrical resistivity, ultra-
sonic velocity, AC impedance spectrum, and Tafel) are analyzed in order to study the
corrosion resistance of residue-soil-reinforced RPC. Our research findings can be concluded
as follows:

The initial setting time of the residue soil RPC increases with the increase in residue
soil content. The slump flow shows a trend of first rising and then falling (from the base of
217.5 mm, then slightly increased to 250 mm, and finally dropped to 171 mm). When the
residue soil content is 2.5%, the maximum slump flow is 250 mm, and when the residue
soil content is 10%, the minimum slump flow is 171 mm.

The mass loss rate of residue-soil-reinforced RPC increases first and then decreases
(when performing dry–wet alternations) and increases (when performing freeze–thaw
cycles). The ultrasonic velocity shows the same rule under dry–wet alternations and freeze–
thaw cycles. The ultrasonic velocity increases first and then decreases. With the increase in
curing age and dry–wet alternations, the electrical resistivity of the residue-soil-reinforced
RPC decreases when curing from 3 d to 6 d and then increases when curing from 6 d to
28 d. Moreover, the electrical resistivity decreases (after 28 d) and increases again (after five
alternations). Finally, the electrical resistivity reaches its maximum after curing for 28 days.
In addition, all of the groups share the same trend. With the increase in curing age and
freeze–thaw cycles, the electrical resistivity of the residue-soil-reinforced RPC keeps rising.

The residue-soil-reinforced RPC with 10% residue soil content has good corrosion
resistance in both dry–wet alternations and freeze–thaw cycles, which we can see by ana-
lyzing the AC impedance spectrum and Tafel curve (a polarization curve that characterizes
metals and reflects the relationship between the anodic polarization curve and the current).

Considering the amount of residue soil utilization and corrosion resistance, reinforced
RPC with 10% residue soil content is the most suitable for engineering practice due to its
high residue soil recycling rate and low corrosion rate. Moreover, reinforced RPC with 2%
residue soil content should be avoided in engineering.
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