Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,514)

Search Parameters:
Keywords = free-living

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6152 KiB  
Article
Isolation of Ultra-Small Opitutaceae-Affiliated Verrucomicrobia from a Methane-Fed Bioreactor
by Olga V. Danilova, Varvara D. Salova, Igor Y. Oshkin, Daniil G. Naumoff, Anastasia A. Ivanova, Natalia E. Suzina and Svetlana N. Dedysh
Microorganisms 2025, 13(8), 1922; https://doi.org/10.3390/microorganisms13081922 (registering DOI) - 17 Aug 2025
Abstract
The bacterial phylum Verrucomicrobiota accommodates free-living and symbiotic microorganisms, which inhabit a wide range of environments and specialize in polysaccharide degradation. Due to difficulties in cultivation, much of the currently available knowledge about these bacteria originated from cultivation-independent studies. A phylogenetic clade defined [...] Read more.
The bacterial phylum Verrucomicrobiota accommodates free-living and symbiotic microorganisms, which inhabit a wide range of environments and specialize in polysaccharide degradation. Due to difficulties in cultivation, much of the currently available knowledge about these bacteria originated from cultivation-independent studies. A phylogenetic clade defined by the free-living bacterium from oilsands tailings pond, Oleiharenicola alkalitolerans, and the symbiont of the tunicate Lissoclinum sp., Candidatus Didemniditutus mandelae, is a poorly studied verrucomicrobial group. This clade includes two dozen methagenome-assembled genomes (MAGs) retrieved from aquatic and soil habitats all over the world. A new member of this clade, strain Vm1, was isolated from a methane-fed laboratory bioreactor with a Methylococcus-dominated methane-oxidizing consortium and characterized in this study. Strain Vm1 was represented by ultra-small, motile cocci with a mean diameter of 0.4 µm that grew in oxic and micro-oxic conditions at temperatures between 20 and 42 °C. Stable development of strain Vm1 in a co-culture with Methylococcus was due to the ability to utilize organic acids excreted by the methanotroph and its exopolysaccharides. The finished genome of strain Vm1 was 4.8 Mb in size and contained about 4200 predicted protein-coding sequences, including a wide repertoire of CAZyme-encoding genes. Among these CAZymes, two proteins presumably responsible for xylan and arabinan degradation, were encoded in several MAGs of Vm1-related free-living verrucomicrobia, thus offering an insight into the reasons behind wide distribution of these bacteria in the environment. Apparently, many representatives of the OleiharenicolaCandidatus Didemniditutus clade may occur in nature in trophic associations with methanotrophic bacteria, thus participating in the cycling of methane-derived carbon. Full article
(This article belongs to the Special Issue Advances in Genomics and Ecology of Environmental Microorganisms)
18 pages, 1030 KiB  
Article
Dietary Supplementation with L-Citrulline Between Days 1 and 60 of Gestation Enhances Embryonic Survival in Lactating Beef Cows
by Kyler R. Gilbreath, Michael Carey Satterfield, Lan Zhou, Fuller W. Bazer and Guoyao Wu
Animals 2025, 15(16), 2398; https://doi.org/10.3390/ani15162398 - 15 Aug 2025
Abstract
Low fertility limits reproductive efficiency in cattle. This study was conducted with multiparous Brangus cows receiving dietary supplementation with or without L-citrulline [Cit; an immediate precursor of L-arginine (Arg)]. During the entire experimental period, cows grazed green pasture and had free access to [...] Read more.
Low fertility limits reproductive efficiency in cattle. This study was conducted with multiparous Brangus cows receiving dietary supplementation with or without L-citrulline [Cit; an immediate precursor of L-arginine (Arg)]. During the entire experimental period, cows grazed green pasture and had free access to drinking water and mineral blocks. One hundred and seven (107) cows were assigned randomly to one of three treatment groups: dried distillers grains with solubles (DDGS) without Cit supplement (n = 36); DDGS top-dressed with rumen-protected Cit product (RPAA; n = 36); or unprotected Cit product (RUAA; n = 35). After 2 months of lactation, all cows were synchronized to estrus and were bred once via artificial insemination. From Day 1 to Day 60 of gestation, cows were individually fed once daily 0.84 kg of a supplement (DDGS; control), 0.56 kg of DDGS plus 0.28 kg of RUAA (containing 0.07 kg of unencapsulated Cit), or 0.56 kg of DDGS plus 0.28 kg of RPAA (containing 0.07 kg of rumen-protected Cit). The supplemental dose of Cit was equivalent to 0.5% of the estimated daily intake of 14 kg dry matter from pasture. On Days 40 and 60 of gestation, ultrasound was used to determine pregnancy rates. Each pregnant cow had a single conceptus. On Day 60 of gestation, blood samples were obtained from the jugular vein. All cows grazed normally and appeared healthy. Birth rates for live-born calves were 22% and 35% in cows receiving DDGS alone and Cit supplementation, respectively (p < 0.05). The beneficial effect of Cit was associated with increases in concentrations of Cit (+19%), Arg (+20%), ornithine (+19%), proline (+17%), and insulin (+82%) but decreases in concentrations of ammonia (–14%) in maternal plasma (p < 0.05). Thus, dietary supplementation with Cit is a simple, novel, and cost-effective nutritional method to increase the reproductive efficiency of lactating beef cows. Full article
Show Figures

Figure 1

16 pages, 1307 KiB  
Article
Kinetic Analysis of SARS-CoV-2 S1–Integrin Binding Using Live-Cell, Label-Free Optical Biosensing
by Nicolett Kanyo, Krisztina Borbely, Beatrix Peter, Kinga Dora Kovacs, Anna Balogh, Beatrix Magyaródi, Sandor Kurunczi, Inna Szekacs and Robert Horvath
Biosensors 2025, 15(8), 534; https://doi.org/10.3390/bios15080534 - 14 Aug 2025
Viewed by 269
Abstract
The SARS-CoV-2 spike (S1) protein facilitates viral entry through binding to angiotensin-converting enzyme 2 (ACE2), but it also contains an Arg–Gly–Asp (RGD) motif that may enable interactions with RGD-binding integrins on ACE2-negative cells. Here, we provide quantitative evidence for this alternative binding pathway [...] Read more.
The SARS-CoV-2 spike (S1) protein facilitates viral entry through binding to angiotensin-converting enzyme 2 (ACE2), but it also contains an Arg–Gly–Asp (RGD) motif that may enable interactions with RGD-binding integrins on ACE2-negative cells. Here, we provide quantitative evidence for this alternative binding pathway using a live-cell, label-free resonant waveguide grating (RWG) biosensor. RWG technology allowed us to monitor real-time adhesion kinetics of live cells to RGD-displaying substrates, as well as cell adhesion to S1-coated surfaces. To characterize the strength of the integrin–S1 interaction, we determined the dissociation constant using two complementary approaches. First, we performed a live-cell competitive binding assay on RGD-displaying surfaces, where varying concentrations of soluble S1 were added to cell suspensions. Second, we recorded the adhesion kinetics of cells on S1-coated surfaces and fitted the data using a kinetic model based on coupled ordinary differential equations. By comparing the results from both methods, we estimate that approximately 33% of the S1 molecules immobilized on the Nb2O5 biosensor surface are capable of initiating integrin-mediated adhesion. These findings support the existence of an alternative integrin-dependent entry route for SARS-CoV-2 and highlight the effectiveness of label-free RWG biosensing for quantitatively probing virus–host interactions under physiologically relevant conditions without the need of the isolation of the interaction partners from the cells. Full article
(This article belongs to the Special Issue In Honor of Prof. Evgeny Katz: Biosensors: Science and Technology)
Show Figures

Figure 1

16 pages, 1084 KiB  
Article
Zinc Complexes of Guanidine– and Amidine–Phenolate Ligands for the Ring-Opening Polymerization of Lactide
by Víctor Flores-Romero, Jesse LeBlanc and Gino G. Lavoie
Inorganics 2025, 13(8), 265; https://doi.org/10.3390/inorganics13080265 - 13 Aug 2025
Viewed by 103
Abstract
A series of Zn complexes containing guanidine– and amidine–phenolate ligands were synthesized and evaluated as catalysts for the polymerization of rac-lactide at 130 °C, under solvent-free conditions, giving rate constants in the range of 0.71–4.37 × 10–4 s–1. Polymerization [...] Read more.
A series of Zn complexes containing guanidine– and amidine–phenolate ligands were synthesized and evaluated as catalysts for the polymerization of rac-lactide at 130 °C, under solvent-free conditions, giving rate constants in the range of 0.71–4.37 × 10–4 s–1. Polymerization under identical conditions with the guanidine– and amidine–phenol proligands themselves used as catalysts gave values in the range of 0.30–2.45 × 10–4 s–1. The stereoselective production of polylactic acid from either the Zn complexes or the proligands was limited (Pr = 0.47–0.62). The molecular weight of the polymers was lower than expected for living polymerizations due to chain transfer and/or transesterification but were comparable to those obtained in control experiments with Sn(Oct)2. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Graphical abstract

24 pages, 4639 KiB  
Article
Testing Satellite Snow Cover Observations Using Time-Lapse Camera Images in Mid-Latitude Mountain Ranges (Northern Spain)
by Adrián Melón-Nava and Javier Santos-González
Geosciences 2025, 15(8), 316; https://doi.org/10.3390/geosciences15080316 - 13 Aug 2025
Viewed by 156
Abstract
Reliable monitoring of snow cover in mountainous regions remains a challenge due to frequent cloud cover and the revisit limitations of optical satellites. This study compares satellite snow-cover records with >99,000 ground-based time-lapse camera observations across northern Spain (2003–2025). Cloud cover caused major [...] Read more.
Reliable monitoring of snow cover in mountainous regions remains a challenge due to frequent cloud cover and the revisit limitations of optical satellites. This study compares satellite snow-cover records with >99,000 ground-based time-lapse camera observations across northern Spain (2003–2025). Cloud cover caused major data loss, with up to 57% of satellite images affected. Effective revisit intervals (the average time between usable images) diverge substantially from nominal values: 2.3 days for MODIS, 6.9 days for Sentinel-2, and over 21 days for Landsat. A hierarchical multisensor approach with 5-day gap-filling reduced this to just 1.3 days. On dates when cameras confirmed snow, satellites underestimated snow presence by 61.6% (Sentinel-2), 71.5% (Landsat), and 79.7% (MODIS), though gap-filling approaches reduced underestimation to 49.4%—deficits largely attributable to cloud-obscured scenes. When both satellite and camera provided cloud-free observations for the same date and location, classification agreement exceeded 85%. Despite this, satellites consistently failed to detect short-lived snow events and introduced temporal biases. On average, Snow Onset Dates were detected 13–52 days later, and Snow Melt-Out Dates differed by up to 40 days compared to camera-derived records. These results have implications for snow-cover monitoring using satellite images and highlight the need for integrating ground-based observations to compensate for satellite limitations and improve snow cover seasonality assessments in complex terrains. Full article
(This article belongs to the Section Cryosphere)
Show Figures

Figure 1

29 pages, 3331 KiB  
Article
Advanced Delayed Acid System for Stimulation of Ultra-Tight Carbonate Reservoirs: A Field Study on Single-Phase, Polymer-Free Delayed Acid System Performance Under Extreme Sour and High-Temperature Conditions
by Charbel Ramy, Razvan George Ripeanu, Daniel A. Hurtado, Carlos Sirlupu, Salim Nassreddine, Maria Tănase, Elias Youssef Zouein, Alin Diniță, Constantin Cristian Muresan and Ayham Mhanna
Processes 2025, 13(8), 2547; https://doi.org/10.3390/pr13082547 - 12 Aug 2025
Viewed by 302
Abstract
This field study describes the successful implementation and evaluation of a Polymer-free Delayed Acid System, a next-generation acid retarder system that is chemically superior to traditional emulsified acid systems with an amphoteric-based surfactant. It is a polymer-free system that stimulates ultra-tight carbonate reservoirs [...] Read more.
This field study describes the successful implementation and evaluation of a Polymer-free Delayed Acid System, a next-generation acid retarder system that is chemically superior to traditional emulsified acid systems with an amphoteric-based surfactant. It is a polymer-free system that stimulates ultra-tight carbonate reservoirs in extreme sour and high-temperature conditions. The candidate well, located in an onshore gulf region field, for a major oil and gas company demonstrated chronically unstable production behavior for over two years, with test volumes fluctuating unpredictably between 200 and 400 barrels of oil per day. This indicated severe near-wellbore damage, high skin, and limited matrix permeability (<0.3 mD). The well was chosen for a pilot trial of the Polymer-free Delayed Acid System technology after a thorough formation study, which included mineralogical characterization and capillary diagnostics. The innovative acid retarder formulation, designed for deep matrix penetration and controlled acid–rock reaction, uses intrinsic encapsulation kinetics to significantly increase the acid’s reactivity, allowing it to bypass damaged zones, minimize acid leak-off, and initiate dominant wormhole propagation into the tight formation. The stimulation procedure began with a custom pre-flush designed to change nanoscale wettability and interfacial tension, so increasing acid displacement and assuring effective contact with the formation rock. Real-time injectivity testing and operational data collecting were performed prior to, during, and following the acid job, with pre-stimulation injectivity peaking at 1.2 bpm, indicating poor formation conductivity. Treatment with the Polymer-free Delayed Acid System resulted in a 592% increase in post-stimulation injectivity, indicating significant increases in near-wellbore permeability and successful propagation. However, a substantial operational difficulty arose: the well remained shut down for more than two months following the acid stimulation work due to surface infrastructure delays, notably the scheduling and execution of a flowline cleanup campaign. This lengthy closure slowed immediate flowback analysis and impeded direct assessment of treatment performance because production could not be tracked in real time. Despite this, once the surface system was operational and the well was open to flow, a structured production testing program was carried out over four quarterly intervals. The well regularly produced at an average stable rate of 500 bbl/day, more than doubling pre-treatment performance and demonstrating the long-term effectiveness and mechanical durability of the acid-induced wormhole network. Despite the post-job shut-in, the Polymer-free Delayed Acid System maintained the stimulating impact even under non-ideal settings, demonstrating its robustness. The Polymer-free Delayed Acid System outperforms conventional emulsified acid systems, giving better control over acid placement and reactivity, especially under severe reservoir conditions with bottomhole temperatures reaching 200 °F. This project offers a field-proven methodology that combines advanced chemical engineering, formation-specific design, and live diagnostics, as well as a scalable blueprint for unlocking hydrocarbon potential in similarly complicated, low-permeability reservoirs. Full article
(This article belongs to the Special Issue Advanced Technology in Unconventional Resource Development)
Show Figures

Figure 1

16 pages, 242 KiB  
Article
Professionals’ Perceptions on Implementing an Adapted Lifestyle Coaching Program for People with Physical Disabilities
by Elizabeth H. Douma, Trynke Hoekstra, Jesse K. Nijboer, Martin Fluit, Lieneke Vos and Femke Hoekstra
Healthcare 2025, 13(16), 1978; https://doi.org/10.3390/healthcare13161978 - 12 Aug 2025
Viewed by 178
Abstract
Background/Objectives: Evidence-based lifestyle coaching programs have been developed to support people with disabilities in adopting healthy behaviors, and to ultimately contribute to enhancing their overall well-being. However, when implementing such programs in new settings, adaptations may be needed to ensure a successful implementation [...] Read more.
Background/Objectives: Evidence-based lifestyle coaching programs have been developed to support people with disabilities in adopting healthy behaviors, and to ultimately contribute to enhancing their overall well-being. However, when implementing such programs in new settings, adaptations may be needed to ensure a successful implementation process. This study aimed to explore professionals’ perceptions on an adapted evidence-informed lifestyle coaching program (Healthy Habits Coaching) for people with physical disabilities to inform the implementation of the program in Dutch rehabilitation and/or community settings. Methods: A qualitative study with semi-structured interviews was conducted. The study was performed from a pragmatic perspective using an integrated knowledge translation approach. Ten professionals who had experience with offering, delivering, and/or implementing lifestyle coaching programs were enrolled. Interview questions focused on participants’ perceptions on implementing the Healthy Habits Coaching in Dutch settings. A directed content analysis was used to analyze the data. Results: Participants highlighted the importance of implementing lifestyle coaching tailored to people with physical disabilities. While participants were generally positive about the implementation of Healthy Habits Coaching, they had mixed opinions on its added value alongside existing lifestyle programs and on the core components, particularly the free coaching model and the use of volunteer coaches with lived experience. Participants underlined that for a successful adoption and implementation, the added value, (scientific) foundation, financial basis, and organizational structure of the program should be clearly communicated. Conclusions: The findings provide directions for how, where, and by whom an adapted lifestyle program (Healthy Habits Coaching) for people with physical disabilities could be implemented in Dutch rehabilitation and community settings. This study demonstrates an example of how an evidence-based lifestyle program can be prepared for implementation in a new setting, presenting an efficient and promising strategy to enhance overall well-being among people with disabilities. Full article
(This article belongs to the Special Issue Enhancing Physical and Mental Well-Being in People with Disabilities)
22 pages, 4443 KiB  
Article
Integrating Multi-Domain Approach for Identification of Neo Anti-DHPS Inhibitors Against Pathogenic Stenotrophomonas maltophilia
by Alhumaidi Alabbas
Biology 2025, 14(8), 1030; https://doi.org/10.3390/biology14081030 - 11 Aug 2025
Viewed by 239
Abstract
Background: The increasing number of resistant bacterial strains is reducing the effectiveness of antimicrobial drugs in preventing infections. It has been shown that resistant strains invade living organisms and cause a wide range of illnesses, leading to a surprisingly high death rate. Objective: [...] Read more.
Background: The increasing number of resistant bacterial strains is reducing the effectiveness of antimicrobial drugs in preventing infections. It has been shown that resistant strains invade living organisms and cause a wide range of illnesses, leading to a surprisingly high death rate. Objective: The present study aimed to identify novel dihydropteroate synthase (DHPS) inhibitors from Stenotrophomonas maltophilia using structure-based computational techniques. Methodology: This in silico study used various bioinformatics and cheminformatics approaches to find new DHPS inhibitors. It began by retrieving the crystal structure via PDB ID: 7L6P, followed by energy minimization. The DHPS enzyme was virtually screened against the CHEMBL library to target S. maltophilia through enzyme inhibition. Then, absorption, distribution, metabolism, and excretion (ADME) analysis was performed to select the top hits. This process identified the top-10 hits. Additionally, imidazole (control) was used for comparative assessment. Furthermore, a 100 ns molecular dynamics simulation and post-simulation analyses were conducted. The docking results were validated through binding free energy calculations and entropy energy estimation approaches. Results: The docking results prioritized 10 compounds based on their binding scores, with a maximum threshold of −7 kcal/mol for selection. The ADME assessment shortlisted 3 out of 10 compounds: CHEMBL2322256, CHEMBL2316475, and CHEMBL2334441. These compounds satisfied Lipinski’s rule of five and were considered drug-like. The identified inhibitors demonstrated greater stability and less deviation compared to the control (imidazole). The average RMSD stayed below 2 Å, indicating overall stability without major deviations in the DHPS–ligand complexes. Post-simulation analysis assessed the stability and interaction profiles of the complexes under physiological conditions. Hydrogen bonding analysis showed the control to be more stable than the three tested complexes. Increased salt bridge interactions suggested stronger electrostatic stabilization, while less alteration of the protein’s secondary structure indicated better structural compatibility. These findings support the potential of these novel ligands as potent DHPS inhibitors. Binding energy estimates showed that CHEMBL2322256 was the most stable, with scores of −126.49 and −124.49 kcal/mol. Entropy calculations corroborated these results, indicating that CHEMBL2322256 had an estimated entropy of 8.63 kcal/mol. Conclusions: The newly identified compounds showed more promising results compared to the control. While these compounds have potential as innovative drugs, further research is needed to confirm their effectiveness as anti-DHPS agents against antibiotic resistance and S. maltophilia infections. Full article
Show Figures

Figure 1

43 pages, 3268 KiB  
Review
New Approaches and Strategies for the Repurposing of Iron Chelating/Antioxidant Drugs for Diseases of Free Radical Pathology in Medicine
by George J. Kontoghiorghes
Antioxidants 2025, 14(8), 982; https://doi.org/10.3390/antiox14080982 - 10 Aug 2025
Viewed by 287
Abstract
There is an urgent need for new approaches and strategies for the introduction of antioxidant drugs in medicine. Despite hundreds of clinical trials with potential antioxidants, no antioxidant drugs have so far been developed for clinical use; this is mainly as a result [...] Read more.
There is an urgent need for new approaches and strategies for the introduction of antioxidant drugs in medicine. Despite hundreds of clinical trials with potential antioxidants, no antioxidant drugs have so far been developed for clinical use; this is mainly as a result of commercial reasons, but also due to insufficient data for regulatory authority approval. Antioxidant activity is a physiological process essential for healthy living. However, increased production of toxic free radicals and reactive oxygen species is observed in many clinical conditions, which are associated with serious and sometimes irreversible damage. Antioxidant drug strategies may involve short- to long-term therapeutic applications for the purpose of prevention, treatment, or post-treatment effects of a disease. These strategies are different for each disease and may include the design of protocols for the inhibition of oxidative damage through iron chelation, enhancing antioxidant defences by increasing the production of endogenous antioxidants, and activating antioxidant mechanisms, as well as the administration of synthetic and natural antioxidants. Both the improvement of antioxidant biomarkers and clinical improvement or disease remission are required to suggest effective therapeutic intervention. More concerted efforts, including new academic strategies, are required for the development of antioxidant drugs in clinical practice. Such efforts should be similar to the fulfilment of orphan or emergency drug regulatory requirements, which, in most cases, involve the treatment or clinical improvement of rare or severe diseases such as neurodegenerative diseases and cancer. Promising results of antioxidant therapeutic interventions include mainly the repurposing of the iron chelating/antioxidants drugs deferiprone (L1) and deferoxamine, and also the iron-binding drug N-acetylcysteine (NAC). In some clinical trials, the lack of pharmacodynamic and ferrikinetic data, wrong posology, and insufficient monitoring have resulted in inconclusive findings. Future strategies involving appropriate protocols and drug combinations, such as L1 and NAC, appear to improve the prospect of developing antioxidant drug therapies in different diseases, including those associated with ferroptosis. New strategies may also involve the use of pro-drugs such as aspirin, which is partly biotransformed into iron chelating/antioxidant metabolites with chemopreventive properties in cancer, and also in other therapeutic interventions. A consortium of expert academics on regulatory drug affairs and clinical trials could increase the prospects for antioxidant drug development in medicine. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

18 pages, 3002 KiB  
Article
Smart-AMPs: Decorated Nanostructured Lipid Carriers for Improved Efficacy of Antimicrobial Peptides in Chronically Infected Burn Wounds
by Daniela Müller, Laura Nallbati and Cornelia M. Keck
Pharmaceutics 2025, 17(8), 1039; https://doi.org/10.3390/pharmaceutics17081039 - 10 Aug 2025
Viewed by 470
Abstract
Background/Objectives: Burn wound infections present significant clinical challenges due to multidrug-resistant pathogens and the limitations of traditional antimicrobials. While antimicrobial peptides (AMPs) have broad-spectrum effectiveness, their instability in wound environments limits their use. This study compares properties of AMP-decorated nanostructured lipid carriers [...] Read more.
Background/Objectives: Burn wound infections present significant clinical challenges due to multidrug-resistant pathogens and the limitations of traditional antimicrobials. While antimicrobial peptides (AMPs) have broad-spectrum effectiveness, their instability in wound environments limits their use. This study compares properties of AMP-decorated nanostructured lipid carriers (NLCs) to free AMPs, focusing on their dermal penetration, retention, and antimicrobial efficacy in simulated ex vivo burn wound models. Methods: AMP-decorated NLCs (smart-AMPs) were produced by electrostatic and hydrophobic surface adsorption and characterized regarding their size, zeta potential, and physical short-term stability. The distribution of AMPs within the wounds was evaluated using an ex vivo porcine ear model with various wound types. The antimicrobial efficacy was assessed by monitoring the bioluminescence of Aliivibrio fischeri as a live bacterial marker for 24 h. Results: The size and zeta potential measurements confirmed the successful formation of smart-AMPs. The dermal penetration of AMPs was influenced by the type of wound and the type of AMP formulation (free AMPs vs. smart-AMPs). In the chronically infected burn wounds, which were characterized by the formation of a biofilm in a protein-rich wound fluid, the smart-AMPs resulted in a 1.5-fold higher and deeper penetration of the AMPs, and the antimicrobial activity was 6-fold higher compared to the free AMPs. Conclusions: smart-AMPs present an innovative approach for treating chronic, biofilm-associated wounds more efficiently than the current treatment options. Full article
(This article belongs to the Special Issue Advances in Delivery of Peptides and Proteins)
Show Figures

Figure 1

27 pages, 2435 KiB  
Article
Functional Compound Bioaccessibility and Microbial Viability in Green and Black Tea Kombucha During Simulated Digestion
by Gloria Ghion, Jacopo Sica, Sofia Massaro, Armin Tarrah, Tove Gulbrandsen Devold, Davide Porcellato, Alessio Giacomini, Frederico Augusto Ribeiro de Barros, Viviana Corich and Chiara Nadai
Foods 2025, 14(16), 2770; https://doi.org/10.3390/foods14162770 - 9 Aug 2025
Viewed by 454
Abstract
Kombucha, a fermented tea beverage, is gaining popularity due to its rich content of bioactive compounds and associated health benefits. Kombucha fermentation involves a complex microbial consortium, including acetic acid bacteria, lactic acid bacteria, and yeasts, that works synergistically to enhance its nutritional [...] Read more.
Kombucha, a fermented tea beverage, is gaining popularity due to its rich content of bioactive compounds and associated health benefits. Kombucha fermentation involves a complex microbial consortium, including acetic acid bacteria, lactic acid bacteria, and yeasts, that works synergistically to enhance its nutritional and functional properties. Key compounds produced during fermentation provide antioxidant, anti-inflammatory, and antimicrobial benefits. Despite its well-documented health-promoting properties, limited research exists on how human digestion influences the stability and functionality of kombucha bioactive components. This study investigated how digestion impacts kombucha made from green and black teas, focusing on free amino acid content, antioxidant activity, antimicrobial potential, and microbiota viability. Results showed that digestion significantly increased free amino acids, as fermentation released peptides suitable for gastrointestinal digestion. However, L-theanine, a beneficial tea compound, was no longer detectable after fermentation and digestion, suggesting limited bioaccessibility. Digested kombucha exhibited higher antioxidant activity and stronger antimicrobial effects compared to undigested tea. Moreover, culture-dependent and PMA-based sequencing confirmed the survival of viable microbial strains through simulated gastrointestinal conditions, suggesting the potential of kombucha as a source of live, functional microbes. These findings support the role of kombucha as a natural functional beverage whose health benefits not only persist but may be enhanced after digestion. Full article
(This article belongs to the Special Issue Advances on Functional Foods with Antioxidant Bioactivity)
Show Figures

Figure 1

15 pages, 1339 KiB  
Article
Efficacy of Lactobacillus rhamnosus and Its Metabolites to Mitigate the Risk of Foodborne Pathogens in Hydroponic Nutrient Solution
by Esther Oginni, Robin Choudhury and Veerachandra Yemmireddy
Microorganisms 2025, 13(8), 1858; https://doi.org/10.3390/microorganisms13081858 - 8 Aug 2025
Viewed by 163
Abstract
Hydroponic nutrient solution (HNS) has been established as an ideal conduit for pathogen contamination and proliferation. This study evaluated the efficacy of lactic acid bacteria and their metabolites in mitigating the risk of foodborne pathogens in HNS when compared to conventional chemical treatments. [...] Read more.
Hydroponic nutrient solution (HNS) has been established as an ideal conduit for pathogen contamination and proliferation. This study evaluated the efficacy of lactic acid bacteria and their metabolites in mitigating the risk of foodborne pathogens in HNS when compared to conventional chemical treatments. Hoagland’s HNS were prepared according to the manufacturer’s instructions and inoculated with Salmonella Typhimurium, Escherichia coli 0157:H7, and Listeria innocua at 105 CFU/mL cell concentration. These nutrient solutions were subjected to treatment with various concentrations of Lactobacillus rhamnosus live cells, a cell-free extract (CFE) of L. rhamnosus metabolites, sodium hypochlorite and peroxyacetic acid at 22 ± 1 °C for up to 96 h using appropriate controls. The survived cells were enumerated on respective selective media at regular intervals. Additionally, the impact of these treatments on lettuce growth and the physico-chemical properties of HNS, such as pH, electrical conductivity, salinity, total dissolved solids, and % lactic acid content, were determined over 21 days using standard procedures. Both S. Typhimurium and E. coli O157: H7, when in combination with L. rhamnosus, remained stable in HNS over a 96 h period, while L. innocua showed a 3-log reduction. Whereas CFE treatment of HNS showed a significant reduction in Salmonella and E. coli O157: H7 (both undetectable after 96 h; LOD: <1 log CFU/mL). Interestingly, L. innocua levels remained stable after CFE treatment. PAA treatments at 12 mg/L notably reduced Salmonella and L. innocua growth, but not E. coli O157:H7. Lettuce plants in untreated control were significantly taller and heavier compared to those treated with CFE. These findings highlight the potential of biological interventions while emphasizing their limitations in hydroponic systems for pathogen control. Full article
(This article belongs to the Special Issue Feature Papers in Food Microbiology)
Show Figures

Figure 1

10 pages, 1662 KiB  
Article
First Detection and Molecular Identification of Rhabditis (Rhabditella) axei from the Chinese Red Panda (Ailurus styani)
by Chanjuan Yue, Wanjing Yang, Dunwu Qi, Mei Yang, James Edward Ayala, Yanshan Zhou, Chao Chen, Xiaoyan Su, Rong Hou and Songrui Liu
Pathogens 2025, 14(8), 783; https://doi.org/10.3390/pathogens14080783 - 6 Aug 2025
Viewed by 303
Abstract
Rhabditis (Rhabditella) axei is a predominantly free-living nematode commonly found in sewage systems and decomposing organic matter. While primarily saprophytic, it has been documented as an opportunistic pathogen in human urinary and gastrointestinal tracts. The Chinese red panda (Ailurus styani [...] Read more.
Rhabditis (Rhabditella) axei is a predominantly free-living nematode commonly found in sewage systems and decomposing organic matter. While primarily saprophytic, it has been documented as an opportunistic pathogen in human urinary and gastrointestinal tracts. The Chinese red panda (Ailurus styani), a rare and protected species in China, has not previously been reported as a host for Rhabditis (Rhabditella) spp. infections. This study reports the first documented occurrence of R. axei in red panda feces, unambiguously confirmed through integrative taxonomic approaches combining morphological and molecular analyses. The nematodes exhibited key morphological features consistent with R. axei, including a cylindrical rhabditiform esophagus, sexually dimorphic tail structures, and diagnostic spicule morphology. Molecular analysis based on 18S-ITS-28S rDNA sequencing confirmed their identity, showing >99% sequence similarity to R. axei reference strains (GenBank: PP135624.1, PP135622.1). Phylogenetic reconstruction using 18S rDNA and ITS rDNA sequences placed the isolate within a well-supported R. axei clade, clearly distinguishing it from related species such as R. blumi and R. brassicae. The findings demonstrate the ecological plasticity of R. axei as a facultative parasite capable of infecting non-traditional hosts and further highlight potential zoonotic risks associated with environmental exposure in captive wildlife populations. Our results emphasize the indispensable role of molecular diagnostics in accurately distinguishing morphologically similar nematodes within the Rhabditidae family, while providing essential baseline data for health monitoring in both in situ and ex situ conservation programs for this endangered species. Full article
Show Figures

Figure 1

20 pages, 1801 KiB  
Article
Territorially Stratified Modeling for Sustainable Management of Free-Roaming Cat Populations in Spain: A National Approach to Urban and Rural Environmental Planning
by Octavio P. Luzardo, Ruth Manzanares-Fernández, José Ramón Becerra-Carollo and María del Mar Travieso-Aja
Animals 2025, 15(15), 2278; https://doi.org/10.3390/ani15152278 - 4 Aug 2025
Viewed by 1246
Abstract
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering [...] Read more.
This study presents the scientific and methodological foundation of Spain’s first national framework for the ethical management of community cat populations: the Action Plan for the Management of Community Cat Colonies (PACF), launched in 2025 under the mandate of Law 7/2023. This pioneering legislation introduces a standardized, nationwide obligation for trap–neuter–return (TNR)-based management of free-roaming cats, defined as animals living freely, territorially attached, and with limited socialization toward humans. The PACF aims to support municipalities in implementing this mandate through evidence-based strategies that integrate animal welfare, biodiversity protection, and public health objectives. Using standardized data submitted by 1128 municipalities (13.9% of Spain’s total), we estimated a baseline population of 1.81 million community cats distributed across 125,000 colonies. These data were stratified by municipal population size and applied to national census figures to generate a model-ready demographic structure. We then implemented a stochastic simulation using Vortex software to project long-term population dynamics over a 25-year horizon. The model integrated eight demographic–environmental scenarios defined by a combination of urban–rural classification and ecological reproductive potential based on photoperiod and winter temperature. Parameters included reproductive output, mortality, sterilization coverage, abandonment and adoption rates, stochastic catastrophic events, and territorial carrying capacity. Under current sterilization rates (~20%), our projections indicate that Spain’s community cat population could surpass 5 million individuals by 2050, saturating ecological and social thresholds within a decade. In contrast, a differentiated sterilization strategy aligned with territorial reproductive intensity (50% in most areas, 60–70% in high-pressure zones) achieves population stabilization by 2030 at approximately 1.5 million cats, followed by a gradual long-term decline. This scenario prioritizes feasibility while substantially reducing reproductive output, particularly in rural and high-intensity contexts. The PACF combines stratified demographic modeling with spatial sensitivity, offering a flexible framework adaptable to local conditions. It incorporates One Health principles and introduces tools for adaptive management, including digital monitoring platforms and standardized welfare protocols. While ecological impacts were not directly assessed, the proposed demographic stabilization is designed to mitigate population-driven risks to biodiversity and public health without relying on lethal control. By integrating legal mandates, stratified modeling, and realistic intervention goals, this study outlines a replicable and scalable framework for coordinated action across administrative levels. It exemplifies how national policy can be operationalized through data-driven, territorially sensitive planning tools. The findings support the strategic deployment of TNR-based programs across diverse municipal contexts, providing a model for other countries seeking to align animal welfare policy with ecological planning under a multi-level governance perspective. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

21 pages, 1147 KiB  
Review
Recent Advances in Developing Cell-Free Protein Synthesis Biosensors for Medical Diagnostics and Environmental Monitoring
by Tyler P. Green, Joseph P. Talley and Bradley C. Bundy
Biosensors 2025, 15(8), 499; https://doi.org/10.3390/bios15080499 - 3 Aug 2025
Viewed by 541
Abstract
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, [...] Read more.
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, pathogens, and clinical biomarkers with high sensitivity and specificity. We analyze technological innovations in cell-free protein synthesis optimization, preservation strategies, and field deployment methods that have enhanced sensitivity, and practical applicability. The integration of synthetic biology approaches has enabled complex signal processing, multiplexed detection, and novel sensor designs including riboswitches, split reporter systems, and metabolic sensing modules. Emerging materials such as supported lipid bilayers, hydrogels, and artificial cells are expanding biosensor capabilities through microcompartmentalization and electronic integration. Despite significant progress, challenges remain in standardization, sample interference mitigation, and cost reduction. Future opportunities include smartphone integration, enhanced preservation methods, and hybrid sensing platforms. Cell-free biosensors hold particular promise for point-of-care diagnostics in resource-limited settings, environmental monitoring applications, and food safety testing, representing essential tools for addressing global challenges in healthcare, environmental protection, and biosecurity. Full article
Show Figures

Figure 1

Back to TopTop