Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = focal spot quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6501 KiB  
Article
Airborne Constant Ground Resolution Imaging Optical System Design
by Zhiqiang Yang, Shizhen Gao, Qianxi Chen, Bohan Wu, Qiang Xu, Lei Gong and Lihong Yang
Photonics 2025, 12(4), 390; https://doi.org/10.3390/photonics12040390 - 16 Apr 2025
Viewed by 418
Abstract
When an unmanned aerial vehicle (UAV) tilts to capture an image of a ground target, variations in object distance may lead to uneven resolution distribution, with the focal length ranging from zero to the full field of view. The field-of-view focal length (FFL), [...] Read more.
When an unmanned aerial vehicle (UAV) tilts to capture an image of a ground target, variations in object distance may lead to uneven resolution distribution, with the focal length ranging from zero to the full field of view. The field-of-view focal length (FFL), which is a function of the field of view, characterizes the optical properties of the system for each viewing angle. The field-of-view focal length (FFL) quantifies the incremental change in image height resulting from marginal rays exiting the optical system, with infinitesimal angular variations at the field boundary. The optical aberration manifests as an effective focal length variation that exhibits field-dependent characteristics. Through systematic calculation and optimization of the field-of-view focal lengths (FFLs) for ground resolution (GR) control, a mid-wave infrared (MWIR) optical system has been successfully designed, featuring a 10° × 8° field of view (FOV) with an F-number of 3. The optical system implements field-adapted focal length adjustment across distinct viewing angles to ensure consistent ground resolution preservation throughout the full field of view. The designed optical system achieves near-diffraction-limited modulation transfer function (MTF) performance across the full field of view, with all dispersion spots consistently confined within the Airy disk at every viewing angle. The optical system demonstrates superior imaging performance with all dispersion spots confined within the Airy disk radius, fully complying with stringent image quality specifications. Featuring a compact structural configuration, the system exhibits optimal suitability for airborne ground-target reconnaissance applications. Full article
(This article belongs to the Special Issue Advances in Optical System Design)
Show Figures

Figure 1

11 pages, 3893 KiB  
Article
Wavefront Characterization of an Optical Parametric Oscillator as a Function of Wavelength
by Juan M. Bueno
Photonics 2025, 12(4), 347; https://doi.org/10.3390/photonics12040347 - 8 Apr 2025
Viewed by 443
Abstract
The wavefront aberrations (WAs) of a laser beam produced by an optical parametric oscillator (OPO) have been measured using a Hartmann–Shack sensor. The OPO tuning operation requires changes in the device that might affect the shape of the wavefront beam as the illumination [...] Read more.
The wavefront aberrations (WAs) of a laser beam produced by an optical parametric oscillator (OPO) have been measured using a Hartmann–Shack sensor. The OPO tuning operation requires changes in the device that might affect the shape of the wavefront beam as the illumination wavelength is being modified. Different output wavelengths in the range 550–850 nm were systematically analyzed in terms of WAs. The WA laser beam was fairly stable with time (changes of about 1%), independently of the wavelength. Moreover, WAs were non-negligible and nearly constant between 600 and 800 nm, but they noticeably increased for 550 (~90%) and 850 nm (~50%), mainly due to a higher astigmatism influence. The contributions of other higher-order terms such as coma and spherical aberration also present particular spectral dependences. To our knowledge, this is the first report of a spectral OPO laser beam characterization in terms of optical aberrations. It addresses a gap in OPO laser characterization of WAs and offers actionable insights for multi-wavelength applications. These results might be useful in applications ranging from micromachining procedures to biomedical imaging, where an optimized focal spot is required to increase the efficiency of certain physical phenomena or to enhance the quality of the acquired images. Full article
Show Figures

Figure 1

15 pages, 3863 KiB  
Article
Floating Multi-Focus Metalens for High-Efficiency Airborne Laser Wireless Charging
by Zheting Meng, Yuting Xiao, Lianwei Chen, Si Wang, Yao Fang, Jiangning Zhou, Yang Li, Dapeng Zhang, Mingbo Pu and Xiangang Luo
Photonics 2025, 12(2), 150; https://doi.org/10.3390/photonics12020150 - 12 Feb 2025
Viewed by 952
Abstract
Laser wireless power transfer (LWPT) offers a transformative approach to wireless energy transmission, addressing critical limitations in unmanned aerial vehicles (UAVs) such as battery energy limitation. However, challenges like beam divergence, non-uniform irradiation, and alignment instability limit its practical application. Here, we present [...] Read more.
Laser wireless power transfer (LWPT) offers a transformative approach to wireless energy transmission, addressing critical limitations in unmanned aerial vehicles (UAVs) such as battery energy limitation. However, challenges like beam divergence, non-uniform irradiation, and alignment instability limit its practical application. Here, we present a lightweight air-floating metalens platform to overcome these barriers. This innovative lens focuses laser beams near the photovoltaic receiver with an energy distribution uniformity across a single spot at the focal plane that is 50 times greater than that of a conventional Gaussian beam spot, achieving a multi-spot energy distribution uniformity of up to 99% theoretically. Experimentally, we achieved 75% uniformity using a metalens sample. Simultaneously, our system maintains superior beam quality within a dynamic range of 4 m and enhances charging efficiency by 1.5 times. Our research provides a robust technical solution to improve UAV endurance, enabling efficient, long-range wireless power transfer and opening broader technological implications. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

10 pages, 7382 KiB  
Article
Near-Field Nano-Focusing and Nano-Imaging of Dielectric Microparticle Lenses
by Jinzhong Ling, Yucheng Wang, Jinkun Guo, Xin Liu and Xiaorui Wang
Nanomaterials 2024, 14(23), 1974; https://doi.org/10.3390/nano14231974 - 9 Dec 2024
Cited by 1 | Viewed by 991
Abstract
Compared with traditional far-field objective lenses, microparticle lenses have a distinct advantage of nonobservance of the diffraction limit, which has attracted extensive attention for its application in subwavelength photolithography and super-resolution imaging. In this article, a complete simulation model for a microparticle lens [...] Read more.
Compared with traditional far-field objective lenses, microparticle lenses have a distinct advantage of nonobservance of the diffraction limit, which has attracted extensive attention for its application in subwavelength photolithography and super-resolution imaging. In this article, a complete simulation model for a microparticle lens assisted microscopic imaging system was built to analyze the imaging characteristics of any shape of microparticle lens. With this model, we simulated the resolution of a conventional objective lens, a microsphere lens and a hollow microsphere lens, which verified the correctness of our simulation model and demonstrated the super-resolution imaging ability of microsphere lenses. Secondly, the focusing and imaging characteristics of four typical microparticle lenses are illustrated, and how the focal spot affects imaging resolution and imaging quality is analyzed. Upon this conclusion, we reformed and upgraded the microsphere lens with several parameters for smaller focal spots and higher imaging resolution. Finally, three types of microparticle lenses were designed through the optimized parameters and their focusing and imaging characteristics were demonstrated with a minimum FWHM of 140 nm at the focal plane and a highest imaging resolution around 70 nm (~λ/6). Our work opens up a new perspective of super-resolution imaging with near-field microparticle lens. Full article
(This article belongs to the Special Issue Nanophotonic: Structure, Devices and System)
Show Figures

Figure 1

16 pages, 5620 KiB  
Article
Online Optical Axis Parallelism Measurement Method for Continuous Zoom Camera Based on High-Precision Spot Center Positioning Algorithm
by Chanchan Kang, Yao Fang, Huawei Wang, Feng Zhou, Zeyue Ren and Feixiang Han
Photonics 2024, 11(11), 1017; https://doi.org/10.3390/photonics11111017 - 29 Oct 2024
Viewed by 985
Abstract
Ensuring precise alignment of the optical axis is critical for achieving high-quality imaging in continuous zoom cameras. However, existing methods for measuring optical axis parallelism often lack accuracy and fail to assess parallelism across the entire focal range. This study introduces an online [...] Read more.
Ensuring precise alignment of the optical axis is critical for achieving high-quality imaging in continuous zoom cameras. However, existing methods for measuring optical axis parallelism often lack accuracy and fail to assess parallelism across the entire focal range. This study introduces an online measurement method designed to address these limitations by incorporating two enhancements. First, image processing methodologies enable sub-pixel-level extraction of the spot center, achieved through improved morphological processing and the incorporation of an edge tracing algorithm. Second, measurement software developed using Qt Creator can output real-time data on optical axis parallelism across the full focal range post-measurement. This software features a multi-threaded architecture that facilitates the concurrent execution of image acquisition, data processing, and serial communication. Experimental results derived from simulations and real data indicate that the maximum average error in extracting the center of the spot is 0.13 pixels. The proposed system provides critical data for optical axis calibration during camera adjustment and inspection. Full article
(This article belongs to the Special Issue Advancements in Optical Measurement Techniques and Applications)
Show Figures

Figure 1

14 pages, 5605 KiB  
Article
3D Multi-Phase Sub-Pixel PSF Estimation Based on Space Debris Detection System
by Fan Bu, Dalei Yao and Yan Wen
Photonics 2024, 11(10), 933; https://doi.org/10.3390/photonics11100933 - 3 Oct 2024
Viewed by 999
Abstract
The distribution of diffuse spot energy can be used to sensitively evaluate the aberrations and defects of optical systems. Therefore, the objective and quantitative measurement of diffuse spot parameters is an important means to control the detection quality of space debris detection systems. [...] Read more.
The distribution of diffuse spot energy can be used to sensitively evaluate the aberrations and defects of optical systems. Therefore, the objective and quantitative measurement of diffuse spot parameters is an important means to control the detection quality of space debris detection systems. At present, the existing optical system dispersion measurement method can only judge whether the energy distribution meets the index. However, these methods ca not provide an objective quantitative basis to guide the installation process. To solve this problem, a mathematical simulation model of 3D multi-phase sub-pixel PSF distribution is proposed. According to the relation between the CCD target plane and the theoretical image plane (focal plane, defocus, and deflection), the diffuse spot distribution of the optical system is simulated with different phase combinations. Then, Pearson Correlation Coefficient (PCC) is used to evaluate the matching similarity of the diffuse spot image. The simulation results show that when the PCC is greater than 0.96, the distribution of the two diffuse spots can be identified as matching. This also confirms the accuracy of the proposed PSF model. Then, the focusing deviation of the system being tested can be analyzed according to the phase size of the diffuse spot simulation image. This method can quickly and accurately guide the focal surface installation and testing of the system. Therefore, the purpose of improving the detection accuracy of space debris is achieved. It also provides a quantitative basis for the engineering application of optical detection systems in the future. Full article
Show Figures

Figure 1

25 pages, 56031 KiB  
Article
EF yolov8s: A Human–Computer Collaborative Sugarcane Disease Detection Model in Complex Environment
by Jihong Sun, Zhaowen Li, Fusheng Li, Yingming Shen, Ye Qian and Tong Li
Agronomy 2024, 14(9), 2099; https://doi.org/10.3390/agronomy14092099 - 14 Sep 2024
Viewed by 2131
Abstract
The precise identification of disease traits in the complex sugarcane planting environment not only effectively prevents the spread and outbreak of common diseases but also allows for the real-time monitoring of nutrient deficiency syndrome at the top of sugarcane, facilitating the supplementation of [...] Read more.
The precise identification of disease traits in the complex sugarcane planting environment not only effectively prevents the spread and outbreak of common diseases but also allows for the real-time monitoring of nutrient deficiency syndrome at the top of sugarcane, facilitating the supplementation of relevant nutrients to ensure sugarcane quality and yield. This paper proposes a human–machine collaborative sugarcane disease detection method in complex environments. Initially, data on five common sugarcane diseases—brown stripe, rust, ring spot, brown spot, and red rot—as well as two nutrient deficiency conditions—sulfur deficiency and phosphorus deficiency—were collected, totaling 11,364 images and 10 high-definition videos captured by a 4K drone. The data sets were augmented threefold using techniques such as flipping and gamma adjustment to construct a disease data set. Building upon the YOLOv8 framework, the EMA attention mechanism and Focal loss function were added to optimize the model, addressing the complex backgrounds and imbalanced positive and negative samples present in the sugarcane data set. Disease detection models EF-yolov8s, EF-yolov8m, EF-yolov8n, EF-yolov7, and EF-yolov5n were constructed and compared. Subsequently, five basic instance segmentation models of YOLOv8 were used for comparative analysis, validated using nutrient deficiency condition videos, and a human–machine integrated detection model for nutrient deficiency symptoms at the top of sugarcane was constructed. The experimental results demonstrate that our improved EF-yolov8s model outperforms other models, achieving mAP_0.5, precision, recall, and F1 scores of 89.70%, 88.70%, 86.00%, and 88.00%, respectively, highlighting the effectiveness of EF-yolov8s for sugarcane disease detection. Additionally, yolov8s-seg achieves an average precision of 80.30% with a smaller number of parameters, outperforming other models by 5.2%, 1.9%, 2.02%, and 0.92% in terms of mAP_0.5, respectively, effectively detecting nutrient deficiency symptoms and addressing the challenges of sugarcane growth monitoring and disease detection in complex environments using computer vision technology. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

7 pages, 2613 KiB  
Communication
High-Power External Spatial Beam Combining of 7-Channel Quantum Cascade Lasers Emitting at ~8.5 μm
by Haibo Dong, Xuyan Zhou, Man Hu, Yuan Ma, Aiyi Qi, Weiqiao Zhang and Wanhua Zheng
Photonics 2024, 11(6), 513; https://doi.org/10.3390/photonics11060513 - 27 May 2024
Cited by 1 | Viewed by 1326
Abstract
Based on the demand for high-power output, a spatial beam combining 7-channel quantum cascade lasers (QCLs) is demonstrated in this paper. A “2 + 3 + 2” stepped structure is designed to convert the seven beam spots into a circular arrangement. An aspherical [...] Read more.
Based on the demand for high-power output, a spatial beam combining 7-channel quantum cascade lasers (QCLs) is demonstrated in this paper. A “2 + 3 + 2” stepped structure is designed to convert the seven beam spots into a circular arrangement. An aspherical lens with a large numerical aperture (NA) of 0.85 and a focal length of 1.873 mm is used in each single QCL for collimation, and seven reflectors are utilized in the 7-channel QCLs combined in the spatial beam. After combining the spatial beam, the maximum continuous output power of the system is 3.6 W, and the beam quality M2 is 5.59 in the fast axis and 8.3 in the slow axis, respectively. Full article
(This article belongs to the Special Issue High Power Lasers: Technology and Applications)
Show Figures

Figure 1

11 pages, 3527 KiB  
Article
Dynamic Polarization Patterning Technique for High-Quality Liquid Crystal Planar Optics
by Xinwei Qin, Keyang Zhao, Xin-jun Zhang, Xiaohong Zhou, Wenbin Huang and Linsen Chen
Photonics 2024, 11(4), 350; https://doi.org/10.3390/photonics11040350 - 10 Apr 2024
Cited by 1 | Viewed by 2020
Abstract
The Pancharatnam–Berry (PB)-phase liquid crystal (LC) planar optical elements, featuring large apertures and a light weight, are emerging as the new generation optics. The primary method for fabricating large-aperture LC planar optical elements is through photo-alignment, utilizing polarization laser direct writing. However, conventional [...] Read more.
The Pancharatnam–Berry (PB)-phase liquid crystal (LC) planar optical elements, featuring large apertures and a light weight, are emerging as the new generation optics. The primary method for fabricating large-aperture LC planar optical elements is through photo-alignment, utilizing polarization laser direct writing. However, conventional polarization direct writing suffers from an inertia-induced stopping step during splicing, leading to suboptimal optical effects. Here, we propose a novel highly efficient method for arbitrary polarization patterning, significantly reducing interface splicing errors in these optical elements. (We call it dynamic polarization patterning technology). This process involves simultaneous mobile splicing and real-time generation of different polarization patterns for exposure, eliminating the inertia-related splicing interruption. As a demonstration, we fabricated a lens with an aperture of approximately 1 cm within 30 min at 633 nm. Furthermore, we developed a 100% fill-factor lens array (3 × 3) with an element lens diameter of approximately 7 mm within 1.5 h at 532 nm. Their focal lengths were uniformly set at 30 cm, demonstrating superior convergence capabilities within their designated working wavelengths, alongside commendable performance in converging light across various other wavelengths. Our measurements confirmed the good focusing performance of these samples. The convergence spot size of the lens deviated by approximately 40% from the theoretical diffraction limit, whereas the lens array exhibited a deviation of around 30%. The dynamic polarization direct writing during uniform platform movement reduced splicing errors to a mere 100–200 nm. The enhancement in imaging quality can be primarily attributed to the innovative use of mobile polarization splicing exposure technology, coupled with the inherent self-smoothing properties of LC molecules. This synergy significantly mitigates the impact of seam diffraction interference. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

16 pages, 3090 KiB  
Article
Eumelanin Detection in Melanized Focal Changes but Not in Red Focal Changes on Atlantic Salmon (Salmo salar) Fillets
by Kazumasa Wakamatsu, Johannes M. Dijkstra, Turid Mørkøre and Shosuke Ito
Int. J. Mol. Sci. 2023, 24(23), 16797; https://doi.org/10.3390/ijms242316797 - 27 Nov 2023
Cited by 6 | Viewed by 3885
Abstract
Superficial discolored spots on Atlantic salmon (Salmo salar) fillets are a serious quality problem for commercial seafood farming. Previous reports have proposed that the black spots (called melanized focal changes (MFCs)) may be melanin, but no convincing evidence has been reported. [...] Read more.
Superficial discolored spots on Atlantic salmon (Salmo salar) fillets are a serious quality problem for commercial seafood farming. Previous reports have proposed that the black spots (called melanized focal changes (MFCs)) may be melanin, but no convincing evidence has been reported. In this study, we performed chemical characterization of MFCs and of red pigment (called red focal changes (RFCs)) from salmon fillets using alkaline hydrogen peroxide oxidation and hydroiodic acid hydrolysis. This revealed that the MFCs contain 3,4-dihydroxyphenylalanine (DOPA)-derived eumelanin, whereas the RFCs contain only trace amounts of eumelanin. Therefore, it is probable that the black color of the MFCs can be explained by the presence of eumelanin from accumulated melanomacrophages. For the red pigment, we could not find a significant signature of either eumelanin or pheomelanin; the red color is probably predominantly hemorrhagic in nature. However, we found that the level of pigmentation in RFCs increased together with some melanogenic metabolites. Comparison with a “mimicking experiment”, in which a mixture of a salmon homogenate + DOPA was oxidized with tyrosinase, suggested that the RFCs include conjugations of DOPAquinone and/or DOPAchrome with salmon muscle tissue proteins. In short, the results suggest that melanogenic metabolites in MFCs and RFCs derive from different chemical pathways, which would agree with the two different colorations deriving from distinct cellular origins, namely melanomacrophages and red blood cells, respectively. Full article
(This article belongs to the Special Issue Melanins and Melanogenesis 4.0: From Nature to Applications)
Show Figures

Figure 1

38 pages, 31524 KiB  
Article
Comparative Hotspot Analysis of Urban Living Environments and Transit-Oriented Development (TOD) Strategies: A Case Study of Beijing and Xi’an
by Yuchen Dai, Shouhang Du and Hanqing Min
ISPRS Int. J. Geo-Inf. 2023, 12(11), 446; https://doi.org/10.3390/ijgi12110446 - 30 Oct 2023
Cited by 4 | Viewed by 4027
Abstract
The quality of urban living environments has become a focal point for local governments and citizens. By conducting a thorough analysis of the human settlement environment, the study can not only gain an intuitive insight into the quality of life of residents but [...] Read more.
The quality of urban living environments has become a focal point for local governments and citizens. By conducting a thorough analysis of the human settlement environment, the study can not only gain an intuitive insight into the quality of life of residents but also propose forward-thinking and sustainable suggestions for areas of improvement. This study optimizes and analyzes open platform data closely related to residents and assesses the suitability of different areas for living from diverse perspectives and methodologies. This study has chosen Beijing and Xi’an as the primary case studies. The local living environment is categorized into residential, living, recreational environment, transportation convenience, and safety. Our evaluation combines subjective and objective analysis methods and considers hotspot and cold spot analyses. This study employs the Analytic Hierarchy Process (AHP) as a subjective analysis method and the entropy method for objective analysis. By integrating both methods, it assesses the living environment conditions of Beijing and Xi’an. Furthermore, using GIS software, hotspot analysis is conducted for both cities, identifying areas of high and low quality. Detailed analysis is subsequently carried out for the low-quality clusters. Ultimately, this study, grounded in the theory of Transit-Oriented Development (TOD), presents recommendations for sustainable development aimed at representative rural towns and streets. City centers in Beijing and Xi’an have high-quality environments, while the outskirts show declining quality. Xi’an has uneven resource distribution, while Beijing is more balanced, with hotspot analyses indicating specific high- and low-quality cluster locations in both cities. These disparities and characteristics of the low-quality clusters offer insights for future urban development. Full article
Show Figures

Figure 1

18 pages, 4028 KiB  
Article
Target Design in SEM-Based Nano-CT and Its Influence on X-ray Imaging
by Jonas Fell, Felix Wetzler, Michael Maisl and Hans-Georg Herrmann
J. Imaging 2023, 9(8), 157; https://doi.org/10.3390/jimaging9080157 - 4 Aug 2023
Viewed by 1971
Abstract
Nano-computed tomography (nano-CT) based on scanning electron microscopy (SEM) is utilized for multimodal material characterization in one instrument. Since SEM-based CT uses geometrical magnification, X-ray targets can be adapted without any further changes to the system. This allows for designing targets with varying [...] Read more.
Nano-computed tomography (nano-CT) based on scanning electron microscopy (SEM) is utilized for multimodal material characterization in one instrument. Since SEM-based CT uses geometrical magnification, X-ray targets can be adapted without any further changes to the system. This allows for designing targets with varying geometry and chemical composition to influence the X-ray focal spot, intensity and energy distribution with the aim to enhance the image quality. In this paper, three different target geometries with a varying volume are presented: bulk, foil and needle target. Based on the analyzed electron beam properties and X-ray beam path, the influence of the different target designs on X-ray imaging is investigated. With the obtained information, three targets for different applications are recommended. A platinum (Pt) bulk target tilted by 25° as an optimal combination of high photon flux and spatial resolution is used for fast CT scans and the investigation of high-absorbing or large sample volumes. To image low-absorbing materials, e.g., polymers or organic materials, a target material with a characteristic line energy right above the detector energy threshold is recommended. In the case of the observed system, we used a 30° tilted chromium (Cr) target, leading to a higher image contrast. To reach a maximum spatial resolution of about 100 nm, we recommend a tungsten (W) needle target with a tip diameter of about 100 nm. Full article
Show Figures

Figure 1

20 pages, 5627 KiB  
Article
Sweetgum Leaf Spot Image Segmentation and Grading Detection Based on an Improved DeeplabV3+ Network
by Peng Wu, Maodong Cai, Xiaomei Yi, Guoying Wang, Lufeng Mo, Musenge Chola and Chilekwa Kapapa
Forests 2023, 14(8), 1547; https://doi.org/10.3390/f14081547 - 28 Jul 2023
Cited by 5 | Viewed by 1954
Abstract
Leaf spot disease and brown spot disease are common diseases affecting maple leaves. Accurate and efficient detection of these diseases is crucial for maintaining the photosynthetic efficiency and growth quality of maple leaves. However, existing segmentation methods for plant diseases often fail to [...] Read more.
Leaf spot disease and brown spot disease are common diseases affecting maple leaves. Accurate and efficient detection of these diseases is crucial for maintaining the photosynthetic efficiency and growth quality of maple leaves. However, existing segmentation methods for plant diseases often fail to accurately and rapidly detect disease areas on plant leaves. This paper presents a novel solution to accurately and efficiently detect common diseases in maple leaves. We propose a deep learning approach based on an enhanced version of DeepLabV3+ specifically designed for detecting common diseases in maple leaves. To construct the maple leaf spot dataset, we employed image annotation and data enhancement techniques. Our method incorporates the CBAM-FF module to fuse gradual features and deep features, enhancing the detection performance. Furthermore, we leverage the SANet attention mechanism to improve the feature extraction capabilities of the MobileNetV2 backbone network for spot features. The utilization of the focal loss function further enhances the detection accuracy of the affected areas. Experimental results demonstrate the effectiveness of our improved algorithm, achieving a mean intersection over union (MIoU) of 90.23% and a mean pixel accuracy (MPA) of 94.75%. Notably, our method outperforms traditional semantic segmentation methods commonly used for plant diseases, such as DeeplabV3+, Unet, Segnet, and others. The proposed approach significantly enhances the segmentation performance for detecting diseased spots on Liquidambar formosana leaves. Additionally, based on pixel statistics, the segmented lesion image is graded for accurate detection. Full article
Show Figures

Figure 1

11 pages, 7358 KiB  
Article
Photonics Scanning Pentaprism System for the Integrated Inspection of Large-Aperture Telescopes
by Qichang An, Hanfu Zhang, Kun Wang, Xinyue Liu and Hongwen Li
Sensors 2023, 23(15), 6650; https://doi.org/10.3390/s23156650 - 25 Jul 2023
Cited by 5 | Viewed by 1808
Abstract
To improve their spatial resolution and detection capabilities, future ground-based optical telescopes will have a size of 30 m, and the aperture of space telescopes will be increased to 10 m. Such large optical systems necessitate the development of large integrated testing equipment. [...] Read more.
To improve their spatial resolution and detection capabilities, future ground-based optical telescopes will have a size of 30 m, and the aperture of space telescopes will be increased to 10 m. Such large optical systems necessitate the development of large integrated testing equipment. In this study, spectrum and system alignment measurements and wavefront quality checking were performed using the sub-aperture detection method and a fiber-connected Photonics Scanning Pentaprism (PSP). First, the system was aligned using an optical truss, ensuring that the optical axis was properly positioned. Second, using a sub-aperture light beam though the entrance pupil, light spots were formed on the focal plane and transmitted to the spectrometer via fibers to obtain the corresponding spectral components. Then, by taking measurements at different system positions, a full-aperture spectrum response could be reached. Lastly, by photon-integrated interference on the focal plane, intensity interference fringes could be projected at the entrance pupil of the system. And the wavefront quality of the system could be verified by observing the fringe deformation. The measurement accuracy of the optical axis of the system is better than 2 mrad. The spectral measurement accuracy was better than 5%, and the wavefront measurement accuracy surpassed 0.1 wavelengths (1 wavelength = 633 nm). This study effectively enhanced the detection and in situ calibration capabilities of large telescope systems, ensuring that the performance requirements can be met in the design of future telescopes. Full article
(This article belongs to the Special Issue Advanced Applications of Fiber Optic Sensors)
Show Figures

Figure 1

14 pages, 6737 KiB  
Article
Coupling Characteristics of Powder and Laser of Coaxial Cone Nozzle for Laser Direct Metal Deposition: Numerical Simulation and Experimental Study
by Zhenhao Wang, Kaihua Hu, Lin Yang, Jian Zhang, Honghui Ding and Zelong Pan
Materials 2023, 16(9), 3403; https://doi.org/10.3390/ma16093403 - 26 Apr 2023
Cited by 3 | Viewed by 1928
Abstract
Laser direct metal deposition (LDMD) enables not only the preparation of high-performance coatings on the surfaces of low-property materials but also the three-dimensional direct manufacturing and re-manufacturing of parts. In the LDMD process, the spatial coupling characteristics of the powder flow and the [...] Read more.
Laser direct metal deposition (LDMD) enables not only the preparation of high-performance coatings on the surfaces of low-property materials but also the three-dimensional direct manufacturing and re-manufacturing of parts. In the LDMD process, the spatial coupling characteristics of the powder flow and the laser beam are the key factors affecting the forming quality of the cladding layer. Based on the gas–solid two-phase flow theory, a numerical model of coaxial powder feeding was established by CFD. The powder flow characteristics of the lower part of the nozzle, the powder particle motion trajectory, and the optical-powder spatial coupling morphology and law were studied, and the relationship between the powder flow morphology, laser beam, and powder utilization was explored. On this basis, the law between the optical-powder coupling characteristics and the geometric characteristics of the cladding layer is discussed in conjunction with LDMD experiments. The results show that the powder concentration scalar located in the focal plane of the laser beam can be used to visualize the optical-powder coupling morphology. When the powder feeding speed exceeds the loading capacity of the carrier gas flow, the powder concentration in the center of the spot and the powder utilization rate decrease. When the carrier gas flow rate is 4.0 L/min and the powder feeding rate is 4.0 g/min, the best utilization rate achieved is 81.4%. In addition, the H (height) of the cladding layer is more sensitive to changes in the powder concentration than the W (width). These findings provide new ideas for nozzle structure design and the optimization of LDMD parameters. Full article
Show Figures

Figure 1

Back to TopTop