Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = forked pipe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5881 KiB  
Article
Impact of Branch Pipe Valve Closure Procedures on Pipeline Water Hammer Pressure: A Case Study of Xinlongkou Hydropower Station
by Zilong Li, Jin Jin, Zhanpeng Pan, Jianren Sun, Kaiqiang Geng and Yu Qiao
Appl. Sci. 2025, 15(2), 897; https://doi.org/10.3390/app15020897 - 17 Jan 2025
Viewed by 1018
Abstract
To investigate the impact of different valve closure strategies on water hammer pressure variations in pipelines and terminal valves under accident conditions, this study focuses on the Xinlongkou Hydropower Station water conveyance project. The Bentley Hammer calculation software was used to simulate the [...] Read more.
To investigate the impact of different valve closure strategies on water hammer pressure variations in pipelines and terminal valves under accident conditions, this study focuses on the Xinlongkou Hydropower Station water conveyance project. The Bentley Hammer calculation software was used to simulate the changes in water hammer pressure in the pipeline and unit terminal valves under various valve closure scenarios. Additionally, computational fluid dynamics (CFD) was applied to analyze the dynamic effects of different factors on the water hammer in the branch pipelines of the station. The results showed that shorter valve closure times resulted in higher peak water hammer pressures, with the maximum pressure occurring at the terminal valve. Extending the valve closure time effectively reduced both the peak pressure and number of pressure oscillations at the terminal valve, with pressure fluctuations stabilizing within approximately 30 s. Two-stage valve closures led to water hammer pressures 8–14.1% higher than those from one-stage linear closures. Based on these findings, it is recommended that stations adopt a valve closure time greater than 9 s during load shedding or implement a combined strategy of fast closure (60%) and slow closure (40%). The study also revealed that the primary factors influencing the water hammer are valve closure time, number of valves, valve diameter, and valve distance, in that order, with the distance having a relatively minor impact. The results of this study provide valuable insights into valve closure strategies for water conveyance projects. Full article
Show Figures

Figure 1

14 pages, 3538 KiB  
Article
Exploring the Root Morphological Traits of Diverse-Origin Cultivated Soybean
by Waleed Khan, Stanley Ahamefula Amos, Mohammad Shafiqul Islam, Amit Ghimire, Liny Lay and Yoonha Kim
Agronomy 2023, 13(10), 2666; https://doi.org/10.3390/agronomy13102666 - 23 Oct 2023
Cited by 4 | Viewed by 2510
Abstract
Root morphological traits (RMTs) profoundly influence plant growth, resilience to abiotic stresses, and yield in soybean (Glycine max). In a comprehensive study spanning two consecutive years (2021–2022), the RMTs were assessed in 216 soybean accessions from 34 diverse origins. The investigation [...] Read more.
Root morphological traits (RMTs) profoundly influence plant growth, resilience to abiotic stresses, and yield in soybean (Glycine max). In a comprehensive study spanning two consecutive years (2021–2022), the RMTs were assessed in 216 soybean accessions from 34 diverse origins. The investigation involved randomized batches with plants cultivated in PVC pipes filled with horticultural soil and harvested at the V2 growth stage. All the germplasms exhibited significant differences (p < 0.001) in all measured traits, i.e., total root length (TRL), root volume (RV), average diameter (AD), number of tips (NT), number of forks (NF), and tertiary total length (TTL). Among the top 5% performers in TRL, which, interestingly, were exclusively of Korean origin, germplasm IT115491 displayed an impressive average TRL value of 1426.24 cm. Notably, germplasms from Serbia and Korea predominantly occupied the upper AD quantile, with IT156262 exhibiting the highest AD value of 0.57 mm. A correlation analysis showed strong positive associations of TRL with RV (r = 0.85), NT (r = 0.84), NF (r = 0.96), and TTL (r = 0.88), whereas it had a negative association with AD (r = −0.25). A principal component analysis (PCA) showed a cumulative 95% of the total variance in the data in the first three principal components (PCs). PC1 (eigenvalue = 4.64) accounted for a 77.00% variance, with TRL, RV, NF, NT, and TTL exhibiting the highest associated eigenvectors. K-means clustering was performed with three clusters. Cluster 2 contained accessions with higher AD values, whereas Cluster 3 comprised accessions with increased TRL, NT, NF, and TTL, which mostly originated from Korea. Our findings offer targeted insights for plant breeders to optimize specific root traits and enhance crop performance across diverse environmental conditions by strategically targeting these clusters. Additionally, the influence of cultivar origin on root traits warrants further investigation, with implications for future breeding programs. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

13 pages, 3065 KiB  
Article
Trees Adjust the Shape of Branch Unions to Increase Their Load-Bearing Capacity
by Steffen Rust
Forests 2023, 14(5), 1041; https://doi.org/10.3390/f14051041 - 18 May 2023
Viewed by 4936
Abstract
The likelihood of branch union failure often needs to be assessed in tree risk assessment. Most of the guidance used in practice is based on the shape of these forks, specifically the shape (“U” or “V”), the angle between the branches, the presence [...] Read more.
The likelihood of branch union failure often needs to be assessed in tree risk assessment. Most of the guidance used in practice is based on the shape of these forks, specifically the shape (“U” or “V”), the angle between the branches, the presence of lateral bulges, and the aspect ratio of the branches. This study extends previous studies with a novel approach to the biomechanical analysis of fork shape and contributes results from destructive tests on two important European tree species, using comparatively large trees. Surprisingly, many samples deviated from the expected pattern of constant or decreasing cross-sectional area from the trunk beyond the fork. The results show three mechanisms that counteract the potential weakening at a bifurcation, two of which have not been documented before: an increase in section modulus from the stem base to where the stems part, an increase in section modulus caused by lateral bulging, and an increase in section modulus in the branches caused by an adjusted shape. Neither the shape of the forks nor the amount of included bark had a significant impact on their strength. Like several previous studies, the results of this study caution against the use of simple rules to assess the likelihood of branch union failure. The increasing availability of “digital twins” of urban trees may help us to use these results to assess the shape of branch unions in a quantitative way. Full article
(This article belongs to the Special Issue Tree Stability and Tree Risk Analysis)
Show Figures

Graphical abstract

24 pages, 8516 KiB  
Article
Experimental Investigation of the Heat Transfer Characteristics and Operation Limits of a Fork-Type Heat Pipe for Passive Cooling of a Spent Fuel Pool
by Changhwan Lim, Jonghwi Choi and Hyungdae Kim
Energies 2021, 14(23), 7862; https://doi.org/10.3390/en14237862 - 24 Nov 2021
Cited by 6 | Viewed by 3291
Abstract
A fork-type heat pipe (FHP) is a passive heat-transport and air-cooling device used to remove the decay heat of spent nuclear fuels stored in a liquid pool during a station blackout. FHPs have a unique geometrical design to resolve the significant mismatch between [...] Read more.
A fork-type heat pipe (FHP) is a passive heat-transport and air-cooling device used to remove the decay heat of spent nuclear fuels stored in a liquid pool during a station blackout. FHPs have a unique geometrical design to resolve the significant mismatch between the convective heat transfer coefficients of the evaporator and condenser parts. The evaporator at the bottom is a single heat-exchanger tube, whereas the condenser at the top consists of multiple finned tubes to maximize the heat transfer area. In this study, the heat transfer characteristics and operating limits of an FHP device were investigated experimentally. A laboratory-scale model of an FHP was manufactured, and a series of tests were conducted while the temperature was varied to simulate a spent fuel pool. As an index of the average heat transfer performance, the loop conductance was computed from the measurement data. The results show that the loop conductance of the FHP increased with the heat transfer rate but deteriorated significantly at the operating limit. The maximum attainable heat transfer rate of the unit FHP model was accurately predicted by the existing correlations of the counter-current flow limit for a single-rod-type heat pipe. In addition, the instant heat transfer behaviors of the FHP model under different temperature conditions were examined to interpret the measured loop conductance variation and operating limit. Full article
(This article belongs to the Special Issue Two-Phase Flow with Boiling Heat Transfer)
Show Figures

Figure 1

16 pages, 7519 KiB  
Article
Branch-Pipe: Improving Graph Skeletonization around Branch Points in 3D Point Clouds
by Illia Ziamtsov, Kian Faizi and Saket Navlakha
Remote Sens. 2021, 13(19), 3802; https://doi.org/10.3390/rs13193802 - 22 Sep 2021
Cited by 1 | Viewed by 3808
Abstract
Modern plant phenotyping requires tools that are robust to noise and missing data, while being able to efficiently process large numbers of plants. Here, we studied the skeletonization of plant architectures from 3D point clouds, which is critical for many downstream tasks, including [...] Read more.
Modern plant phenotyping requires tools that are robust to noise and missing data, while being able to efficiently process large numbers of plants. Here, we studied the skeletonization of plant architectures from 3D point clouds, which is critical for many downstream tasks, including analyses of plant shape, morphology, and branching angles. Specifically, we developed an algorithm to improve skeletonization at branch points (forks) by leveraging the geometric properties of cylinders around branch points. We tested this algorithm on a diverse set of high-resolution 3D point clouds of tomato and tobacco plants, grown in five environments and across multiple developmental timepoints. Compared to existing methods for 3D skeletonization, our method efficiently and more accurately estimated branching angles even in areas with noisy, missing, or non-uniformly sampled data. Our method is also applicable to inorganic datasets, such as scans of industrial pipes or urban scenes containing networks of complex cylindrical shapes. Full article
Show Figures

Figure 1

11 pages, 2415 KiB  
Article
Near-Infrared Quartz-Enhanced Photoacoustic Sensor for H2S Detection in Biogas
by Fagang Zhao, Yutong Gao, Lin Yang, Yuqing Yan, Jiashi Li, Jingrong Ren, Stefano dello Russo, Andrea Zifarelli, Pietro Patimisco, Hongpeng Wu and Lei Dong
Appl. Sci. 2019, 9(24), 5347; https://doi.org/10.3390/app9245347 - 6 Dec 2019
Cited by 13 | Viewed by 2764
Abstract
A quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for H2S detection operating in near-infrared spectral range is reported. The optical source is an erbium-doped fiber amplified laser with watt-level optical power. The QEPAS spectrophone is composed of a quartz tuning fork with a [...] Read more.
A quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor for H2S detection operating in near-infrared spectral range is reported. The optical source is an erbium-doped fiber amplified laser with watt-level optical power. The QEPAS spectrophone is composed of a quartz tuning fork with a resonance frequency of 7.2 kHz, a quality factor of 8500, and a distance between prongs of 800 µm, and two tubes with a radius of 1.3 mm and a length of 23 mm acting as an organ pipe resonator. With this spectrophone geometry, the photothermal noise contribution of the spectrophone was removed and the theoretical thermal noise level was achieved. The position of both tubes with respect to custom quartz tuning fork has been investigated as a function of signal amplitude, Q-factor, and noise of the QEPAS sensor when a high-power laser was used. Benefit from the linearity of the QEPAS signal to the excitation laser power, a detection sensitivity of 330 ppb for H2S detection was achieved at atmospheric pressure and room temperature, when the laser power was 1.6 W and the signal integration time was set to 300 ms, corresponding to a normalized noise equivalent absorption of 3.15 × 10−9 W cm−1/(Hz)1/2. The QEPAS sensor was then validated by measuring H2S in a biogas sample. Full article
(This article belongs to the Special Issue Quartz-Enhanced Photoacoustic and Photothermal Spectroscopy)
Show Figures

Figure 1

Back to TopTop