Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (314)

Search Parameters:
Keywords = free metal particle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3387 KiB  
Article
Efficiency of Spirulina sp. in the Treatment of Model Wastewater Containing Ni(II) and Pb(II)
by Eleonora Sočo, Andżelika Domoń, Mostafa Azizi, Dariusz Pająk, Bogumił Cieniek, Magdalena M. Michel and Dorota Papciak
Materials 2025, 18(15), 3639; https://doi.org/10.3390/ma18153639 - 1 Aug 2025
Viewed by 290
Abstract
In this work, the biosorption potential of Spirulina sp. as an effective and eco-friendly biosorbent for the removal of Ni(II) and Pb(II) ions from aqueous solutions was investigated. Detailed characterization of the biosorbent was carried out, including surface morphology, chemical composition, particle size, [...] Read more.
In this work, the biosorption potential of Spirulina sp. as an effective and eco-friendly biosorbent for the removal of Ni(II) and Pb(II) ions from aqueous solutions was investigated. Detailed characterization of the biosorbent was carried out, including surface morphology, chemical composition, particle size, zeta potential, crystallinity, zero-point charge, and functional group analysis. Batch tests were performed to determine the kinetic constants and adsorption equilibrium of the studied ions. The adsorption behavior of Spirulina sp. was described using six adsorption isotherms. The best fit was obtained for the Redlich-Peterson and Langmuir isotherms, indicating that monolayer adsorption occurred. The maximum biosorption capacities for Ni(II) and Pb(II) were 20.8 mg·g−1 and 93.5 mg·g−1, respectively, using a biosorbent dose of 10 g·L−1, initial metal concentrations ranging from 50 to 5000 mg·L−1, at pH 6, 20 °C, and a contact time of 120 min. Low values of the mean free energy of adsorption (E) in the Dubinin–Radushkevich and Temkin model (0.3 and 0.1 kJ·mol−1 for Pb(II) and 0.35 and 0.23 kJ·mol−1 for Ni(II)) indicate the dominance of physical processes in the ion binding mechanism. The adsorption of Pb(II) ions was more effective than that of Ni(II) ions across the entire range of tested concentrations. At low initial concentrations, the removal of Pb(II) reached 94%, while for Ni(II) it was 80%. Full article
Show Figures

Graphical abstract

23 pages, 9108 KiB  
Article
COx-Free Hydrogen Production via CH4 Decomposition on Alkali-Incorporated (Mg, La, Ca, Li) Ni-Al Catalysts
by Morgana Rosset, Yan Resing Dias, Liliana Amaral Féris and Oscar William Perez-Lopez
Nanoenergy Adv. 2025, 5(3), 10; https://doi.org/10.3390/nanoenergyadv5030010 - 30 Jul 2025
Viewed by 174
Abstract
The catalytic decomposition of CH4 is a promising method for producing high-purity COx-free hydrogen. A Ni-Al-LDH catalyst synthesized via coprecipitation was modified with alkali metals (Mg, La, Ca, or Li) through reconstruction to enhance catalytic activity and resistance to deactivation [...] Read more.
The catalytic decomposition of CH4 is a promising method for producing high-purity COx-free hydrogen. A Ni-Al-LDH catalyst synthesized via coprecipitation was modified with alkali metals (Mg, La, Ca, or Li) through reconstruction to enhance catalytic activity and resistance to deactivation during catalytic methane decomposition (CMD). The catalysts were evaluated by two activation methods: H2 reduction and direct heating with CH4. The MgNA-R catalyst achieved the highest CH4 conversion (65%) at 600 °C when reduced with H2, attributed to a stronger Ni-Al interaction. Under CH4 activation, LaNA-C achieved a 55% conversion at the same temperature, associated with a smaller crystallite size and higher reducibility due to La incorporation. Although all catalysts deactivated due to carbon deposition and/or sintering, LaNA-C was the only sample that could resist deactivation for a longer period, as La appears to have a protective effect on the active phase. Post-reaction characterizations revealed the formation of graphitic and filamentous carbon. Raman spectroscopy exhibited a higher degree of graphitization and structural order in LaNA-C, whereas SEM showed a more uniform distribution of carbon filaments. TEM confirmed the presence of multi-walled carbon nanotubes with encapsulated Ni particles in La-promoted samples. These results demonstrate that La addition improves the catalytic performance under CH4 activation and carbon structure. This finding offers a practical advantage for CMD processes, as it reduces or eliminates the need to use hydrogen during catalyst activation. Full article
(This article belongs to the Special Issue Novel Energy Materials)
Show Figures

Graphical abstract

28 pages, 14491 KiB  
Article
Catalytically Active Oxidized PtOx Species on SnO2 Supports Synthesized via Anion Exchange Reaction for 4-Nitrophenol Reduction
by Izabela Ðurasović, Robert Peter, Goran Dražić, Fabio Faraguna, Rafael Anelić, Marijan Marciuš, Tanja Jurkin, Vlasta Mohaček Grošev, Maria Gracheva, Zoltán Klencsár, Mile Ivanda, Goran Štefanić and Marijan Gotić
Nanomaterials 2025, 15(15), 1159; https://doi.org/10.3390/nano15151159 - 28 Jul 2025
Viewed by 294
Abstract
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room [...] Read more.
An anion exchange-assisted technique was used for the synthesis of platinum-decorated SnO2 supports, providing nanocatalysts with enhanced activity for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). In this study, a series of SnO2 supports, namely SnA (synthesized almost at room temperature), SnB (hydrothermally treated at 180 °C), and SnC (annealed at 600 °C), are systematically investigated, all loaded with 1 mol% Pt from H2PtCl6 under identical mild conditions. The chloride ions from the SnCl4 precursors were efficiently removed via a strong-base anion exchange reaction, resulting in highly dispersed, crystalline ~5 nm cassiterite SnO2 particles. All Pt/SnO2 composites displayed mesoporous structures with type IVa isotherms and H2-type hysteresis, with SP1a (Pt on SnA) exhibiting the largest surface area (122.6 m2/g) and the smallest pores (~3.5 nm). STEM-HAADF imaging revealed well-dispersed PtOx domains (~0.85 nm), while XPS confirmed the dominant Pt4+ and Pt2+ species, with ~25% Pt0 likely resulting from photoreduction and/or interactions with Sn–OH surface groups. Raman spectroscopy revealed three new bands (260–360 cm−1) that were clearly visible in the sample with 10 mol% Pt and were due to the vibrational modes of the PtOx species and Pt-Cl bonds introduced due the addition and hydrolysis of H2PtCl6 precursor. TGA/DSC analysis revealed the highest mass loss for SP1a (~7.3%), confirming the strong hydration of the PtOx domains. Despite the predominance of oxidized PtOx species, SP1a exhibited the highest catalytic activity (kapp = 1.27 × 10−2 s−1) and retained 84.5% activity for the reduction of 4-NP to 4-AP after 10 cycles. This chloride-free low-temperature synthesis route offers a promising and generalizable strategy for the preparation of noble metal-based nanocatalysts on oxide supports with high catalytic activity and reusability. Full article
Show Figures

Figure 1

14 pages, 3471 KiB  
Article
Dispersant-Induced Enhancement of Rheological Properties in Metal–Photopolymer Mixtures for 3D Printing
by Zhiyuan Qu, Guangchao Song, Josue Olortegui-Revoredo, Patrick Kwon and Haseung Chung
J. Manuf. Mater. Process. 2025, 9(7), 244; https://doi.org/10.3390/jmmp9070244 - 20 Jul 2025
Viewed by 335
Abstract
The Scalable and Expeditious Additive Manufacturing (SEAM) process is an advanced additive manufacturing (AM) technique that relies on the optimization of metal powder suspensions to achieve high-quality 3D-printed components. This study explores the critical role of dispersants in enhancing the performance of stainless [...] Read more.
The Scalable and Expeditious Additive Manufacturing (SEAM) process is an advanced additive manufacturing (AM) technique that relies on the optimization of metal powder suspensions to achieve high-quality 3D-printed components. This study explores the critical role of dispersants in enhancing the performance of stainless steel (SS) 420 metal powder suspensions for the SEAM process by improving powder loading, recyclability, flowability, and consequent final part density. The addition of dispersant allows for increased powder contents while preserving stable rheological properties, thereby enabling higher powder loading without compromising the rheological characteristics required in the SEAM process. Previously, our team implemented a two-step printing strategy to address the segregation issues during printing. Nonetheless, the semi-cured layer was not recyclable after printing, resulting in a significant amount of waste in the SEAM process. This, in turn, leads to a considerable increase in material costs. On the other hand, the addition of a dispersant has been shown to enhance suspension stability, enabling multiple cycles of reuse. This novel approach has been demonstrated to reduce material waste and lower production costs. The enhanced flowability guarantees uniform suspension spreading, resulting in defect-free layer deposition and superior process control. Moreover, the dispersant’s ability to impede particle agglomeration and promote powder loading contributes to the attainment of a 99.33% relative density in the final sintered SS420 parts, thereby markedly enhancing their mechanical integrity. These findings demonstrate the pivotal role of dispersants in refining the SEAM process, enabling the production of high-density, cost-effective metal components with superior material utilization and process efficiency. Full article
Show Figures

Figure 1

12 pages, 23410 KiB  
Article
Recycling and Separation of Valuable Metals from Spent Cathode Sheets by Single-Step Electrochemical Strategy
by Neng Wei, Yaqun He, Guangwen Zhang, Jiahao Li and Fengbin Zhang
Separations 2025, 12(7), 178; https://doi.org/10.3390/separations12070178 - 5 Jul 2025
Viewed by 276
Abstract
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An [...] Read more.
The conventional spent lithium-ion batteries (LIBs) recycling method suffers from complex processes and excessive chemical consumption. Hence, this study proposes an electrochemical strategy for achieving reductant-free leaching of high-valence transition metals and efficient separation of valuable components from spent cathode sheets (CSs). An innovatively designed sandwich-structured electrochemical reactor achieved efficient reductive dissolution of cathode materials (CMs) while maintaining the structural integrity of aluminum (Al) foils in a dilute sulfuric acid system. Optimized current enabled leaching efficiencies exceeding 93% for lithium (Li), cobalt (Co), manganese (Mn), and nickel (Ni), with 88% metallic Al foil recovery via cathodic protection. Multi-scale characterization systematically elucidated metal valence evolution and interfacial reaction mechanisms, validating the technology’s tripartite innovation: simultaneous high metal extraction efficiency, high value-added Al foil recovery, and organic removal through single-step electrochemical treatment. The process synergized the dissolution of CM particles and hydrogen bubble-induced physical liberation to achieve clean separation of polyvinylidene difluoride (PVDF) and carbon black (CB) layers from Al foil substrates. This method eliminates crushing pretreatment, high-temperature reduction, and any other reductant consumption, establishing an environmentally friendly and efficient method of comprehensive recycling of battery materials. Full article
Show Figures

Figure 1

21 pages, 8232 KiB  
Article
Investigation of Complex ZnO-Porous Silicon Structures with Different Dimensions Obtained by Low-Temperature Synthesis
by Rashid Zhapakov, Danatbek Murzalinov, Mikhail Begunov, Tatyana Seredavina, Alena Gagarina, Yulia Spivak, Vyacheslav Moshnikov, Elena A. Dmitriyeva, Petr Osipov and Ainagul Kemelbekova
Processes 2025, 13(7), 2099; https://doi.org/10.3390/pr13072099 - 2 Jul 2025
Viewed by 378
Abstract
The study of the processes of low-temperature synthesis of one-dimensional particles, which are the basis for two- and three-dimensional structures, is relevant for materials science. The modified metal-stimulated electrochemical etching method made it possible to synthesize silicon nanowires with an average thickness of [...] Read more.
The study of the processes of low-temperature synthesis of one-dimensional particles, which are the basis for two- and three-dimensional structures, is relevant for materials science. The modified metal-stimulated electrochemical etching method made it possible to synthesize silicon nanowires with an average thickness of about 292.6 nm. Scanning electron microscopy has shown the formation of nanowires, flower-like structures, and clusters of matter after the deposition of zinc oxide on the porous surface. The hexagonal structure of ZnO crystallites was determined by X-ray diffraction spectroscopy. Studies of the initial sample by electron paramagnetic resonance (EPR) spectroscopy revealed a narrow signal in the center of the spectrum. The subtraction of the EPR spectra with a sequential increase in microwave power up to 8 mW shows the absence of saturation of the signal. This indicates an almost free flow of charges through the surface nanostructures under the influence of an external field. Heat treatment in an air atmosphere at 300 °C caused a significant increase in the intensity of the EPR spectrum. This led to an increase in the intensity of charge transfer through paramagnetic centers. Full article
Show Figures

Figure 1

20 pages, 4449 KiB  
Article
Boosting Dual Hydrogen Electrocatalysis with Pt/NiMo Catalysts: Tuning the Ni/Mo Ratio and Minimizing Pt Usage
by Luis Fernando Cabanillas-Esparza, Edgar Alonso Reynoso-Soto, Balter Trujillo-Navarrete, Brenda Alcántar-Vázquez, Carolina Silva-Carrillo and Rosa María Félix-Navarro
Catalysts 2025, 15(7), 633; https://doi.org/10.3390/catal15070633 - 28 Jun 2025
Viewed by 524
Abstract
The development of efficient platinum group metal-free (PGM-free) catalysts for the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR) is essential for advancing hydrogen-based energy technologies. In this study, NixMo100−x composites supported on Carbon Ketjenblack EC-300J (CK) were [...] Read more.
The development of efficient platinum group metal-free (PGM-free) catalysts for the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR) is essential for advancing hydrogen-based energy technologies. In this study, NixMo100−x composites supported on Carbon Ketjenblack EC-300J (CK) were synthesized via thermal reduction under a controlled Ar/H2 (95:5) atmosphere to investigate the effect of the Ni/Mo molar ratio on electrocatalytic performance. Structural and morphological analyses by XRD and TEM confirmed the formation of the NiMo alloys and carbide phases with controlled particle size distributions (~18 nm), while BET measurements revealed specific surface areas up to 124.69 m2 g−1 for the Pt-loaded samples. Notably, the 3% Pt/Ni90Mo10-CK catalyst exhibited outstanding bifunctional activity in a half-cell configuration, achieving an overpotential of 65.2 mV and a Tafel slope of 41.6 mV dec−1 for the HER, and a Tafel slope of 32.9 mV dec−1 with an exchange current density of 1.03 mA cm−2 for the HOR. These results demonstrate that compositional tuning and minimal Pt incorporation synergistically enhance the catalytic efficiency, providing a promising platform for next-generation hydrogen electrocatalysts. Full article
(This article belongs to the Special Issue Electrocatalytic Hydrogen and Oxygen Evolution Reaction)
Show Figures

Graphical abstract

21 pages, 3028 KiB  
Article
Revolutionizing Hydrogen Production: Unveiling the Role of Liquid Metals in Methane Pyrolysis over Iron Catalysts Supported on Titanium Dioxide and Alumina
by Hamid Ahmed, Amal BaQais, Fekri Abdulraqeb Ahmed Ali, Ahmed I. Osman, Anis H. Fakeeha, Ahmed E. Abasaeed, Ahmed A. Ibrahim, Syed Farooq Adil, Tahani Saad Algarni and Ahmed S. Al-Fatesh
Catalysts 2025, 15(7), 631; https://doi.org/10.3390/catal15070631 - 27 Jun 2025
Viewed by 492
Abstract
Catalytic methane decomposition offers an attractive and sustainable pathway for producing COx-free hydrogen and valuable carbon nanotubes. This work investigates the innovative use of liquid metals, particularly gallium and indium, as promoters for iron catalysts based on a titanium dioxide and [...] Read more.
Catalytic methane decomposition offers an attractive and sustainable pathway for producing COx-free hydrogen and valuable carbon nanotubes. This work investigates the innovative use of liquid metals, particularly gallium and indium, as promoters for iron catalysts based on a titanium dioxide and alumina composite to improve this process even more. In a fixed-bed reactor operating at 800 °C and atmospheric pressure, all catalyst activities for methane decomposition were thoroughly assessed while keeping the gas hourly space velocity at 6 L/g h. Surface area and porosity, H2-temperature programmed reduction/oxidation, X-ray diffraction, Raman spectroscopy, scanning transmission electron microscopy, and thermogravimetry analysis were utilized to investigate the physicochemical properties of the catalyst. The result showed that iron supported on a titanium-alumina catalyst exhibited higher activity, stability, and reproducibility with a methane conversion of 90% and hydrogen production of 81% after three cycles, with 240 min for each cycle and stability for 480 min. In contrast, the liquid metal-promoted catalysts improved the metal-support interaction and textural properties, such as surface area, pore volume, and particle dispersion of the catalysts. Still, the catalytic efficiency significantly improved. However, the gallium-promoted catalyst displayed excellent reusability. The characterization of the spent catalyst proved that both the iron supported on a titanium-alumina and its gallium-promoted derivative produced graphitic carbon; on the contrary, the indium-promoted catalyst produced amorphous carbon. These results demonstrate how liquid metal promoters can be used to adjust the characteristics of catalysts, providing opportunities for improved reusability and regulated production of carbon byproducts during methane decomposition. Full article
Show Figures

Figure 1

18 pages, 7946 KiB  
Article
Numerical Simulation of Streaming Discharge Characteristics of Free Metal Particles in SF6/CF4 Gas Mixtures Under Highly Heterogeneous Electric Field
by Bing Qi, Hui Wang, Chang Liu, Fuyou Teng, Daoxin Yu, Yuxuan Liang and Feihu Wang
Sensors 2025, 25(13), 3847; https://doi.org/10.3390/s25133847 - 20 Jun 2025
Viewed by 337
Abstract
Compared to pure SF6 gas, the SF6/CF4 gas mixture exhibits certain advantages in reducing greenhouse effects, lowering the liquefaction temperature, and decreasing the sensitivity to non-uniform electric fields, demonstrating significant application potential in high-voltage electrical equipment. This study employs [...] Read more.
Compared to pure SF6 gas, the SF6/CF4 gas mixture exhibits certain advantages in reducing greenhouse effects, lowering the liquefaction temperature, and decreasing the sensitivity to non-uniform electric fields, demonstrating significant application potential in high-voltage electrical equipment. This study employs a two-dimensional plasma fluid model to investigate the partial discharge phenomena induced by free metallic particles in SF6/CF4 gas mixtures, analyzing the spatiotemporal evolution characteristics of key parameters, such as the charged particle density and axial electric field, under different mixing ratios. The simulation results show that there are two kinds of positive stream discharge phenomena, “continuous and decaying”, when the gas mixture ratio is 90%CF4-10%SF6 and 40%CF4-60%SF6. The proportion of CF4 in the gas mixture will affect the spatial distribution of charged particles and the production and disappearance of electrons. When the proportion of CF4 is 90%, the content of positive ions in the discharge channel is the highest, and the electric field formed by the positive space charge of CF4+ in the stream head promotes the continuous propagation of the stream. As the concentration of CF4 decreases, the main ionization reaction at the stream head shifts from CF4 to SF6, and a negative space charge region dominated by SF6 particles is also formed near the stream head, changing the electric field distribution near the flow head. The adhesion reaction rate is greater than the ionization reaction rate, resulting in the disappearance of electrons greater than the production, and the stream phenomenon tends to decay. These simulation results are helpful to understand the dynamic process of positive stream discharge induced by free metal particles in SF6/CF4 gas mixtures, and they provide a theoretical basis for better solutions to equipment damage caused by partial discharge. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

14 pages, 14180 KiB  
Article
Effect of Cr Content on Microstructure and Mechanical Properties of Heat Affected Zone in Supercritical Carbon Dioxide Transport Pipeline Steel
by Rui Hong, Xiaodan Zhu, Shubiao Yin, Nengsheng Liu, Shujun Jia, Yuxi Cao, Yuqin Qin and Qilin Ma
Materials 2025, 18(11), 2607; https://doi.org/10.3390/ma18112607 - 3 Jun 2025
Viewed by 445
Abstract
This study systematically investigates the influence mechanism of the element Cr on the mechanical properties of the heat-affected zone in pipeline steels for supercritical CO2 transportation. Microstructural evolution in the heat affected-zone was characterized through thermal simulation tests, Charpy impact testing (−10 [...] Read more.
This study systematically investigates the influence mechanism of the element Cr on the mechanical properties of the heat-affected zone in pipeline steels for supercritical CO2 transportation. Microstructural evolution in the heat affected-zone was characterized through thermal simulation tests, Charpy impact testing (−10 °C), and microhardness measurements, complemented by multiscale microscopic analyses (optical microscopy, scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy). The results demonstrate that Cr addition enhances the base metal’s resistance to supercritical CO2 corrosion but reduces its low-temperature impact toughness from 277 J to 235 J at −10 °C. Notably, the intercritical heat-affected zone exhibits severe embrittlement, with impact energy plummeting from 235 J (base metal) to 77 J. Microstructural analysis reveals that Cr interacts with carbon to form stable carbonitride particles, which reduce the free carbon concentration and diffusion coefficient in austenite, thereby inducing heterogeneous austenitization. Undissolved carbonitrides pin grain boundaries, creating carbon concentration gradients. During rapid cooling, these localized carbon-enriched microregions preferentially transform into core–shell-structured M-A constituent, characterized by a micro-twin containing retained austenite core encapsulated by high hardness lath martensite. The synergistic interaction between micro-twins and interfacial thermal mismatch stress induces localized stress concentration, triggering microcrack nucleation and subsequent toughness degradation. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

21 pages, 13954 KiB  
Article
Interfacial Modulation of Laser-Deposited Ti6Al4V-TiC Wear-Resistant Coatings: Surface Ni-P Metallization of TiC Particles
by Yiming Wu, Yingfei Yang, Jie Li, Chuanyong Yu, Xinwei Du, Hu Zhao, Dexin Chen, Wei Li, Qiwei Wang and Peng Zhang
Coatings 2025, 15(6), 629; https://doi.org/10.3390/coatings15060629 - 24 May 2025
Viewed by 370
Abstract
Prior to the laser processing, the surface of the TiC-reinforced particles underwent a metallization process with Ni-P, with the objective of enhancing the wettability between the TiC and the Ti6Al4V, thereby ensuring enhanced wear resistance of the titanium-based composite (TMC) coatings. In this [...] Read more.
Prior to the laser processing, the surface of the TiC-reinforced particles underwent a metallization process with Ni-P, with the objective of enhancing the wettability between the TiC and the Ti6Al4V, thereby ensuring enhanced wear resistance of the titanium-based composite (TMC) coatings. In this study, the chemical deposition method was utilized to synthesize three types of metallized TiC with varying phosphorus contents. The P contents of these samples were determined to be 9.12 wt.% (HP metallized TiC), 6.55 wt.% (MP metallized TiC), and 1.71 wt.% (LP metallized TiC). It was observed that the thickness of the coatings increased in a gradual manner with the decrease in P. Furthermore, the coating of the LP metallized TiC was found to possess the highest degree of crystallinity and a microcrystalline structure. The 50 wt.% TiC-Ti6Al4V composite coatings (TMC-Nickel-free, TMC-HP, TMC-MP, and TMC-LP) were produced by laser fusion deposition using untreated TiC and three metallized TiC enhancements. The findings indicate that TMC-LP exhibits cracking only during the initial processing stage. Surface metallization has been shown to enhance the wear resistance of composite coatings through several mechanisms, including increased bonding of the ceramic phase to the metal matrix and the formation of hard Ti2Ni compounds. The wear rates of TMC-HP, TMC-MP, and TMC-LP were reduced by 22%, 43%, and 72%, respectively, in comparison to TMC-Nickel-free. Full article
(This article belongs to the Special Issue Laser Surface Engineering and Additive Manufacturing)
Show Figures

Graphical abstract

24 pages, 650 KiB  
Article
Health Risk for Non-Dietary Children’s Exposure to Heavy Metals in Postindustrial Areas in Upper Silesia, Poland
by Grzegorz Dziubanek, Joanna Furman, Danuta Rogala, Klaudia Gut-Pietrasz, Małgorzata Ćwieląg-Drabek, Monika Rusin, Joanna Domagalska, Agata Piekut, Renata Baranowska, Anna Niesler and Weronika Osmala-Kurpiewska
Toxics 2025, 13(5), 377; https://doi.org/10.3390/toxics13050377 - 6 May 2025
Viewed by 1042
Abstract
Heavy metal exposure is a significant public health problem, especially among children, who are a particularly vulnerable group. This study investigates the non-dietary exposure of children to lead, cadmium, and zinc and the associated health risk in three selected locations near the former [...] Read more.
Heavy metal exposure is a significant public health problem, especially among children, who are a particularly vulnerable group. This study investigates the non-dietary exposure of children to lead, cadmium, and zinc and the associated health risk in three selected locations near the former non-ferrous metal smelters. Soil samples were collected from schools, parks, playgrounds, and other recreational places where children spend their free time in three districts of such towns as Katowice, Świętochłowice, and Piekary Śląskie. The contents of Cd, Pb, and Zn in the surface soil samples had the following ranges: 4.09–20.94 mg Cd/kg d.m., 161.70–1027.68 mg Pb/kg d.m., and 577.76–1475.93 mg Zn/kg d.m., respectively. The threshold doses of Cd, Zn, and Pb are 0.001 mg × kg−1 × day−1, 0.3 mg × kg−1 × day−1, and 0.0035 mg × kg−1 × day−1. A significant health risk was estimated as a result of non-dietary exposure of children to lead. The greatest non-cancer health risk in the population of children <6 years of age and in younger school children (<12 years of age) was shown. The problem was especially concerning in the scenario that assumed ingestion of soil particles in the areas most heavily contaminated with lead in the Katowice—Szopienice district. The public health policy should aim to monitor the current exposure of the local population to Pb and educate them on effective prophylactic methods to minimize environmental health risks. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

18 pages, 6611 KiB  
Article
Optimization of Thiourea-Promoted Gold and Silver Leaching from Pyrite Cinders Using Response Surface Methodology (RSM)
by Yerkezhan Abikak, Bagdaulet Kenzhaliev, Ata Akcil, Seydou Dembele, Aigul Koizhanova, Nauryzbek Bakhytuly and Gulzhaina Kassymova
Processes 2025, 13(5), 1277; https://doi.org/10.3390/pr13051277 - 22 Apr 2025
Viewed by 778
Abstract
The cyanidation of precious metals from ores and secondary resources has been classified as a hazardous process due to the release of toxic gases. The use of environmentally friendly and cost-effective processes is a suitable alternative to cyanidation. Thiourea leaching has been shown [...] Read more.
The cyanidation of precious metals from ores and secondary resources has been classified as a hazardous process due to the release of toxic gases. The use of environmentally friendly and cost-effective processes is a suitable alternative to cyanidation. Thiourea leaching has been shown to be one of the best alternative reagents to cyanide. The present work aims to evaluate the efficiency of the thiourea leaching of gold and silver from pretreated pyrite cinders. The use of pre-chemical activation prior to leaching helped to increase the amount of free gold and silver particles. A preliminary leaching test led to the selection of Fe2(SO4)3 as a suitable oxidizing agent for Au and Ag leaching. To select suitable leaching parameters, the response surface methodology (RSM) was used to optimize some parameters that can considerably affect sulfuric acid–thiourea leaching and identify the greatest interaction between them. The optimized parameters of 30 g/L thiourea, 10% pulp density, pH = 1, and 50 °C over 4 h of leaching time allowed for Au and Ag recoveries of 98.31 and 88.57%, respectively. Full article
(This article belongs to the Special Issue Chemical Systems Dynamic Modeling and Simulation)
Show Figures

Figure 1

19 pages, 23277 KiB  
Article
Metal Matrix Composite Coatings Deposited by Laser Cladding: On the Effectiveness of WC Reinforcement for Wear Resistance and Its Synergy with the Matrix Material (Ni Versus Co Alloys)
by Leandro João da Silva, Jeferson Trevizan Pacheco, Edja Iandeyara Freitas Moura, Douglas Bezerra de Araújo, Ruham Pablo Reis and Ana Sofia Clímaco Monteiro D’Oliveira
Coatings 2025, 15(4), 468; https://doi.org/10.3390/coatings15040468 - 15 Apr 2025
Cited by 2 | Viewed by 730
Abstract
This work investigates the effect of the addition of tungsten carbide (WC) particles as reinforcements to Ni (Inconel 625) versus Co (Stellite 6) alloys during deposition by laser cladding to form wear-resistant metal matrix composite (MMC) coatings. While the related literature often associates [...] Read more.
This work investigates the effect of the addition of tungsten carbide (WC) particles as reinforcements to Ni (Inconel 625) versus Co (Stellite 6) alloys during deposition by laser cladding to form wear-resistant metal matrix composite (MMC) coatings. While the related literature often associates the presence of WC with the enhanced wear performance of MMC coatings, this work shows that such an effect is not universal as it may critically depend on the metallic matrix employed. Thus, to demonstrate whether the reinforcement and matrix act synergically in such a scenario or not, MMC coatings formed by Inconel 625 and Stellite 6, both with WC content ranging from 10% to 40%, were deposited under the same laser cladding setup on AISI 304 stainless steel substrates, being WC-free samples produced together for comparison basis. As expected, the hardness levels increased with more WC presence in both matrices, but the wear resistance was specifically evaluated by means of the metal wheel abrasion test (ASTM B611). The results revealed that the use of WC as a reinforcement indeed affects the matrix materials differently; for Stellite 6, the wear resistance increased with up to 20% of WC (in contrast to the hardness indication), whereas for Inconel 625, the wear resistance progressively decreased with more WC content. It was observed via scanning electron microscopy (SEM) that the WC particles within the Inconel 625 alloy tended to intensive cracking, being in this way more prone to detach from the matrix and hence representing a weakening factor for the effectiveness of the coatings produced. Thus, it is concluded that the addition of WC particles, as potential reinforcements for MMC coatings, is not always effective (synergic with the matrix) in providing wear resistance, hence, opposing the prevailing consensus. This outcome and its reasons will certainly help with insights into proper design of MMC coatings, starting with the importance of matrix material selection. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Graphical abstract

14 pages, 4290 KiB  
Article
Acoustic Identification Method of Partial Discharge in GIS Based on Improved MFCC and DBO-RF
by Xueqiong Zhu, Chengbo Hu, Jinggang Yang, Ziquan Liu, Zhen Wang, Zheng Liu and Yiming Zang
Energies 2025, 18(7), 1619; https://doi.org/10.3390/en18071619 - 24 Mar 2025
Viewed by 2353
Abstract
Gas Insulated Switchgear (GIS) is a type of critical substation equipment in the power system, and its safe and stable operation is of great significance for ensuring the reliability of power system operation. To accurately identify partial discharge in GIS, this paper proposes [...] Read more.
Gas Insulated Switchgear (GIS) is a type of critical substation equipment in the power system, and its safe and stable operation is of great significance for ensuring the reliability of power system operation. To accurately identify partial discharge in GIS, this paper proposes an acoustic identification method based on improved mel frequency cepstral coefficients (MFCC) and dung beetle algorithm optimized random forest (DBO-RF) based on the ultrasonic detection method. Firstly, three types of typical GIS partial discharge defects, namely free metal particles, suspended potential, and surface discharge, were designed and constructed. Secondly, wavelet denoising was used to weaken the influence of noise on ultrasonic signals, and conventional, first-order, and second-order differential MFCC feature parameters were extracted, followed by principal component analysis for dimensionality reduction optimization. Finally, the feature parameters after dimensionality reduction optimization were input into the DBO-RF model for fault identification. The results show that this method can accurately identify partial discharge of typical GIS defects, with a recognition accuracy reaching 92.2%. The research results can provide a basis for GIS insulation fault detection and diagnosis. Full article
Show Figures

Figure 1

Back to TopTop