Dietary Supplementation with L-Citrulline Between Days 1 and 60 of Gestation Enhances Embryonic Survival in Lactating Beef Cows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Analyses of Hormones in Serum and of Metabolites in Plasma
2.3. Statistical Analysis
3. Results
3.1. Maternal Variables, Embryonic Survival, and Gestation Length
3.2. Concentrations of Hormones and Metabolites in Maternal Serum or Plasma
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bazer, F.W.; Johnson, G.A.; Wu, G. Amino acids and conceptus development during the peri-implantation period of pregnancy. Adv. Exp. Med. Biol. 2015, 843, 23–52. [Google Scholar] [PubMed]
- Lamb, G.C.; Mercadante, V.R. Synchronization and artificial insemination strategies in beef cattle. Vet. Clin. N. Am. Food Anim. Pract. 2016, 32, 335–347. [Google Scholar] [CrossRef]
- Maurer, R.R.; Chenault, J.R. Fertilization failure and embryonic mortality in parous and nonparous beef cattle. J. Anim. Sci. 1983, 56, 1183–1189. [Google Scholar] [CrossRef]
- Santos, J.E.; Thatcher, W.W.; Chebel, R.C.; Cerri, R.L.; Galvão, K.N. The effect of embryonic death rates in cattle on the efficacy of estrus synchronization programs. Anim. Reprod. Sci. 2004, 82–83, 513–535. [Google Scholar] [CrossRef] [PubMed]
- Thatcher, W.W.; Guzeloglu, A.; Mattos, R.; Binelli, M.; Hansen, T.R.; Pru, J.K. Uterine-conceptus interactions and reproductive failure in cattle. Theriogenology 2001, 56, 1435–1450. [Google Scholar] [CrossRef]
- Moraes, J.G.N.; Behura, S.K.; Geary, T.W.; Hansen, P.J.; Neibergs, H.L.; Spencer, T.E. Uterine influences on conceptus development in fertility-classified animals. Proc. Natl. Acad. Sci. USA 2018, 115, E1749–E1758. [Google Scholar] [CrossRef]
- Diskin, M.G.; Parr, M.H.; Morris, D.G. Embryo death in cattle: An update. Reprod. Fertil. Dev. 2011, 24, 244–251. [Google Scholar] [CrossRef]
- Lassala, A.; Bazer, F.W.; Cudd, T.A.; Datta, S.; Keisler, D.H.; Satterfield, M.C.; Spencer, T.E.; Wu, G. Parenteral administration of L-arginine enhances fetal survival and growth in sheep carrying multiple pregnancies. J. Nutr. 2011, 141, 849–855. [Google Scholar] [CrossRef]
- Satterfield, M.C.; Dunlap, K.A.; Keisler, D.H.; Bazer, F.W.; Wu, G. Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 2013, 45, 489–499. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Satterfield, M.C.; Li, X.L.; Wang, X.Q.; Johnson, G.A.; Burghardt, R.C.; Dai, Z.L.; Wang, J.J.; Wu, Z.L. Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 2013, 45, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Bazer, F.W.; Johnson, G.A.; Herring, C.; Seo, H.; Dai, Z.L.; Wang, J.J.; Wu, Z.L.; Wang, X.L. Functional amino acids in the development of the pig placenta. Mol. Reprod. Dev. 2017, 84, 879–882. [Google Scholar] [CrossRef]
- Hsu, C.N.; Tain, Y.L. Impact of arginine nutrition and metabolism during pregnancy on offspring outcomes. Nutrients 2019, 11, 1452. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gong, X.; Chen, P.; Luo, K.; Zhang, X. Effect of L-arginine and sildenafil citrate on intrauterine growth restriction fetuses: A meta-analysis. BMC Pregnancy Childbirth 2016, 16, 225. [Google Scholar] [CrossRef]
- Mateo, R.D.; Wu, G.; Bazer, F.W.; Park, J.C.; Shinzato, I.; Kim, S.W. Dietary L-arginine supplementation enhances the reproductive performance of gilts. J. Nutr. 2007, 137, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Wang, F.; Fan, X.; Yang, W.; Zhou, B.; Li, P.; Yin, Y.; Wu, G.; Wang, J. Dietary arginine supplementation during early pregnancy enhances embryonic survival in rats. J. Nutr. 2008, 138, 1421–1425. [Google Scholar] [CrossRef]
- Khalil, A.; Hardman, L.; Brien, P.O. The role of arginine, homoarginine and nitric oxide in pregnancy. Amino Acids 2015, 47, 1715–1727. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, P.L.; Palin, M.F.; Murphy, B.D. Polyamines on the reproductive landscape. Endocr. Rev. 2011, 32, 694–712. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Satterfield, M.C.; Gilbreath, K.R.; Posey, E.A.; Sun, Y.X. L-Arginine nutrition and metabolism in ruminants. Adv. Exp. Med. Biol. 2022, 1354, 177–206. [Google Scholar]
- Kim, J.Y.; Burghardt, R.C.; Wu, G.; Johnson, G.A.; Spencer, T.E.; Bazer, F.W. Select nutrients in the ovine uterine lumen: VIII. Arginine stimulates proliferation of ovine trophectoderm cells through mTOR-RPS6K-RPS6 signaling cascade and synthesis of nitric oxide and polyamines. Biol. Reprod. 2011, 84, 70–78. [Google Scholar] [CrossRef]
- Kong, X.F.; Tan, B.E.; Yin, Y.L.; Gao, H.J.; Li, X.L.; Jaeger, L.A.; Bazer, F.W.; Wu, G. L-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J. Nutr. Biochem. 2012, 23, 1178–1183. [Google Scholar] [CrossRef]
- Kong, X.F.; Wang, X.Q.; Yin, Y.L.; Li, X.L.; Gao, H.J.; Bazer, F.W.; Wu, G. Putrescine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. Biol. Reprod. 2014, 91, 106. [Google Scholar] [CrossRef]
- Zullino, S.; Buzzella, F.; Simoncini, T. Nitric oxide and the biology of pregnancy. Vasc. Pharmacol. 2018, 110, 71–74. [Google Scholar] [CrossRef]
- Igarashi, K.; Kashiwagi, K. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 2010, 42, 39–51. [Google Scholar] [CrossRef]
- Ban, H.; Shigemitsu, K.; Yamatsuji, T.; Haisa, M.; Nakajo, T.; Takaoka, M.; Nobuhisa, T.; Gunduz, M.; Tanaka, N.; Naomoto, Y. Arginine and leucine regulate p70 S6 kinase and 4E-BP1 in intestinal epithelial cells. Int. J. Mol. Med. 2004, 13, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Burghardt, R.C.; Wu, G.; Johnson, G.A.; Spencer, T.E.; Bazer, F.W. Select nutrients in the ovine uterine lumen: IX. Differential effects of arginine, leucine, glutamine and glucose on interferon tau, orinithine decarboxylase and nitric oxide synthase in the ovine conceptus. Biol. Reprod. 2011, 84, 1139–1147. [Google Scholar] [CrossRef]
- Bergen, W.G. Amino acids in beef cattle nutrition and production. Adv. Exp. Med. Biol. 2021, 1285, 29–42. [Google Scholar]
- Schwab, C.G.; Satter, L.D.; Clay, A.B. Response of lactating dairy cows to abomasal infusion of amino acids. J. Dairy Sci. 1976, 59, 1254. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Comstock Publishing Associates: Ithaca, NY, USA, 1994. [Google Scholar]
- Gilbreath, K.R.; Bazer, F.W.; Satterfield, M.C.; Wu, G. Amino acid nutrition and reproductive performance in ruminants. Adv. Exp. Med. Biol. 2021, 1285, 43–61. [Google Scholar] [PubMed]
- Kirchgessner, M.; Maierhofer, R.; Schwarz, F.J.; Eidelsburger, U. Effect of feeding protected arginine on food intake, milk yield and growth hormone and amino acid levels in blood plasma of cows during the summer feeding period with grass. Arch. Tierernahr. 1993, 45, 57–69. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, F.; Nie, H.; Ma, T.; Wang, Z.; Wang, F.; Loor, J.J. Dietary N-carbamylglutamate and rumen-protected L-arginine supplementation during intrauterine growth restriction in undernourished ewes improve fetal thymus development and immune function. Reprod. Fert. Dev. 2018, 30, 1522–1531. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, A.; Guo, S.; Wang, M.; Loor, J.J.; Wang, H. Dietary N-carbamylglutamate and L-arginine supplementation improves intestinal energy status in intrauterine-growth-retarded suckling lambs. Food Funct. 2019, 10, 1903–1914. [Google Scholar] [CrossRef]
- Meyer, A.M.; Klein, S.I.; Kapphahn, M.; Dhuyvetter, D.V.; Musser, R.E.; Caton, J.S. Effects of rumen-protected arginine supplementation and arginine-HCl injection on site and extent of digestion and small intestinal amino acid disappearance in forage-fed steers. Transl. Anim. Sci. 2018, 2, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Peine, J.L.; Jia, G.Q.; Van Emon, M.L.; Neville, T.L.; Kirsch, J.D.; Hammer, C.J.; O’Rourke, S.T.; Reynolds, L.P.; Caton, J.S. Effects of maternal nutrition and rumen-protected arginine supplementation on ewe performance and postnatal lamb growth and internal organ mass. J. Anim. Sci. 2018, 96, 3471–3481. [Google Scholar] [CrossRef]
- Saevre, C.B.; Caton, J.S.; Luther, J.S.; Meyer, A.M.; Dhuyvetter, D.V.; Musser, R.E.; Kirsch, J.D.; Kapphahn, M.; Redmer, D.A.; Schauer, C.S. Effects of rumen-protected arginine supplementation on ewe serum-amino-acid concentration, circulating progesterone, and ovarian blood flow. Sheep Goats Res. J. 2011, 26, 8–12. [Google Scholar]
- Teixeira, P.D.; Tekippe, J.A.; Rodrigues, L.M.; Ladeira, M.M.; Pukrop, J.R.; Kim, Y.H.B.; Schoonmaker, J.P. Effect of ruminally protected arginine and lysine supplementation on serum amino acids, performance and carcass traits of feedlot steers. J. Anim. Sci. 2019, 97, 3511–3522. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, L.W.; Wang, Z.Y.; Deng, M.T.; Zhang, G.M.; Guo, R.H.; Ma, T.W.; Wang, F. Dietary N-carbamylglutamate and rumen-protected L-arginine supplementation ameliorate fetal growth restriction in undernourished ewes. J. Anim. Sci. 2016, 94, 2072–2085. [Google Scholar] [CrossRef] [PubMed]
- McCoard, S.; Sales, F.; Wards, N.; Sciascia, Q.; Oliver, M.; Koolaard, J.; van der Linden, D. Parenteral administration of twin-bearing ewes with L-arginine enhances the birth weight and brown fat stores in sheep. SpringerPlus 2013, 2, 684. [Google Scholar] [CrossRef]
- McCoardA, S.; Wards, N.; Koolaard, J.; Salerno, M.S. The effect of maternal arginine supplementation on the development of the thermogenic program in the ovine fetus. Anim. Prod. Sci. 2014, 54, 1843–1847. [Google Scholar] [CrossRef]
- McCoard, S.A.; Sales, F.Z.; Sciascia, Q.L. Amino acids in sheep production. Front. Biosci. 2016, E8, 264–288. [Google Scholar] [CrossRef]
- Recabarren, S.E.; Jofré, A.; Lobos, A.; Orellana, P.; Parilo, J. Effect of arginine and ornithine infusions on luteinizing hormone secretion in prepubertal ewes. J. Anim. Sci. 1996, 74, 162–166. [Google Scholar] [CrossRef]
- Sales, F.; Sciascia, Q.; van der Linden, D.S.; Wards, N.J.; Oliver, M.H.; McCoard, S.A. Intravenous maternal arginine administration to twin-bearing ewes, during late pregnancy, is associated with increased fetal muscle mTOR abundance and postnatal growth in twin female lambs. J. Anim. Sci. 2016, 94, 2519–2531. [Google Scholar] [CrossRef]
- Sciascia, Q.L.; van der Linden, D.S.; Sales, F.A.; Wards, N.J.; Blair, H.T.; Pacheco, D.; Oliver, M.H.; McCoard, S.A. Parenteral administration of L-arginine to twin-bearing Romney ewes during late pregnancy is associated with reduced milk somatic cell count during early lactation. J. Dairy Sci. 2019, 102, 3071–3081. [Google Scholar] [CrossRef]
- De Boo, H.A.; van Zijl, P.L.; Smith, D.E.; Kulik, W.; Lafeber, H.N.; Harding, J.E. Arginine and mixed amino acids increase protein accretion in the growth-restricted and normal ovine fetus by different mechanisms. Pediatr. Res. 2005, 58, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Dhanakoti, S.N.; Brosnan, M.E.; Herzberg, G.R.; Brosnan, J.T. Cellular and subcellular localization of enzymes of arginine metabolism in rat kidney. Biochem. J. 1992, 282, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Dhanakoti, S.N.; Brosnan, J.T.; Herzberg, G.R.; Brosnan, M.E. Renal arginine synthesis: Studies in vitro and in vivo. Am. J. Physiol. 1990, 259, E437–E442. [Google Scholar] [CrossRef]
- Levillain, O.; Hus-Citharel, A.; Morel, F.; Bankir, L. Localization of arginine synthesis along rat nephron. Am. J. Physiol. 1990, 259, F916–F923. [Google Scholar] [CrossRef]
- Mori, M. Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J. Nutr. 2007, 137, 1616S–1620S. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.M., Jr. Regulation of enzymes of the urea cycle and arginine metabolism. Annu. Rev. Nutr. 2002, 22, 87–105. [Google Scholar] [CrossRef]
- Durante, W. Amino acids in circulatory function and health. Adv. Exp. Med. Biol. 2020, 1265, 39–56. [Google Scholar] [PubMed]
- Morris, S.M., Jr. Arginine: Beyond protein. Am. J. Clin. Nutr. 2006, 83, 508S–512S. [Google Scholar] [CrossRef]
- Wu, G.; Morris, S.M., Jr. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 1998, 336, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Lassala, A.; Bazer, F.W.; Cudd, T.A.; Li, P.; Li, X.L.; Satterfield, M.C.; Spencer, T.E.; Wu, G. Intravenous administration of L-citrulline to pregnant ewes is more effective than L-arginine for increasing arginine availability in the fetus. J. Nutr. 2009, 139, 660–665. [Google Scholar] [CrossRef]
- Bergman, E.N.; Heitmann, R.N. Metabolism of amino acids by the gut, liver, kidneys, and peripheral tissues. Fed. Proc. 1978, 37, 1228–1232. [Google Scholar]
- Bergman, E.N.; Kaufman, C.F.; Wolff, J.E.; Williams, H.H. Renal metabolism of amino acids and ammonia in fed and fasted pregnant sheep. Am. J. Physiol. 1974, 226, 833–837. [Google Scholar] [CrossRef]
- Gilbreath, K.R.; Nawaratna, G.I.; Wickersham, T.A.; Satterfield, M.C.; Bazer, F.W.; Wu, G. Ruminal microbes of adult steers do not degrade extracellular L-citrulline and have a limited ability to metabolize extra-cellular L-glutamate. J. Anim. Sci. 2019, 97, 3611–3616. [Google Scholar] [CrossRef]
- Gilbreath, K.R.; Nawaratna, G.I.; Wickersham, T.A.; Satterfield, M.C.; Bazer, F.W.; Wu, G. Metabolic studies reveal that ruminal microbes of adult steers do not degrade rumen-protected or unprotected L-citrulline. J. Anim. Sci. 2020, 98, skz370. [Google Scholar] [CrossRef]
- Gilbreath, K.R.; Bazer, F.W.; Satterfield, M.C.; Cleere, J.J.; Wu, G. Ruminal microbes of adult sheep do not degrade extracellular L-citrulline. J. Anim. Sci. 2020, 98, skaa164. [Google Scholar] [CrossRef] [PubMed]
- Greene, M.A.; Whitlock, B.K.; Edwards, J.L.; Scholljegerdes, E.J.; Mulliniks, J.T. Rumen-protected arginine alters blood flow parameters and luteinizing hormone concentration in cyclic beef cows consuming toxic endophyte-infected tall fescue seed. J. Anim. Sci. 2017, 95, 1537–1544. [Google Scholar] [CrossRef]
- Greene, M.A.; Klotz, J.L.; Goodman, J.P.; May, J.B.; Harlow, B.E.; Baldwin, W.S.; Strickland, J.R.; Britt, J.L.; Schrick, F.N.; Duckett, S.K. Evaluation of oral citrulline administration as a mitigation strategy for fescue toxicosis in sheep. Transl. Anim. Sci. 2020, 4, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhao, G.; Wang, C.; An, M.; Ma, C.; Liu, Z.; Wang, J.; Yang, K. Effects of supplementation with different concentrations of L-citrulline on the plasma amino acid concentration, reproductive hormone concentrations, antioxidant capacity, and reproductive performance of Hu ewes. Anim. Prod. Sci. 2023, 63, 853–861. [Google Scholar] [CrossRef]
- McCarthy, N.; Brougham, B.J.; Swinbourne, A.M.; Weaver, A.C.; Kelly, J.M.; Gatford, K.L.; Kleemann, D.O.; van Wettere, W.H.E.L. Maternal oral supplementation with citrulline increases plasma citrulline but not arginine in pregnant Merino ewes and neonatal lambs. Anim. Prod. Sci. 2022, 62, 521–528. [Google Scholar] [CrossRef]
- Zhao, G.; Zhao, X.; Song, Y.; Haire, A.; Dilixiati, A.; Liu, Z.; Zhao, S.; Aihemaiti, A.; Wusiman, A. Effect of L-citrulline supplementation on sperm characteristics and hormonal and antioxidant levels in blood and seminal plasma of rams. Reprod. Domest. Anim. 2022, 57, 722–733. [Google Scholar] [CrossRef]
- Fan, C.; Aihemaiti, A.; Fan, A.; Dilixiati, A.; Zhao, X.; Li, Z.; Chen, C.; Zhao, G. Study on the correlation of supplementation with L-citrulline on the gastrointestinal flora and semen antifreeze performance of ram. Front. Microbiol. 2024, 15, 1396796. [Google Scholar] [CrossRef]
- Kott, M.L.; Pancini, S.; Speckhart, S.L.; Kimble, L.N.; White, R.R.; Stewart, J.L.; Johnson, S.E.; Ealy, A.D. Effects of mid-gestational L-citrulline supplementation to twin-bearing ewes on umbilical blood flow, placental development, and lamb production traits. Transl. Anim. Sci. 2021, 5, txab102. [Google Scholar] [CrossRef]
- Lopez, A.N.; Newton, M.G.; Stenhouse, C.; Connolly, E.; Hissen, K.L.; Horner, S.; Wu, G.; Foxworth, W.; Bazer, F.W. Dietary citrulline supplementation enhances milk production in lactating dairy goats. J. Anim. Sci. Biotechnol. 2025, 16, 51. [Google Scholar] [CrossRef]
- Newton, M.G.; Lopez, A.N.; Stenhouse, C.; Hissen, K.L.; Connolly, E.D.; Li, X.C.; Zhou, L.; Wu, G.; Foxworth, W.B.; Bazer, F.W. Impact of dietary supplementation of L-citrulline to meat goats during gestation on reproductive performance. J. Anim. Sci. Biotechnol. 2025, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Keith, A.B.; Satterfield, M.C.; Bazer, F.W.; Wu, G. Dietary supplementation with a rumen-protected L-arginine product enhances milk production by dairy cows. J. Dairy Sci. 2018, 101 (Suppl. 2), 408. [Google Scholar]
- Dahlen, C.; Larson, J.; Lamb, G.C. Impacts of reproductive technologies on beef production in the United States. Adv. Exp. Med. Biol. 2014, 752, 97–114. [Google Scholar] [PubMed]
- Thomas, J.; Bailey, E. Body Condition Scoring of Beef Cattle; University of Missouri Extension: Columbia, MO, USA, 2021. [Google Scholar]
- Williams, S.W.; Stanko, R.L.; Amstalden, M.; Williams, G.L. Comparison of three approaches for synchronization of ovulation for timed artificial insemination in Bos indicus-influenced cattle managed on the Texas gulf coast. J. Anim. Sci. 2002, 80, 1173–1178. [Google Scholar] [CrossRef]
- Robinson, P.H. Dried Corn Distillers Grains in Dairy Cattle Feeding. Part 2—Nutrient Profiles, Variability and Key Impacts on Cattle; University of California Cooperative Extension: Davis, CA, USA, 2013; pp. 1–6. [Google Scholar]
- Hoffmann, A.; Berça, A.S.; Cardoso, A.D.S.; Fonseca, N.V.B.; Silva, M.L.C.; Leite, R.G.; Ruggieri, A.C.; Reis, R.A. Does the Effect of Replacing Cottonseed Meal with Dried Distiller’s Grains on Nellore Bulls Finishing Phase Vary between Pasture and Feedlot? Animals 2021, 11, 85. [Google Scholar] [CrossRef]
- Perry, G.; Cushman, R. Use of ultrasonography to make reproductive management decisions. Prof. Anim. Sci. 2016, 32, 154–161. [Google Scholar] [CrossRef]
- Long, D.W.; Long, B.D.; Nawaratna, G.I.; Wu, G. Oral Administration of L-arginine improves the growth and survival of sow-reared intrauterine growth-restricted piglets. Animals 2025, 15, 550. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Bahri, S.; Zerrouk, N.; Aussel, C.; Moinard, C.; Crenn, P.; Curis, E.; Chaumeil, J.C.; Cynober, L.; Sfar, S. Citrulline: From metabolism to therapeutic use. Nutrition 2013, 29, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Curis, E.; Nicolis, I.; Moinard, C.; Osowska, S.; Zerrouk, N.; Benazeth, S.; Cynober, L. Almost all about citrulline in mammals. Amino Acids 2005, 29, 177–205. [Google Scholar] [CrossRef] [PubMed]
- Rabier, D.; Kamoun, P. Metabolism of citrulline in man. Amino Acids 1995, 9, 299–316. [Google Scholar] [CrossRef]
- Morris, S.M., Jr. Recent advances in arginine metabolism: Roles and regulation of the arginases. Br. J. Pharmacol. 2009, 157, 922–930. [Google Scholar] [CrossRef] [PubMed]
- Kvidera, S.K.; Mayorga, E.J.; McCarthy, C.S.; Horst, E.A.; Abeyta, M.A.; Baumgard, L.H. Effects of supplemental citrulline on thermal and intestinal morphology parameters during heat stress and feed restriction in growing pigs. J. Anim. Sci. 2024, 102, skae120. [Google Scholar] [CrossRef]
- Blachier, F.; Boutry, C.; Bos, C.; Tomé, D. Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines. Am. J. Clin. Nutr. 2009, 90, 814S–821S. [Google Scholar] [CrossRef]
- Cao, Y.; Yao, J.; Sun, X.; Liu, S.; Martin, G.B. Amino acids in the nutrition and production of sheep and goats. Adv. Exp. Med. Biol. 2021, 1285, 63–79. [Google Scholar]
- Gao, H. Amino acids in reproductive nutrition and health. Adv. Exp. Med. Biol. 2020, 1265, 111–131. [Google Scholar]
- Windmueller, H.G.; Spaeth, A.E. Source and fate of circulating citrulline. Am. J. Physiol. 1981, 241, E473–E480. [Google Scholar] [CrossRef]
- Peine, J.L.; Neville, T.L.; Klinkner, E.E.; Egeland, K.E.; Borowicz, P.P.; Meyer, A.M.; Reynolds, L.P.; Caton, J.S. Rumen-protected arginine in ewe lambs: Effects on circulating serum amino acids and carotid artery hemodynamics. J. Anim. Sci. 2020, 98, skaa196. [Google Scholar] [CrossRef] [PubMed]
- De Chávez, J.A.R.; Guzmán, A.; Zamora-Gutiérrez, D.; Mendoza, G.D.; Melgoza, L.M.; Montes, S.; Rosales-Torres, A.M. Supplementation with rumen-protected L-arginine-HCl increased fertility in sheep with synchronized estrus. Trop. Anim. Health Prod. 2015, 47, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Zeitoun, M.; Al-Ghoneim, A.; Al-Sobayil, K.; Al-Dobaib, S. L-Arginine modulates maternal hormonal profiles and neonatal traits during two stages of pregnancy in sheep. Open J. Anim. Sci. 2016, 6, 95–104. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, H.; Wang, Z.; Fan, Y.; Guo, Y.; Wang, F. Dietary rumen-protected arginine and N-carbamylglutamate supplementation enhances fetal growth in underfed ewes. Reprod. Fertil. Dev. 2018, 30, 1116–1127. [Google Scholar] [CrossRef]
- Bourdon, A.; Hannigsberg, J.; Misbert, E.; Tran, T.N.; Amarger, V.; Ferchaud-Roucher, V.; Winer, N.; Darmaun, D. Maternal supplementation with citrulline or arginine during gestation impacts fetal amino acid availability in a model of intrauterine growth restriction (IUGR). Clin. Nutr. 2020, 39, 3736–3743. [Google Scholar] [CrossRef]
- Lopez-Garcia, C.; Lopez-Contreras, A.J.; Cremades, A.; Castells, M.T.; Marin, F.; Schreiber, F.; Penafiel, R. Molecular and morphological changes in placenta and embryo development associated with the inhibition of polyamine synthesis during midpregnancy in mice. Endocrinology 2008, 149, 5012–5023. [Google Scholar] [CrossRef]
- Baharom, S.; De Matteo, R.; Ellery, S.; Gatta, P.D.; Bruce, C.R.; Kowalski, G.M.; Hale1, N.; Dickinson, H.; Harding, R.; Walker, D.; et al. Does maternal-fetal transfer of creatine occur in pregnant sheep? Am. J. Physiol. 2017, 313, E75–E83. [Google Scholar] [CrossRef]
- Wyatt, A.W.; Steinert, J.R.; Mann, G.E. Modulation of the L-arginine/nitric oxide signaling pathway in vascular endothelial cells. Biochem. Soc. Symp. 2004, 71, 143–156. [Google Scholar]
- Nakata, M.; Yada, T. Nitric oxide-mediated insulin secretion in response to citrulline in islet beta-cells. Pancreas 2003, 27, 209–213. [Google Scholar] [CrossRef]
- Husson, A.; Brasse Lagnel, C.; Fairand, A.; Renouf, S.; Lavoinne, A. Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. Eur. J. Biochem. 2003, 270, 1887–1899. [Google Scholar] [CrossRef]
- Weckman, A.M.; McDonald, C.R.; Baxter, J.B.; Fawzi, W.W.; Conroy, A.L.; Kain, K.C. Perspective: L-arginine and L-citrulline supplementation in pregnancy: A potential strategy to improve birth outcomes in low-resource settings. Adv. Nutr. 2019, 10, 765–777. [Google Scholar] [CrossRef]
- Pendeville, H.; Carpino, N.; Marine, J.C.; Takahashi, Y.; Muller, M.; Martial, J.A.; Cleveland, J.L. The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol. Cell Biol. 2001, 21, 6549–6558. [Google Scholar] [CrossRef]
- Sooranna, S.R.; Das, I. The inter-relationship between polyamines and the L-arginine nitric oxide pathway in the human placenta. Biochem. Biophys. Res. Commun. 1995, 212, 229–234. [Google Scholar] [CrossRef]
- Man, A.W.C.; Steetskamp, J.; van der Ven, J.; Reifenberg, G.; Hasenburg, A.; Daiber, A.; Xia, N.; Li, H. L-Citrulline improves IGF-I signaling pathway in preeclampsia via polyamines. Hypertension 2025, 82, 1303–1315. [Google Scholar] [CrossRef]
- Tain, Y.L.; Huang, L.T.; Lee, C.T.; Chan, J.Y.; Hsu, C.N. Maternal citrulline supplementation prevents prenatal NG-nitro-l-arginine-methyl ester (L-NAME)-induced programmed hypertension in rats. Biol. Reprod. 2015, 92, 7. [Google Scholar] [CrossRef]
- Tran, N.; Amarger, V.; Bourdon, A.; Misbert, E.; Grit, I.; Winer, N.; Darmaun, D. Maternal citrulline supplementation enhances placental function and fetal growth in a rat model of IUGR: Involvement of insulin-like growth factor 2 and angiogenic factors. J. Matern. Fetal Neonatal Med. 2017, 30, 1906–1911. [Google Scholar] [CrossRef]
- Tain, Y.L.; Sheen, J.M.; Chen, C.C.; Yu, H.R.; Tiao, M.M.; Kuo, H.C.; Huang, L.T. Maternal citrulline supplementation prevents prenatal dexamethasone-induced programmed hypertension. Free Radic. Res. 2014, 48, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Koeners, M.P.; van Faassen, E.E.; Wesseling, S.; Velden, M.S.; Koomans, H.A.; Braam, B.; Joles, J.A. Maternal supplementation with citrulline increases renal nitric oxide in young spontaneously hypertensive rats and has long-term antihypertensive effects. Hypertension 2007, 50, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Tain, Y.L.; Hsieh, C.S.; Lin, I.C.; Chen, C.C.; Sheen, J.M.; Huang, L.T. Effects of maternal L-citrulline supplementation on renal function and blood pressure in offspring exposed to maternal caloric restriction: The impact of nitric oxide pathway. Nitric Oxide 2010, 23, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Bourdon, A.; Parnet, P.; Nowak, C.; Tran, N.; Winer, N.; Darmaun, D. L-Citrulline supplementation enhances fetal growth and protein synthesis in rats with intrauterine growth restriction. J. Nutr. 2016, 146, 532–541. [Google Scholar] [CrossRef]
- Li, X.L.; Bazer, F.W.; Johnson, G.A.; Burghardt, R.C.; Wu, G. Dietary supplementation with L-citrulline improves placental angiogenesis and embryonic survival in gilts. Exp. Biol. Med. 2023, 248, 702–711. [Google Scholar] [CrossRef]
- Herring, A.B. Maternal Dietary Citrulline Supplementation Increases Fetal Growth and Programs Postnatal Pancreatic Development in Lambs. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2025. [Google Scholar]
- Looney, C.R.; Nelson, J.S.; Schneider, H.J.; Forrest, D.W. Improving fertility in beef cow recipients. Theriogenology 2006, 65, 201–209. [Google Scholar] [CrossRef]
- Stewart, B.M.; Block, J.; Morelli, P.; Navarette, A.E.; Amstalden, M.; Bonilla, L.; Hansen, P.J.; Bilby, T.R. Efficacy of embryo transfer in lactating dairy cows during summer using fresh or vitrified embryos produced in vitro with sex-sorted semen. J. Dairy Sci. 2011, 94, 3437–3445. [Google Scholar] [CrossRef]
- Luther, J.S.; Redmer, D.A.; Reynolds, L.P.; Wallace, J.M. Nutritional paradigms of ovine fetal growth restriction: Implications for human pregnancy. Hum. Fertil. 2005, 8, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Amundson, J.L.; Mader, T.L.; Rasby, R.J.; Hu, Q.S. Environmental effects on pregnancy rate in beef cattle. J. Anim. Sci. 2006, 84, 3415–3420. [Google Scholar] [CrossRef] [PubMed]
- Hansen, P.J. Physiological and cellular adaptations of zebu cattle to thermal stress. Anim Reprod. Sci. 2004, 82–83, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Herring, A.D. Beef Cattle Production Systems; CABI: Wallingford, Oxon, UK, 2014. [Google Scholar]
- Eversole, D.E.; Browne, M.F.; Hall, J.B.; Dietz, R.E. Body Condition Scoring Beef Cattle; Virginia Tech Extension: Blacksburg, VA, USA, 2009. [Google Scholar]
- Herd, D.B.; Sprott, L.R. Body Condition, Nutrition and Reproduction of Beef Cows; Texas Agricultural Extension Service, Publication No, B-1526; Texas A&M University: College Station, TX, USA, 1986. [Google Scholar]
- Sprott, L.R.; Selk, G.E.; Adams, D.C. Factors affecting decisions on when to calve beef females. Prof. Anim. Sci. 2001, 17, 238–246. [Google Scholar] [CrossRef]
- Atkins, J.A.; Smith, M.F.; MacNeil, M.D.; Jinks, E.M.; Abreu, F.M.; Alexander, L.J.; Geary, T.W. Pregnancy establishment and maintenance in cattle. J. Anim. Sci 2013, 91, 722–733. [Google Scholar] [CrossRef]
- Perry, G.A.; Smith, M.F.; Lucy, M.C.; Green, J.A.; Parks, T.E.; MacNeil, M.D.; Roberts, A.J.; Geary, T.W. Relationship between follicle size at insemination and pregnancy success. Proc. Natl. Acad. Sci. USA 2005, 102, 5268–5273. [Google Scholar] [CrossRef]
- Consentini, C.E.C.; Alves, R.L.O.R.; Silva, M.A.; Galindez, J.P.A.; Madureira, G.; Lima, L.G.; Gonçalves, J.R.S.; Milo, C.; Wiltbank, M.C.; Sartori, R. What are the factors associated with pregnancy loss after timed-artificial insemination in Bos indicus cattle? Theriogenology 2023, 196, 264–269. [Google Scholar] [CrossRef]
- Closs, E.I.; Simon, A.; Vékony, N.; Rotmann, A. Plasma membrane transporters for arginine. J. Nutr. 2004, 134, 2752S–2759S. [Google Scholar] [CrossRef]
- Liao, S.F.; Vanzant, E.S.; Boling, J.A.; Matthews, J.C. Identification and expression pattern of cationic amino acid transporter-1 mRNA in small intestinal epithelia of Angus steers at four production stages. J. Anim. Sci. 2008, 86, 620–631. [Google Scholar] [CrossRef]
- Baumrucker, C.R. Cationic amino acid transport by bovine mammary tissue. J. Dairy Sci. 1984, 67, 2500–2506. [Google Scholar] [CrossRef] [PubMed]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. Creatine: Endogenous metabolite, dietary, and therapeutic supplement. Annu. Rev. Nutr. 2007, 27, 241–261. [Google Scholar] [CrossRef]
- Zhu, C.; Jiang, Z.Y.; Johnson, G.A.; Bazer, F.W.; Wu, G. Nutritional and physiological regulation of water transport in the conceptus. Adv. Exp. Med. Biol. 2022, 1354, 109–125. [Google Scholar] [PubMed]
- Schwedhelm, E.; Maas, R.; Freese, R.; Jung, D.; Lukacs, Z.; Jambrecina, A.; Spickler, W.; Schulze, F.; Böger, R.H. Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: Impact on nitric oxide metabolism. Br. J. Clin. Pharmacol. 2008, 65, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Szwed, A.; Kim, E.; Jacinto, E. Regulation and metabolic functions of mTORC1 and mTORC2. Physiol. Rev. 2021, 101, 1371–1426. [Google Scholar] [CrossRef]
- Takahara, T.; Amemiya, Y.; Sugiyama, R.; Maki, M.; Shibata, H. Amino acid-dependent control of mTORC1 signaling: A variety of regulatory modes. J. Biomed. Sci. 2020, 27, 87. [Google Scholar] [CrossRef]
- Vander Haar, E.; Lee, S.I.; Bandhakavi, S.; Griffin, T.J.; Kim, D.H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 2007, 9, 316–323. [Google Scholar] [CrossRef]
- Thureen, P.J.; Baron, K.A.; Fennessey, P.V.; Hay, W.W. Ovine placental and fetal arginine metabolism at normal and increased maternal plasma arginine concentrations. Pediatr. Res. 2002, 51, 464–471. [Google Scholar] [CrossRef]
- Hertelendy, F.; Takahashi, K.; Machlin, L.J.; Kipnis, D.M. Growth hormone and insulin secretory responses to arginine in the sheep, pig, and cow. Gen. Comp. Endocrinol. 1970, 14, 72–77. [Google Scholar] [CrossRef]
- Li, X.L.; Johnson, G.A.; Zhou, H.J.; Burghardt, R.C.; Bazer, F.W.; Wu, G. Microarray analysis reveals an important role for dietary L-arginine in regulating global gene expression in porcine placentae during early gestation. Front. Biosci. 2022, 27, 33. [Google Scholar] [CrossRef]
- Shan, L.; Wang, B.; Gao, G.; Cao, W.; Zhang, Y. L-Arginine supplementation improves antioxidant defenses through L-arginine/nitric oxide pathways in exercised rats. J. Appl. Physiol. 2013, 115, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Bazer, F.W.; Johnson, G.A.; Satterfield, M.C.; Washburn, S.E. Metabolism and nutrition of L-glutamate and L-glutamine in ruminants. Animals 2024, 14, 1788. [Google Scholar] [CrossRef] [PubMed]
- Meijer, A.J.; Lof, C.; Ramos, I.C.; Verhoeven, A.J. Control of ureogenesis. Eur. J. Biochem. 1985, 148, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Meijer, A.J.; Lamers, W.H.; Chamuleau, R.A. Nitrogen metabolism and ornithine cycle function. Physiol. Rev. 1990, 70, 701–748. [Google Scholar] [CrossRef]
- Herring, C.M.; Bazer, F.W.; Johnson, G.A.; Wu, G. Impacts of maternal dietary protein intake on fetal survival, growth and development. Exp. Biol. Med. 2018, 243, 525–533. [Google Scholar] [CrossRef]
- Bass, C.S.; Redmer, D.A.; Kaminski, S.L.; Grazul-Bilska, A.T. Luteal function during the estrous cycle in arginine-treated ewes fed different planes of nutrition. Reproduction 2017, 153, 253–265. [Google Scholar] [CrossRef]
- Yunta, C.; Vonnahme, K.A.; Mordhost, B.R.; Hallford, D.M.; Lemley, C.O.; Parys, C.; Bach, A. Arginine supplementation to Holstein dairy heifers between 41 and 146 days of pregnancy reduces uterine blood flow in dairy heifers. Theriogenology 2015, 84, 43–50. [Google Scholar] [CrossRef]
- Kaminski, S.L.; Redmer, D.A.; Bass, C.S.; Keisler, D.H.; Carlson, L.S.; Vonnahme, K.A.; Dorsam, S.T.; Grazul-Bilska, A.T. The effects of diet and arginine treatment on serum metabolites and selected hormones during the estrous cycle in sheep. Theriogenology 2015, 83, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Troxel, T.R.; Lusby, K.S.; Gadberry, M.S.; Barham, B.L.; Poling, R.; Riley, T.; Eddington, S.; Justice, T. The Arkansas beef industry—A self assessment. Prof. Anim. Sci. 2006, 23, 104115. [Google Scholar] [CrossRef]
- United States of Agriculture (USDA). Texas Weekly Cattle Auction Summary. Available online: https://www.ams.usda.gov/mnreports/ams_1955.pdf (accessed on 27 July 2025).
- Alibaba. Food Additive Pure L-Citrulline 99%. Available online: www.Alibaba.com (accessed on 2 July 2025).
- Wu, G.; Bazer, F.W.; Cudd, T.A.; Jobgen, W.S.; Kim, S.W.; Lassala, A.; Li, P.; Matis, J.H.; Meininger, C.J.; Spencer, T.E. Pharmacokinetics and safety of arginine supplementation in animals. J. Nutr. 2007, 137, 1673S–1680S. [Google Scholar] [CrossRef]
- Wu, G. Principles of Animal Nutrition; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Hines, E.A.; Romoser, M.R.; Kiefer, Z.E.; Keating, A.F.; Baumgard, L.H.; Niemi, J.; Haberl, B.; Williams, N.H.; Kerr, B.J.; Touchette, K.J.; et al. The impact of dietary supplementation of arginine during gestation in a commercial swine herd: II. Offspring performance. J. Anim. Sci. 2019, 97, 3626–3635. [Google Scholar] [CrossRef]
- Verified Market Reports (VMR). Rumen Protected Amino Acid Market. 2025. Available online: https://www.verifiedmarketreports.com/download-sample/?rid=316650&utm_source=Pulse-May-Glob&utm_medium=353 (accessed on 2 July 2025).
- Vicini, J.L.; Clark, J.H.; Hurley, W.L.; Bahr, J.M. Effects of abomasal or intravenous administration of arginine on milk production, milk composition, and concentrations of somatotropin and insulin in plasma of dairy cows. J. Dairy Sci. 1988, 71, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Davenport, G.M.; Boling, J.A.; Schillo, K.K. Nitrogen metabolism and somatotropin secretion in beef heifers receiving abomasal arginine infusions. J. Anim. Sci. 1990, 68, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
- Davenport, G.M.; Boling, J.A.; Schillo, K.K.; Aaron, D.K. Nitrogen metabolism and somatotropin secretion in lambs receiving arginine and ornithine via abomasal infusion. J. Anim. Sci. 1990, 68, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research (GVR). L-Citrulline Market Size and Trends. 2024. Available online: https://www.grandviewresearch.com/industry-analysis/l-citrulline-market-report (accessed on 2 July 2025).
- Ding, L.; Shen, Y.; Jawad, M.; Wu, T.; Maloney, S.K.; Wang, M.; Chen, N.; Blache, D. Effect of arginine supplementation on the production of milk fat in dairy cows. J. Dairy Sci. 2022, 105, 8115–8129. [Google Scholar] [CrossRef]
- Zhang, J.; Lang, J.; Bu, L.; Liu, Y.; Huo, W.; Pei, C.; Liu, Q. Impacts of dietary arginine supplementation on performance, nutrient digestion and expression of proteins related to milk fatty acid and casein synthesis in early lactating dairy cows. Anim. Nutr. 2025, 21, 267–278. [Google Scholar] [CrossRef]
- Simões, B.S.; Marinho, M.N.; Lobo, R.R.; Adeoti, T.M.; Perdomo, M.C.; Sekito, L.; Saputra, F.T.; Arshad, U.; Husnain, A.; Malhotra, R.; et al. Effects of supplementing rumen-protected arginine on performance of transition cows. J. Dairy Sci. 2024, 107, 10945–10963. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; de Ruyter, E.M.; Athorn, R.Z.; Brewster, C.J.; Henman, D.J.; Morrison, R.S.; Smits, R.J.; Cottrell, J.J.; Dunshea, F.R. Effects of L-citrulline supplementation on heat stress physiology, lactation performance and subsequent reproductive performance of sows in summer. J. Anim. Physiol. Anim. Nutr. 2019, 103, 251–257. [Google Scholar] [CrossRef]
- Ding, L.; Shen, Y.; Wu, T.; Chen, L.; Loor, J.J.; Maloney, S.K.; Wang, M.; Blache, D. Can Arginine Help to Improve Milk Supply in Humans? It Does in Cows. Proceedings 2023, 93, 8. [Google Scholar] [CrossRef]
- Reynolds, L.P.; Borowicz, P.P.; Caton, J.S.; Crouse, M.S.; Dahlen, C.R.; Ward, A.K. Developmental programming of fetal growth and development. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 229–247. [Google Scholar] [CrossRef] [PubMed]
- Funston, R.N.; Larson, D.M.; Vonnahme, K.A. Effects of maternal nutrition on conceptus growth and offspring performance: Implications for beef cattle production. J. Anim. Sci. 2010, 88 (Suppl. 13), E205–E215. [Google Scholar] [CrossRef] [PubMed]
Variable | Control (n = 36) | RUAA 2 (n = 35) | RPAA 2 (n = 36) | p-Value |
---|---|---|---|---|
Days postpartum on the day of AI (days) | 67.1 ± 1.5 | 68.5 ± 1.8 | 66.9 ± 1.9 | 0.817 |
Age on the day of AI (years) | 5.86 ± 0.21 | 6.86 ± 0.64 | 5.97 ± 0.46 | 0.261 |
Body weight on the day of AI (kg) | 457.3 ± 11.6 | 473.8 ± 14.0 | 459.4 ± 12.8 | 0.568 |
Body condition score on the day of AI | 4.66 ± 0.10 | 4.54 ± 0.12 | 4.48 ± 0.10 | 0.479 |
Nutrient | Pasture A | Pasture B | p-Value |
---|---|---|---|
Dry matter (DM; %) | 31.46 ± 0.38 | 31.60 ± 0.28 | 0.774 |
Water (%) | 68.54 ± 0.38 | 68.4 ± 0.28 | 0.774 |
Ash, % of DM | 7.92 ± 0.07 | 7.88 ± 0.06 | 0.676 |
Organic matter, % of DM | 92.08 ± 0.07 | 92.12 ± 0.06 | 0.676 |
Neutral detergent fiber (NDF, % of DM) | 70.46 ± 0.35 | 70.58 ± 0.37 | 0.820 |
Acid detergent fiber (ADF, % of DM) | 35.12 ± 0.40 | 35.42 ± 0.49 | 0.648 |
Hemicellulose 2 (% of DM) | 35.34 ± 0.47 | 35.16 ± 0.44 | 0.787 |
Crude protein (CP, % of DM) | 13.92 ± 0.17 | 14.02 ± 0.09 | 0.617 |
Crude fat (CF, % of DM) | 2.50 ± 0.07 | 2.44 ± 0.06 | 0.533 |
Soluble carbohydrates 3 (% of DM) | 5.20 ± 0.21 | 5.08 ± 0.32 | 0.762 |
Variable | Control (n = 9) | 0.5% Cit (n = 25) | p-Value |
---|---|---|---|
Days postpartum on the day of AI (days) | 67.9 ± 3.9 | 68.6 ± 2.6 | 0.889 |
Age of cows on the day of AI (years) | 5.89 ± 0.45 | 7.13 ± 0.89 | 0.421 |
Body weight of cows on the day of AI (kg) | 463.8 ± 18.9 | 465.8 ± 15.0 | 0.943 |
Body condition score on the day of AI | 4.5 ± 0.16 | 4.5 ± 0.14 | 1.00 |
Gestation length (days) | 283.9 ± 1.7 | 281.2 ± 1.0 | 0.177 |
Number (and %) of male newborn calves | 4 (44.4%) | 11 (45.8%) | 0.981 |
Number (and %) of female newborn calves | 5 (55.6%) | 14 (54.2%) | 0.981 |
Treatment Group | Number of Cows Receiving AI | Confirmed Pregnancies (or %) from AI Service on Day 40 2 | Number of Cows Reaching Term | Number of Live Calves at Birth | Birth Rate for Live- Born Calves (%) | Birth Weight of Live-Born Calves (kg) [Means ± SEM] | Number of Calves Born Dead |
---|---|---|---|---|---|---|---|
Control | 36 | 9 (25.0%) | 9 | 8 | 22.2 | 29.0 ± 1.3 | 1 |
0.5% Cit | 71 | 25 (35.2%) | 25 | 25 | 35.2 | 26.9 ± 0.71 | 0 |
p-Value | --- | 0.045 | --- | --- | 0.040 | 0.167 | --- |
Hormone | Control (n = 9) | 0.5% Cit (n = 25) | p-Value |
---|---|---|---|
Progesterone (ng/mL) | 1.99 ± 0.12 | 2.01 ± 0.08 | 0.896 |
Insulin (µIU/mL) | 132 ± 16 | 240 ± 21 | 0.006 |
Variable | Control | 0.5% Cit | p-Value |
---|---|---|---|
(n = 9) | (n = 25) | ||
Alanine (nmol/mL) | 235 ± 8.7 | 237 ± 7.1 | 0.878 |
β-Alanine (nmol/mL) | 16 ± 2.0 | 18 ± 1.1 | 0.368 |
Arginine (nmol/mL) | 80 ± 3.6 | 96 ± 2.7 | 0.003 |
Asparagine (nmol/mL) | 32 ± 1.9 | 35 ± 1.6 | 0.311 |
Aspartate (nmol/mL) | 9.3 ± 0.5 | 9.5 ± 0.4 | 0.787 |
Citrulline (nmol/mL) | 57 ± 2.3 | 68 ± 2.0 | 0.005 |
Cysteine 2 (nmol/mL) | 103 ± 4.8 | 107 ± 3.9 | 0.579 |
Glutamate (nmol/mL) | 60 ± 2.6 | 61 ± 2.3 | 0.812 |
Glutamine (nmol/mL) | 328 ± 16 | 339 ± 8.9 | 0.538 |
Glycine (nmol/mL) | 196 ± 7.8 | 204 ± 5.5 | 0.443 |
Histidine (nmol/mL) | 42 ± 2.2 | 43 ± 1.1 | 0.660 |
Isoleucine (nmol/mL) | 103 ± 4.9 | 107 ± 3.5 | 0.546 |
Leucine (nmol/mL) | 128 ± 5.4 | 132 ± 4.1 | 0.602 |
Lysine (nmol/mL) | 97 ± 5.0 | 100 ± 3.3 | 0.636 |
Methionine (nmol/mL) | 27 ± 1.0 | 29 ± 1.0 | 0.270 |
Ornithine (nmol/mL) | 70 ± 3.2 | 83 ± 2.9 | 0.018 |
Phenylalanine (nmol/mL) | 50 ± 2.2 | 53 ± 1.5 | 0.297 |
Proline (nmol/mL) | 142 ± 6.4 | 166 ± 5.1 | 0.015 |
Serine (nmol/mL) | 57 ± 2.8 | 60 ± 2.1 | 0.447 |
Taurine (nmol/mL) | 26 ± 1.4 | 27 ± 1.0 | 0.597 |
Threonine (nmol/mL) | 58 ± 2.5 | 61 ± 2.1 | 0.439 |
Tryptophan (nmol/mL) | 52 ± 2.9 | 55 ± 1.9 | 0.413 |
Tyrosine (nmol/mL) | 58 ± 2.3 | 62 ± 1.7 | 0.890 |
Valine (nmol/mL) | 196 ± 12 | 205 ± 7.2 | 0.525 |
Ammonia 3 (nmol/mL) | 87 ± 4.1 | 75 ± 2.6 | 0.022 |
Urea (nmol/mL) | 6051 ± 368 | 6047 ± 332 | 0.995 |
Glucose (nmol/mL) | 3472 ± 303 | 3461 ± 251 | 0.983 |
1000 Beef Cows | Live-Born Calves | Income (USD) | Supplement Cost (USD) | Net Income Gain (USD) |
---|---|---|---|---|
USD 750/calf | ||||
Control | 222 | 166,500 | 0 | 166,500 |
L-Citrulline 1 | 361 | 270,750 | 42,000 | 228,750 |
Difference | 139 | 104,250 | 42,000 | 62,250 |
USD 1250/calf | ||||
Control | 222 | 277,500 | 0 | 277,500 |
L-Citrulline 1 | 361 | 451,250 | 42,000 | 409,250 |
Difference | 139 | 173,750 | 42,000 | 131,750 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilbreath, K.R.; Satterfield, M.C.; Zhou, L.; Bazer, F.W.; Wu, G. Dietary Supplementation with L-Citrulline Between Days 1 and 60 of Gestation Enhances Embryonic Survival in Lactating Beef Cows. Animals 2025, 15, 2398. https://doi.org/10.3390/ani15162398
Gilbreath KR, Satterfield MC, Zhou L, Bazer FW, Wu G. Dietary Supplementation with L-Citrulline Between Days 1 and 60 of Gestation Enhances Embryonic Survival in Lactating Beef Cows. Animals. 2025; 15(16):2398. https://doi.org/10.3390/ani15162398
Chicago/Turabian StyleGilbreath, Kyler R., Michael Carey Satterfield, Lan Zhou, Fuller W. Bazer, and Guoyao Wu. 2025. "Dietary Supplementation with L-Citrulline Between Days 1 and 60 of Gestation Enhances Embryonic Survival in Lactating Beef Cows" Animals 15, no. 16: 2398. https://doi.org/10.3390/ani15162398
APA StyleGilbreath, K. R., Satterfield, M. C., Zhou, L., Bazer, F. W., & Wu, G. (2025). Dietary Supplementation with L-Citrulline Between Days 1 and 60 of Gestation Enhances Embryonic Survival in Lactating Beef Cows. Animals, 15(16), 2398. https://doi.org/10.3390/ani15162398