Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = forsythia leaves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2172 KiB  
Article
Crude Drugs for Clearing Heat Contain Compounds Exhibiting Anti-Inflammatory Effects in Interleukin-1β-Treated Rat Hepatocytes
by Airi Fujii, Saki Onishi, Nodoka Watanabe, Mizuki Kajimura, Kentaro Ito, Keita Minamisaka, Yuto Nishidono, Saki Shirako, Yukinobu Ikeya and Mikio Nishizawa
Molecules 2025, 30(2), 416; https://doi.org/10.3390/molecules30020416 - 19 Jan 2025
Viewed by 1290
Abstract
Traditional Japanese medicines, i.e., Kampo medicines, consist of crude drugs (mostly plants) that have empirical pharmacological functions (‘Yakuno’ in Japanese), such as clearing heat. Crude drugs with cold properties, such as Phellodendron bark, have the empirical function of clearing heat as [...] Read more.
Traditional Japanese medicines, i.e., Kampo medicines, consist of crude drugs (mostly plants) that have empirical pharmacological functions (‘Yakuno’ in Japanese), such as clearing heat. Crude drugs with cold properties, such as Phellodendron bark, have the empirical function of clearing heat as they cool the body. Because we found that anti-inflammatory compounds were present in several crude drugs for clearing heat, it is speculated that the empirical function of clearing heat may be linked to anti-inflammatory activities. When 10 typical crude drugs were selected from 22 herbal crude drugs for clearing heat, we identified anti-inflammatory compounds in five crude drugs, including Phellodendron bark. In this study, the other crude drugs were extracted and partitioned with ethyl acetate (EtOAc) and n-butanol to obtain three crude fractions. All the EtOAc-soluble fractions, except that from Forsythia fruits, inhibited interleukin (IL)-1β-induced nitric oxide (NO) production in primary-cultured rat hepatocytes. Anti-inflammatory compounds were identified from these EtOAc-soluble fractions: baicalein from Scutellaria roots, (−)-nyasol from Anemarrhena rhizomes, and loniflavone from Lonicera leaves and stems. (+)-Phillygenin was purified from Forsythia fruits by removing cytotoxic oleanolic and betulinic acids. These compounds suppressed the production of NO and cytokines in hepatocytes. Anti-inflammatory compounds were not purified from the EtOAc-soluble fraction of Rehmannia roots because of their low abundance. Collectively, these findings indicate that anti-inflammatory compounds are present in all 10 crude drugs for clearing heat, confirming that these anti-inflammatory compounds in crude drugs provide the empirical functions for clearing heat. Other empirical functions of Kampo medicine can also be explained by modern pharmacological activities. Full article
(This article belongs to the Special Issue Natural Bioactive Compounds from Traditional Asian Plants)
Show Figures

Graphical abstract

15 pages, 6033 KiB  
Article
Isolation and Identification of Allelopathic Substances from Forsythia suspensa Leaves, and Their Metabolism and Activity
by Hisashi Kato-Noguchi, Yuga Takahashi, Shunya Tojo and Toshiaki Teruya
Plants 2024, 13(5), 575; https://doi.org/10.3390/plants13050575 - 20 Feb 2024
Cited by 1 | Viewed by 2382
Abstract
The fruit of Forsythia suspensa (Thunb.) Vahl has been used in traditional Chinese medicine as “Forsythiae fructus”. The species is also grown in parks and gardens, and on streets and building lots, as an ornamental plant, but it requires pruning. In [...] Read more.
The fruit of Forsythia suspensa (Thunb.) Vahl has been used in traditional Chinese medicine as “Forsythiae fructus”. The species is also grown in parks and gardens, and on streets and building lots, as an ornamental plant, but it requires pruning. In this study, the allelopathic activity and allelopathic substances in the leaves of pruned branches of F. suspensa were investigated to determine any potential application. The leaf extracts of F. suspensa showed growth inhibitory activity against three weed species; Echinochloa crus-galli, Lolium multiflorum, and Vulpia myuros. Two allelopathic substances in the extracts were isolated through the bioassay-guided purification process, and identified as (-)-matairesinol and (-)-arctigenin. (-)-Matairesinol and (-)-arctigenin, which showed significant growth inhibitory activity at concentrations greater than 0.3 mM in vitro. The inhibitory activity of (-)-arctigenin was greater than that of (-)-matairesinol. However, both compounds were more active than (+)-pinolesinol which is their precursor in the biosynthetic pathway. The investigation suggests that F. suspensa leaves are allelopathic, and (-)-matairesinol and (-)-arctigenin may contribute to the growth inhibitory activities. Therefore, the leaves of the pruned branches can be applied as a weed management strategy in some agricultural practices such as using the leaf extracts in a foliar spray and the leaves in a soil mixture, thereby reducing the dependency on synthetic herbicides in the crop cultivation and contributing to developing eco-friendly agriculture. Full article
(This article belongs to the Special Issue Plant Chemical Ecology)
Show Figures

Figure 1

12 pages, 2073 KiB  
Article
Gene Expression and Interaction Analysis of FsWRKY4 and FsMAPK3 in Forsythia suspensa
by Xinjie Tan, Jiaxi Chen, Jiaqi Zhang, Guangyang Guo, Hongxiao Zhang, Xingli Zhao, Shufang Lv, Huawei Xu and Dianyun Hou
Plants 2023, 12(19), 3415; https://doi.org/10.3390/plants12193415 - 28 Sep 2023
Cited by 2 | Viewed by 1839
Abstract
Forsythia suspensa is a deciduous shrub that belongs to the family Myrtaceae, and its dried fruits are used as medicine. F. suspensa contains several secondary metabolites, which exert pharmacological effects. One of the main active components is forsythin, which exhibits free radical scavenging, [...] Read more.
Forsythia suspensa is a deciduous shrub that belongs to the family Myrtaceae, and its dried fruits are used as medicine. F. suspensa contains several secondary metabolites, which exert pharmacological effects. One of the main active components is forsythin, which exhibits free radical scavenging, antioxidant, anti-inflammatory, and anti-cancer effects. Mitogen-activated protein kinase (MAPKs) can increase the activity of WRKY family transcription factors in a phosphorylated manner, thereby increasing the content of secondary metabolites. However, the mechanism of interaction between MAPKs and WRKYs in F. suspensa remains unclear. In this study, we cloned the genes of FsWRKY4 and FsMAPK3, and performed a bioinformatics analysis. The expression patterns of FsWRKY4 and FsMAPK3 were analyzed in the different developmental stages of leaf and fruit from F. suspensa using real-time fluorescence quantitative PCR (qRT-PCR). Subcellular localization analysis of FsWRKY4 and FsMAPK3 proteins was performed using a laser scanning confocal microscope. The existence of interactions between FsWRKY4 and FsMPAK3 in vitro was verified by yeast two-hybridization. Results showed that the cDNA of FsWRKY4 (GenBank number: OR566682) and FsMAPK3 (GenBank number: OR566683) were 1587 and 522 bp, respectively. The expression of FsWRKY4 was higher in the leaves than in fruits, and the expression of FsMAPK3 was higher in fruits but lower in leaves. The subcellular localization results indicated that FsWRKY4 was localized in the nucleus and FsMAPK3 in the cytoplasm and nucleus. The prey vector pGADT7-FsWRKY4 and bait vector pGBKT7-FsMAPK3 were constructed and co-transferred into Y2H Glod yeast receptor cells. The results indicated that FsWRKY4 and FsMAPK3 proteins interact with each other in vitro. The preliminary study may provide a basis for more precise elucidation of the synthesis of secondary metabolites in F. suspensa. Full article
(This article belongs to the Special Issue Secondary Metabolites in Plants)
Show Figures

Figure 1

15 pages, 2694 KiB  
Article
Variations in VOCs Emissions and Their O3 and SOA Formation Potential among Different Ages of Plant Foliage
by Baowen Zhang, Lili Qiao, Huijuan Han, Wenxia Xie and Lingyu Li
Toxics 2023, 11(8), 645; https://doi.org/10.3390/toxics11080645 - 25 Jul 2023
Cited by 5 | Viewed by 1918
Abstract
Volatile organic compounds (VOCs) emitted by plant foliage play an important role in ozone (O3) and secondary organic aerosol (SOA) formation. Their emissions can be influenced by the leaf age. We explored the VOCs emissions and their effects on the formation [...] Read more.
Volatile organic compounds (VOCs) emitted by plant foliage play an important role in ozone (O3) and secondary organic aerosol (SOA) formation. Their emissions can be influenced by the leaf age. We explored the VOCs emissions and their effects on the formation of O3 and SOA from plant foliage in different ages. VOCs emissions from the young, mature, and senescent leaves of Ginkgo biloba, Ligustrum lucidum, and Forsythia suspensa were measured using the dynamic enclosure system and the TD–GC–MS technique. Based on the emission rates of quantified compounds, their potential to form O3 and SOA was estimated. Results showed that there were significant differences in the VOCs emission rate and their composition among leaves in different ages. The emission rate of the total VOCs by young leaves was the highest, while the lowest by senescent leaves. Monoterpenes were the dominant VOCs category, and isoprene emission had the lowest contribution for the leaves at each age. With increasing leaf age, the proportion of monoterpenes emission increased, and the proportion of sesquiterpenes decreased. The variations of isoprene and other VOCs were different. The potentials of total VOCs, isoprene, monoterpenes, sesquiterpenes, and other VOCs to form O3 (OFP) and SOA (SOAP) varied significantly among leaves at different ages. The total OFP and SOAP were the highest by young leaves, while the lowest by senescent leaves. With increasing leaf age, the contribution of monoterpenes to OFP and SOAP also increased, while that of sesquiterpenes decreased. Our study will provide support for the more accurate parameterization of the emission model and help to understand the VOCs emissions and study the precise prevention and control of complex air pollution at different times. Full article
(This article belongs to the Special Issue Environmental and Health Effects of Volatile Organic Compounds)
Show Figures

Figure 1

14 pages, 3048 KiB  
Article
Comparative Transcriptome Analysis of MeJA Responsive Enzymes Involved in Phillyrin Biosynthesis of Forsythia suspensa
by Xiaoran Liu, Jiaqi Zhang, Hao Liu, Huixiang Shang, Xingli Zhao, Huawei Xu, Hongxiao Zhang and Dianyun Hou
Metabolites 2022, 12(11), 1143; https://doi.org/10.3390/metabo12111143 - 20 Nov 2022
Cited by 3 | Viewed by 2462
Abstract
Forsythia suspensa (Thunb.) has been widely used in traditional medicines in Asia. According to the 2020 edition of Chinese Pharmacopoeia, phillyrin is the main active ingredient in F. suspensa, which is effective in clearing heat, reducing swelling, and dispersing nodules. F. suspensa [...] Read more.
Forsythia suspensa (Thunb.) has been widely used in traditional medicines in Asia. According to the 2020 edition of Chinese Pharmacopoeia, phillyrin is the main active ingredient in F. suspensa, which is effective in clearing heat, reducing swelling, and dispersing nodules. F. suspensa leaf is a non-toxic substance and it can be used to make a health tea. Here, we combine elicitors and transcriptomics to investigate the inducible biosynthesis of the phillyrin from the F. suspensa. After the fruits and leaves of F. suspensa were treated with different concentrations of methyl jasmonate (MeJA), the content of phillyrin in the fruits reached a peak at 200 µM MeJA for 12 h, but which was decreased in leaves. To analyze the differences in key enzyme genes involved in the phillyrin biosynthesis, we sequenced the transcriptome of F. suspensa leaves and fruits treated with 200 µM MeJA for 12 h. We hypothesized that nine genes related to coniferin synthesis including: F. suspensa UDP-glycosyltransferase (FsUGT); F. suspensa 4-coumarate coenzyme CoA ligase (Fs4CL); and F. suspensa Caffeoyl-CoA O-methyltransferase (FsCCoAOMT) etc. The qRT-PCR analysis of genes related to phillyrin biosynthesis was consistent with RNA-seq analysis. We also investigated the dynamic changes of genes in F. suspensa leaves and fruits at different time points after 200 µM MeJA treatment, which laid the foundation for further study of the molecular mechanisms regulating the biosynthesis of phillyrin. Full article
(This article belongs to the Special Issue Plant Metabolic Genetic Engineering)
Show Figures

Figure 1

17 pages, 3587 KiB  
Article
Green Extraction of Forsythoside A, Phillyrin and Phillygenol from Forsythia suspensa Leaves Using a β-Cyclodextrin-Assisted Method
by Jing Li, Qiao Qin, Sheng-Hua Zha, Qing-Sheng Zhao, Hang Li, Lu-Peng Liu, Shou-Bu Hou and Bing Zhao
Molecules 2022, 27(20), 7055; https://doi.org/10.3390/molecules27207055 - 19 Oct 2022
Cited by 12 | Viewed by 2698
Abstract
In this study, a green process of β-cyclodextrin (β-CD)-assisted extraction of active ingredients from Forsythia suspensa leaves was developed. Firstly, the optimal process of extraction was as follows: the ratio between Forsythia suspensa leaves and β-CD was 3.61:5, the solid–liquid ratio was 1:36.3, [...] Read more.
In this study, a green process of β-cyclodextrin (β-CD)-assisted extraction of active ingredients from Forsythia suspensa leaves was developed. Firstly, the optimal process of extraction was as follows: the ratio between Forsythia suspensa leaves and β-CD was 3.61:5, the solid–liquid ratio was 1:36.3, the temperature was 75.25 °C and the pH was 3.94. The yields of forsythoside A, phillyrin and phillygenol were 11.80 ± 0.141%, 5.49 ± 0.078% and 0.319 ± 0.004%, respectively. Then, the structure characteristics of the β-CD-assisted extract of Forsythia suspensa leaves (FSE-β-CD) were analyzed using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and molecular docking to demonstrate that the natural active products from Forsythia suspensa leaves had significant interactions with the β-CD. Additionally, the loss of forsythoside A from aqueous FSE-CD at 80 °C was only 12%, compared with Forsythia suspensa leaf extract (FSE) which decreased by 13%. In addition, the aqueous solubility of FSE-CD was significantly increased to 70.2 g/L. The EC50 for scavenging DPPH and ABTS radicals decreased to 28.98 ug/mL and 25.54 ug/mL, respectively. The results showed that the β-CD-assisted extraction process would be a promising technology for bioactive compounds extracted from plants. Full article
Show Figures

Figure 1

13 pages, 673 KiB  
Review
Review on the Pharmacological Properties of Phillyrin
by Chenyu Zhou, Mengya Lu, Jialei Cheng, Emelda Rosseleena Rohani, Hamizah Shahirah Hamezah, Rongchun Han and Xiaohui Tong
Molecules 2022, 27(12), 3670; https://doi.org/10.3390/molecules27123670 - 7 Jun 2022
Cited by 33 | Viewed by 4098
Abstract
Phillyrin is an effective lignan glycoside extracted from a traditional Chinese medicine Forsythia suspensa (Thunb.) Vahl (Oleaceae). It mainly exists in the roots, stems, leaves and fruits of the plant, with the highest content in the leaves. In terms of its medicinal application, [...] Read more.
Phillyrin is an effective lignan glycoside extracted from a traditional Chinese medicine Forsythia suspensa (Thunb.) Vahl (Oleaceae). It mainly exists in the roots, stems, leaves and fruits of the plant, with the highest content in the leaves. In terms of its medicinal application, there are a large number of experimental data proving its pharmacological effects in vitro and in animal models, such as anti-inflammatory, anti-obesity, anti-tumor, etc. Furthermore, pharmacokinetic experiments have also shown phillyrin’s high effectiveness and low toxicity. Despite more than one thousand studies in the literature on phillyrin retrievable from Web of Science, PubMed, and CNKI, few reviews on its pharmacological activities have been presented conclusively. In this paper, we aimed to summarize the pharmacological and pharmacokinetic characteristics of phillyrin from the current literature, focusing on its anti-inflammatory, anti-aging, antiviral, antibacterial, hepatoprotective and anti-cancer effects, hoping to come up with new insights for its application as well as future studies. Full article
Show Figures

Figure 1

21 pages, 4021 KiB  
Review
The Biological Effects of Forsythia Leaves Containing the Cyclic AMP Phosphodiesterase 4 Inhibitor Phillyrin
by Sansei Nishibe, Kumiko Mitsui-Saitoh, Junichi Sakai and Takahiko Fujikawa
Molecules 2021, 26(8), 2362; https://doi.org/10.3390/molecules26082362 - 19 Apr 2021
Cited by 12 | Viewed by 5607
Abstract
Forsythia fruit (Forsythia suspensa Vahl (Oleaceae)) is a common component of Kampo medicines for treating the common cold, influenza, and allergies. The main polyphenolic compounds in the leaves of F. suspensa are pinoresinol β-d-glucoside, phillyrin and forsythiaside, and their levels [...] Read more.
Forsythia fruit (Forsythia suspensa Vahl (Oleaceae)) is a common component of Kampo medicines for treating the common cold, influenza, and allergies. The main polyphenolic compounds in the leaves of F. suspensa are pinoresinol β-d-glucoside, phillyrin and forsythiaside, and their levels are higher in the leaves of the plant than in the fruit. It is known that polyphenolic compounds stimulate lipid catabolism in the liver and suppress dyslipidemia, thereby attenuating diet-induced obesity and polyphenolic anti-oxidants might attenuate obesity in animals consuming high-fat diets. Recently, phillyrin was reported as a novel cyclic AMP phosphodiesterase 4 (PDE4) inhibitor derived from forsythia fruit. It was expected that the leaves of F. suspensa might display anti-obesity effects and serve as a health food material. In this review, we summarized our studies on the biological effects of forsythia leaves containing phillyrin and other polyphenolic compounds, particularly against obesity, atopic dermatitis, and influenza A virus infection, and its potential as a phytoestrogen. Full article
Show Figures

Figure 1

18 pages, 2871 KiB  
Article
Tissue-Specific Accumulation and Isomerization of Valuable Phenylethanoid Glycosides from Plantago and Forsythia Plants
by Moritz Zürn, Gergő Tóth, Tim Ausbüttel, Zoltán Mucsi, Kata Horváti, Szilvia Bősze, Magdolna Sütöri-Diószegi, Bernadett Pályi, Zoltán Kis, Béla Noszál and Imre Boldizsár
Int. J. Mol. Sci. 2021, 22(8), 3880; https://doi.org/10.3390/ijms22083880 - 9 Apr 2021
Cited by 5 | Viewed by 3792
Abstract
A comparative phytochemical study on the phenylethanoid glycoside (PhEG) composition of the underground organs of three Plantago species (P. lanceolata, P. major, and P. media) and that of the fruit wall and seed parts of Forsythia suspensa and F. europaea [...] Read more.
A comparative phytochemical study on the phenylethanoid glycoside (PhEG) composition of the underground organs of three Plantago species (P. lanceolata, P. major, and P. media) and that of the fruit wall and seed parts of Forsythia suspensa and F. europaea fruits was performed. The leaves of these Forsythia species and six cultivars of the hybrid F. × intermedia were also analyzed, demonstrating the tissue-specific accumulation and decomposition of PhEGs. Our analyses confirmed the significance of selected tissues as new and abundant sources of these valuable natural compounds. The optimized heat treatment of tissues containing high amounts of the PhEG plantamajoside (PM) or forsythoside A (FA), which was performed in distilled water, resulted in their characteristic isomerizations. In addition to PM and FA, high amounts of the isomerization products could also be isolated after heat treatment. The isomerization mechanisms were elucidated by molecular modeling, and the structures of PhEGs were identified by nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectrometry (HR-MS) techniques, also confirming the possibility of discriminating regioisomeric PhEGs by tandem MS. The PhEGs showed no cytostatic activity in non-human primate Vero E6 cells, supporting their safe use as natural medicines and allowing their antiviral potency to be tested. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

13 pages, 1932 KiB  
Article
Polyphenolic Composition and Anti-Melanoma Activity of White Forsythia (Abeliophyllum distichum Nakai) Organ Extracts
by Tong-Kewn Yoo, Ju-Sung Kim and Tae Kyung Hyun
Plants 2020, 9(6), 757; https://doi.org/10.3390/plants9060757 - 17 Jun 2020
Cited by 23 | Viewed by 4538
Abstract
Abeliophyllum distichum Nakai, commonly called white forsythia, is a monotypic genus endemic to Korea. Although A. distichum is mainly used as an ornamental plant because of its horticultural value, recent studies have demonstrated its bioactivities, including antioxidant and anti-inflammatory activities, prompting us to [...] Read more.
Abeliophyllum distichum Nakai, commonly called white forsythia, is a monotypic genus endemic to Korea. Although A. distichum is mainly used as an ornamental plant because of its horticultural value, recent studies have demonstrated its bioactivities, including antioxidant and anti-inflammatory activities, prompting us to investigate the potential anticancer effect of A. distichum organ extracts (leaves, fruit, and branches) against human melanoma SK-MEL-2 cells. The methanol extract of A. distichum leaves (AL) exhibited dose- and time-dependent cytotoxicities against SK-MEL-2 cells but not against HDFa human dermal fibroblasts. Based on high-performance liquid chromatography analysis, we identified 18 polyphenolic compounds from A. distichum organ extracts and suggest that differences in anticancer activity between organ extracts should be caused by different compositions of polyphenolic compounds. Additionally, the Annexin V/propidium iodide staining assay and analysis of caspase activity and expression indicated that AL induced cell death, including early and late apoptosis, as well as necrosis, by inducing the extrinsic pathway. Furthermore, we analyzed the differentially expressed genes between mock- and AL-treated cells using RNA-seq technology, suggesting that the anti-melanoma action of AL is mediated by down-regulation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Taken together, these results shed light on the potential use of A. distichum as a green resource with potent anti-melanoma activity. Full article
(This article belongs to the Special Issue Medicinal Plants)
Show Figures

Figure 1

19 pages, 5292 KiB  
Article
Leaf Fresh Weight Versus Dry Weight: Which is Better for Describing the Scaling Relationship between Leaf Biomass and Leaf Area for Broad-Leaved Plants?
by Weiwei Huang, David A. Ratkowsky, Cang Hui, Ping Wang, Jialu Su and Peijian Shi
Forests 2019, 10(3), 256; https://doi.org/10.3390/f10030256 - 13 Mar 2019
Cited by 124 | Viewed by 24374
Abstract
Leaf dry mass per unit area (LMA) is considered to represent the photosynthetic capacity, which actually implies a hypothesis that foliar water mass (leaf fresh weight minus leaf dry weight) is proportional to leaf dry weight during leaf growth. However, relevant studies demonstrated [...] Read more.
Leaf dry mass per unit area (LMA) is considered to represent the photosynthetic capacity, which actually implies a hypothesis that foliar water mass (leaf fresh weight minus leaf dry weight) is proportional to leaf dry weight during leaf growth. However, relevant studies demonstrated that foliar water mass disproportionately increases with increasing leaf dry weight. Although scaling relationships of leaf dry weight vs. leaf area for many plants were investigated, few studies compared the scaling relationship based on leaf dry weight with that based on leaf fresh weight. In this study, we used the data of three families (Lauraceae, Oleaceae, and Poaceae, subfamily Bambusoideae) with five broad-leaved species for each family to examine whether using different measures for leaf biomass (i.e., dry weight and fresh weight) can result in different fitted results for the scaling relationship between leaf biomass and area. Reduced major axis regression was used to fit the log-transformed data of leaf biomass and area, and the bootstrap percentile method was used to test the significance of the difference between the estimate of the scaling exponent of leaf dry weight vs. area and that of leaf fresh weight vs. area. We found that there were five species across three families (Phoebe sheareri (Hemsl.) Gamble, Forsythia viridissima Lindl., Osmanthus fragrans Lour., Chimonobambusa sichuanensis (T.P. Yi) T.H. Wen, and Hibanobambusa tranquillans f. shiroshima H. Okamura) whose estimates of the scaling exponent of leaf dry weight to area and that of leaf fresh weight to area were not significantly different, whereas, for the remaining ten species, both estimates were significantly different. For the species in the same family whose leaf shape is narrow (i.e., a low ratio of leaf width to length) the estimates of two scaling exponents are prone to having a significant difference. There is also an allometric relationship between leaf dry weight and fresh weight, which means that foliar water mass disproportionately increases with increased leaf dry weight. In addition, the goodness of fit for the scaling relationship of leaf fresh weight vs. area is better than that for leaf dry weight vs. area, which suggests that leaf fresh mass might be more able to reflect the physiological functions of leaves associated with photosynthesis and respiration than leaf dry mass. The above conclusions are based on 15 broad-leaved species, although we believe that those conclusions may be potentially extended to other plants with broad and flat leaves. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

11 pages, 6262 KiB  
Article
Nine Different Chemical Species and Action Mechanisms of Pancreatic Lipase Ligands Screened Out from Forsythia suspensa Leaves All at One Time
by Tinggui Chen, Yayun Li and Liwei Zhang
Molecules 2017, 22(5), 795; https://doi.org/10.3390/molecules22050795 - 12 May 2017
Cited by 23 | Viewed by 5311
Abstract
It is difficult to screen out as many active components as possible from natural plants all at one time. In this study, subfractions of Forsythia suspensa leaves were firstly prepared; then, their inhibitive abilities on pancreatic lipase were tested; finally, the highest inhibiting [...] Read more.
It is difficult to screen out as many active components as possible from natural plants all at one time. In this study, subfractions of Forsythia suspensa leaves were firstly prepared; then, their inhibitive abilities on pancreatic lipase were tested; finally, the highest inhibiting subfraction was screened by self-made immobilized pancreatic lipase. Results showed that nine ligands, including eight inhibitors and one promotor, were screened out all at one time. They were three flavonoids (rutin, IC50: 149 ± 6.0 μmol/L; hesperidin, 52.4 μmol/L; kaempferol-3-O-rutinoside, isolated from F. suspensa leaves for the first time, IC50 notably reached 2.9 ± 0.5 μmol/L), two polyphenols (chlorogenic acid, 3150 ± 120 μmol/L; caffeic acid, 1394 ± 52 μmol/L), two lignans (phillyrin, promoter; arctigenin, 2129 ± 10.5 μmol/L), and two phenethyl alcohol (forsythiaside A, 2155 ± 8.5 μmol/L; its isomer). Their action mechanisms included competitive inhibition, competitive promotion, noncompetitive inhibition, and uncompetitive inhibition. In sum, using the appropriate methods, more active ingredients can be simply and quickly screened out all at one time from a complex natural product system. In addition, F. suspensa leaves contain numerous inhibitors of pancreatic lipase. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

Back to TopTop