3D Multi-Phase Sub-Pixel PSF Estimation Based on Space Debris Detection System
Abstract
:1. Introduction
2. Multi-Phase Sub-Pixel PSF Estimation
2.1. Principle of Star Detection
2.2. Focal Plane Distribution of Optical System
2.3. Simulation Analysis of Standard Diffuse Spot Distribution
3. Collecting Images of the Diffuse Spot Distribution of the Actual Detection System
4. Comparative Analysis of Standard Diffuse Spot Simulation Images and Actual Detection System Diffuse Spot Images
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, M.; Wang, H.; Yang, S.; Du, Y.; Wen, D.; Xue, Y. Space debris positioning technology based on observation by multiple optical platforms. In Proceedings of the AOPC 2019: Space Optics, Telescopes, and Instrumentation, Beijing, China, 7–9 July 2019; SPIE: Bellingham, WA, USA, 2019; Volume 11341. [Google Scholar]
- Hardy, T.J.; Cain, S.C. Characterizing Point Spread Function (PSF) fluctuations to improve Resident Space Object detection (RSO). In Proceedings of the Sensors and Systems for Space Applications VIII, Baltimore, MD, USA, 20–21 April 2015; SPIE: Bellingham, WA, USA, 2015; Volume 9469. [Google Scholar]
- Delaite, T.; Couetdic, J.; Glemet, E.; Cassaing, F. Performance of an Optical COTS Station for the wide-field Detection of Resident Space Objects. In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), Maui, HI, USA, 19–22 September 2023. [Google Scholar]
- Qi, L.; Sun, L.-C.; Gong, Z.-Z.; Rui, X.-B.; Zhang, P.-L.; Cui, Y.-H.; Zeng, J. Micro Space Debris Detection Technology and Applications. Space Debris Res. 2021, 21, 10–16. [Google Scholar]
- Vishnu Bharadwaj, B.G.; Samaga, V.V.K.; Navya, T.; Srinidhi, B.S.; Chandars, T.S. Active space debris detection, capture, and storage system. In Proceedings of the Asia Conference on Electronic Technology (ACET 2024), Singapore, 8–10 March 2024; SPIE: Bellingham, WA, USA, 2024; Volume 13211. [Google Scholar]
- Zhong, H.; Zhang, J.; Liang, S.; Wang, L. Space-Based Technology of Long-Range Wide-Field-of-View Detection, Identification and Tracking for Space Debris. Space Debris Res. 2019, 19, 1–12. [Google Scholar]
- Bendinelli, O.; Parmeggiani, G.; Zavatti, F. CCD Star Images: On the Determination of Moffat’s PSF Shape Parameters. J. Astrophys. Astron. 1988, 9, 17–24. [Google Scholar] [CrossRef]
- Wu, X. Nonparametric Point Spread Function Model Based on Deep Neural Networks for Optical Telescopes. Master’s Thesis, Taiyuan University of Technology, Taiyuan, China, 2021. [Google Scholar]
- Zieleniewski, S.; Thatte, N. Parameterizing E-ELT AO PSFs for detailed science simulations for HARMONI. In Proceedings of the 3rd AO4ELT Conference, Florence, Italy, 26–31 May 2013. [Google Scholar]
- Liske, J. Database of Technical Data. Available online: http://www.eso.org/sci/facilities/eelt/science/drm/tech_data/ao/psf_fitting/ (accessed on 27 July 2013).
- Wang, F.; Chang, J.; Hao, Y.; Du, X.; Niu, Y. The point spread function modeling of the ultra-high accurate star tracker. Opt. Tech. 2016, 42, 24–27. [Google Scholar]
- Chen, L.; Rao, P.; Sun, Y.; Ren, Q.; Zhu, H. On Orbit Modulation Transfer Function Measurement Method of Space Camera Based on Star Points. Laser Optoelectron. Prog. 2020, 57, 161102. [Google Scholar] [CrossRef]
- Attarwala, A.A.; Hardiansyah, D.; Romano, C.; Roscher, M.; Molina-Duran, F.; Wangler, B.; Glatting, G. A Method for Point Spread Function Estimation for Accurate Quantitative Imaging. IEEE Trans. Nucl. Sci. 2018, 65, 961–969. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, B.; Ma, J.; Sun, Y.; Di, M. Accurate Point Spread Function (PSF) Estimation for Coded Aperture Cameras. In Proceedings of the Optoelectronic Imaging and Multimedia Technology III, Beijing, China, 9–11 October 2014; Volume 9273. [Google Scholar]
- Beltramo-Martin, O.; Ragland, S.; Fétick, R.; Correia, C.; Dupuy, T.; Fiorentino, G.; Fusco, T.; Jolissaint, L.; Kamann, S.; Marasco, A.; et al. Review of PSF reconstruction methods and application to post-processing. In Proceedings of the Adaptive Optics Systems VII, Online, 14–18 December 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11448. [Google Scholar]
- Fan, K. Research on Ground Measurement Method of PSF Ellipticity of Space Sky Survey Telescope; Changchun Institute of Optics, Fine Mechanics and Physics, University of Chinese Academy of Sciences: Beijing, China, 2021. [Google Scholar]
- Rundquist, N.E.; Wright, S.A.; Schöck, M.; Surya, A.; Lu, J.; Turri, P.; Chapin, E.L.; Chrisholm, E.; Do, T.; Dunn, J.; et al. The InfraRed Imaging Spectrograph (IRIS) for TMT: Photometric characterization of anisoplanatic PSFs and testing of PSF-Reconstruction via AIROPA. In Proceedings of the Ground-based and Airborne Instrumentation for Astronomy VIII, Online, 14–22 December 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11447. [Google Scholar]
- Yang, T.; Zhou, F.; Xing, M. A Method for Calculating the Energy Concentration Degree of Point Target Detection System. Spacecr. Recovery Remote Sens. 2017, 38, 41–47. [Google Scholar]
- Akhmedov, D.; Yelubayev, S.; Ten, V.; Bopeyev, T.; Alipbayev, K.; Sukhenko, A. Software and mathematical support of Kazakhstani star tracker. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XX, Edinburgh, UK, 26–29 September 2016; SPIE: Bellingham, WA, USA, 2016; Volume 10000. [Google Scholar]
- Gao, H.; Liu, W.; He, H. Static PSF Measurement Method of Satellite Borne Area CMOS Camera with Point Array. Spacecr. Recovery Remote Sens. 2017, 38, 53–60. [Google Scholar]
- Swindells, I.; Wheeler, R.; Darby, S.; Bowring, S.; Burt, D.; Bell, R.; Duvet, L.; Walton, D.; Cole, R. MTF and PSF Measurements of the CCD273-84 Detector for the Euclid Visible Channel. In Proceedings of the SPIE, Space Telescopes and Instrumentation 2014: Optical, Inreared, and Millimeter Wave, Montréal, QC, Canada, 28 August 2014; Volume 9143, p. 91432V. [Google Scholar] [CrossRef]
- Martin, S.R.; Flinois, T.L.B. Simultaneous sensing of telescope pointing and starshade position. J. Astron. -Instrum. Syst. 2022, 8, 014010. [Google Scholar] [CrossRef]
- Zeng, C.; Gao, K.; Zhang, Y.; Chen, X.; Xiao, Y. Centroid location of star sub-pixels based on iterative Lagrange interpolation. In Proceedings of the AOPC 2022: Optical Sensing, Imaging, and Display Technology, Beijing, China, 23 January 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12557. [Google Scholar]
- Fufu, L.; Xu, W.; Liang, Z. Measurement Method of Random Errors in Spot Target Detection by Flat-Panel Detector. Acta Opt. Sin. 2021, 41, 0404001. [Google Scholar] [CrossRef]
- Lin, L.; Meng, Q.; Chen, J. A calculation method of operation range of infrared point target in photoelectric detection system based on considering the target diffuse spot. Optoelectron. Adv. Mater. Rapid Commun. 2023, 17, 286–294. [Google Scholar]
- Yueyong, L.; Chao, Z.; Zongte, X. Accuracy Analysis for Sub-Pixel Location of Star Image. J. Geomat. Sci. Technol. 2015, 32, 578–582. [Google Scholar]
- Brauers, J.; Seiler, C.; Aach, T. Direct PSF Estimation Using a Random Noise Target. In Proceedings of the Digital Photography VI, San Jose, CA, USA, 18 January 2010; Imai, F., Sampat, N., Xiao, F., Eds.; SPIE: Bellingham, WA, USA, 2010; Volume 7573. [Google Scholar]
- Wilson, T.M.; Xiong, X. Characterization of the VIIRS DNB mid-gain stage using observations of bright stars. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XXVII, Amsterdam, The Netherlands, 3–7 September 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12729. [Google Scholar]
- McVittie, G.R.; Enright, J. Color star tracking I: Star measurement. Opt. Eng. 2012, 51, 084402. [Google Scholar] [CrossRef]
- Zheng, R.; Liu, B.; Gao, Y.; Wang, L.; Chen, Q. Research on star points position analysis and simulation technology of infrared star simulators. Chin. J. Sci. Instrum. 2022, 43, 115–121. [Google Scholar]
- Zhang, P. Analysis of optimum time granularity selection in traffic prediction based on Pearson correlation coefficient. In Proceedings of the International Conference on Statistics, Data Science, and Computational Intelligence (CSDSCI 2022), Qingdao, China, 19–21 August 2022; SPIE: Bellingham, WA, USA, 2023; Volume 12510. [Google Scholar]
- Kirešová, S.; Rusyn, V.; Guzan, M.; Vorobets, G.; Sobota, B.; Vorobets, O. Utilizing low-cost optical sensor for the measurement of particulate matter and calculating Pearson’s correlation coefficient. In Proceedings of the Sixteenth International Conference on Correlation Optics, Chernivtsi, Ukraine, 18–21 September 2023; SPIE: Bellingham, WA, USA, 2024; Volume 12938. [Google Scholar]
- Ma, J.; Cuan, Y. Research on Pearson correlation and improved CNN-LSTM algorithm for predicting photovoltaic power generation. In Proceedings of the 4th International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2024), Xi’an, China, 26–28 January 2024; SPIE: Bellingham, WA, USA, 2024; Volume 13163. [Google Scholar]
Actual Detection System’s Diffuse Spot Images | Standard Diffuse Spot Simulation Images | PCC-P | PCC-S | PCC-M |
---|---|---|---|---|
20240619-10.raw | 0.250 × 0.125.dat | 0.9768 | 0.9630 | 0.9530 |
20240619-16.raw | 0.250 × 0.250.dat | 0.9866 | 0.9735 | 0.9572 |
20240619-21.raw | 0.250 × 0.125.dat | 0.9875 | 0.9815 | 0.9617 |
20240619-30.raw | 0 × 0.dat | 0.9937 | 0.9836 | 0.9705 |
20240619-34.raw | 0.375 × 0.125.dat | 0.9953 | 0.9897 | 0.9792 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, F.; Yao, D.; Wen, Y. 3D Multi-Phase Sub-Pixel PSF Estimation Based on Space Debris Detection System. Photonics 2024, 11, 933. https://doi.org/10.3390/photonics11100933
Bu F, Yao D, Wen Y. 3D Multi-Phase Sub-Pixel PSF Estimation Based on Space Debris Detection System. Photonics. 2024; 11(10):933. https://doi.org/10.3390/photonics11100933
Chicago/Turabian StyleBu, Fan, Dalei Yao, and Yan Wen. 2024. "3D Multi-Phase Sub-Pixel PSF Estimation Based on Space Debris Detection System" Photonics 11, no. 10: 933. https://doi.org/10.3390/photonics11100933
APA StyleBu, F., Yao, D., & Wen, Y. (2024). 3D Multi-Phase Sub-Pixel PSF Estimation Based on Space Debris Detection System. Photonics, 11(10), 933. https://doi.org/10.3390/photonics11100933