Floating Multi-Focus Metalens for High-Efficiency Airborne Laser Wireless Charging
Abstract
:1. Introduction
2. Transmission Efficiency Evaluation
2.1. Non-Uniformity of a Single Focal Spot
2.2. Overall Uniformity Estimation
2.3. Enhancement Value
3. Design of a Multi-Focus and Square Focal Spots Metalens (MFSM)
4. Simulation Results
4.1. Performance at the Focal Plane
4.2. Performance Across Different Propagation Distances
5. Experiment Results
5.1. Ground Test
5.2. Air-Floating Test
6. Discussion
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, K.; Zhou, W. Wireless laser power transmission: A review of recent progress. IEEE Trans. Power Electron. 2018, 34, 3842–3859. [Google Scholar] [CrossRef]
- Mohammadnia, A.; Ziapour, B.M.; Ghaebi, H.; Khooban, M.H. Feasibility assessment of next-generation drones powering by laser-based wireless power transfer. Opt. Laser Technol. 2021, 143, 107283. [Google Scholar] [CrossRef]
- Kawashima, N.; Takeda, K.; Yabe, K. Application of the laser energy transmission technology to drive a small airplane. Chin. Opt. Lett. 2007, 5, S109–S110. [Google Scholar]
- Zhang, Q.; Shi, X.; Liu, Q.; Wu, J.; Xia, P.; Liao, Y. Adaptive distributed laser charging for efficient wireless power transfer. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017; pp. 1–5. [Google Scholar]
- Kawashima, N.; Takeda, K. Laser energy transmission for a wireless energy supply to robots. Robot. Constr. 2008, 10, 373–380. [Google Scholar]
- Qi, C.; Dechen, Z.; Dandi, Z. Design and experiment for realization of laser wireless power transmission for small unmanned aerial vehicles. In Proceedings of the Advances in Laser Technology and Applications, Beijing, China, 5–7 May 2015; Volume 9671, p. 96710N. [Google Scholar]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Lu, Y.; Macias, D.; Dean, Z.S.; Kreger, N.R.; Wong, P.K. A UAV-mounted whole cell biosensor system for environmental monitoring applications. IEEE Trans. Nanobiosci. 2015, 14, 811–817. [Google Scholar] [CrossRef]
- Brooks, C.; Dobson, R.J.; Banach, D.M.; Dean, D.; Oommen, T.; Wolf, R.E.; Havens, T.C.; Ahlborn, T.M.; Hart, B. Evaluating the Use of Unmanned Aerial Vehicles for Transportation Purposes; Michigan Tech Research Institute Final Report; Michigan Department of Transportation—Office of Research and Best Practices: Lansing, MI, USA, 2014. [Google Scholar]
- Zhang, Q.; Fang, W.; Liu, Q.; Wu, J.; Xia, P.; Yang, L. Distributed laser charging: A wireless power transfer approach. IEEE Internet Things J. 2018, 5, 3853–3864. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, H.; Wang, J.; Gou, Y.; Li, J.; Zhou, S. Research on the output characteristics of laser wireless power transmission system with nonuniform laser irradiation. Opt. Eng. 2022, 61, 067106. [Google Scholar] [CrossRef]
- Li, G.; Zhang, H.; Wang, C.; Pan, Y.; Lu, J.; Zhou, D. Effect of 1070 nm laser intensity on parameters of In0.3Ga0.7As solar cell. Chin. Opt. Lett. 2019, 17, 31601. [Google Scholar]
- Wang, H.; Wang, J.; Yang, H.; Deng, G.; Yang, Q.; Niu, R.; Gou, Y. The effect of non-uniform irradiation on laser photovoltaics: Experiments and simulations. Photonics 2022, 9, 493. [Google Scholar] [CrossRef]
- Meng, X.; Liu, B.; Lopez, C.; Li, C. Multi-field coupling characteristics of photovoltaic cell under non-uniform laser beam irradiance. Sustain. Energy Technol. Assess. 2022, 52, 101963. [Google Scholar]
- Meng, X.; Hou, Y.; Liu, B.; Pu, Z.; Lopez, C.; Li, C. Improvements of PV receiver in laser wireless power transmission by non-imaging optics. Sol. Energy 2023, 255, 157–170. [Google Scholar]
- Chong, K.K.; Yew, T.K.; Wong, C.W.; Tan, M.H.; Tan, W.C.; Lim, B.H. Dense-array concentrator photovoltaic prototype using non-imaging dish concentrator and an array of cross compound parabolic concentrators. Appl. Energy 2017, 204, 898–911. [Google Scholar] [CrossRef]
- Zhang, Y.; Pu, M.; Jin, J.; Lu, X.; Guo, Y.; Cai, J.; Luo, X. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron. Adv. 2022, 5, 220058. [Google Scholar] [CrossRef]
- Xie, X.; Pu, M.; Jin, J.; Xu, M.; Guo, Y.; Li, X.; Luo, X. Generalized Pancharatnam-Berry phase in rotationally symmetric meta-atoms. Phys. Rev. Lett. 2021, 126, 183902. [Google Scholar] [CrossRef]
- Luo, X. Subwavelength artificial structures: Opening a new era for engineering optics. Adv. Mater. 2019, 31, 1804680. [Google Scholar] [CrossRef]
- Liu, W.; Li, Z.; Ansari, M.A.; Cheng, H.; Tian, J.; Chen, X.; Chen, S. Design strategies and applications of dimensional optical field manipulation based on metasurfaces. Adv. Mater. 2023, 35, 2208884. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, L.; Pu, M.; Xu, M.; Zhang, Q.; Guo, Y.; Luo, X. Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging. Opto-Electron. Sci. 2023, 2, 230037. [Google Scholar] [CrossRef]
- Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 2015, 10, 937–943. [Google Scholar] [CrossRef]
- Liu, M.; Huo, P.; Zhu, W.; Zhang, C.; Zhang, S.; Song, M.; Xu, T. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat. Commun. 2021, 12, 2230. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, S.; Pu, M.; He, Q.; Jin, J.; Xu, M.; Zhang, Y.; Gao, P.; Luo, X. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci. Appl. 2021, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Fan, X.; Wang, Y.; Liu, Y.; Wang, X.; Xu, K.; Deng, L.; Zeng, C.; Li, T.; Xia, J.; et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron. Sci. 2023, 2, 220026. [Google Scholar] [CrossRef]
- Zhang, F.; Pu, M.; Li, X.; Ma, X.; Guo, Y.; Gao, P.; Yu, H.; Gu, M.; Luo, X. Extreme-angle silicon infrared optics enabled by streamlined surfaces. Adv. Mater. 2021, 33, 2008157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Guo, Y.; Pu, M.; Chen, L.; Xu, M.; Liao, M.; Li, L.; Li, X.; Ma, X.; Luo, X. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat. Commun. 2023, 14, 1946. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, J.; Leng, B.; Zhou, Y.; Cheng, J.; Yamaguchi, T.; Tanaka, T.; Chen, M. Edge enhanced depth perception with binocular meta-lens. Opto-Electron. Sci. 2024, 3, 230033. [Google Scholar] [CrossRef]
- Huang, G.; Wu, D.; Luo, J.; Lu, L.; Li, F.; Shen, Y.; Li, Z. Generalizing the Gerchberg–Saxton algorithm for retrieving complex optical transmission matrices. Photonics Res. 2020, 9, 34–42. [Google Scholar] [CrossRef]
- Zalevsky, Z.; Mendlovic, D.; Dorsch, R.G. Gerchberg–Saxton algorithm applied in the fractional Fourier or the Fresnel domain. Opt. Lett. 1996, 21, 842–844. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, Y.; Meng, Y.; Hao, H.; Li, X.; Pu, M.; Luo, X. Vortex-field enhancement through high-threshold geometric metasurface. Opto-Electron. Adv. 2024, 7, 240112. [Google Scholar] [CrossRef]
- Chen, C.; Su, H. Integrated opto-mechanical analysis of a PMMA Fresnel lens for a concentrated photovoltaic system. Microsyst. Technol. 2013, 19, 1725–1729. [Google Scholar] [CrossRef]
- Hornung, T.; Kiefel, P.; Nitz, P. The distance temperature map as method to analyze the optical properties of Fresnel lenses and their interaction with multi-junction solar cells. AIP Conf. Proc. 2015, 1679, 070001. [Google Scholar]
- Ai, Y.; Wang, F.; Lv, Q.; Liu, H.; Chen, Y.; Zheng, T.; Ma, Z.; Deng, X. Influence of Ambient Humidity on the Performance of Complex Spectral Dielectric Films on SiO2/K9 Substrates. Crystals 2023, 13, 248. [Google Scholar] [CrossRef]
- Malevskii, D.A.; Malevskaya, A.V.; Pokrovskii, P.V.; Andreev, V.M. Dynamics of Air Humidity in a Concentrator Photovoltaic Module with a Drying Device. Tech. Phys. Lett. 2021, 47, 208–210. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Z.; Xiao, Y.; Chen, L.; Wang, S.; Fang, Y.; Zhou, J.; Li, Y.; Zhang, D.; Pu, M.; Luo, X. Floating Multi-Focus Metalens for High-Efficiency Airborne Laser Wireless Charging. Photonics 2025, 12, 150. https://doi.org/10.3390/photonics12020150
Meng Z, Xiao Y, Chen L, Wang S, Fang Y, Zhou J, Li Y, Zhang D, Pu M, Luo X. Floating Multi-Focus Metalens for High-Efficiency Airborne Laser Wireless Charging. Photonics. 2025; 12(2):150. https://doi.org/10.3390/photonics12020150
Chicago/Turabian StyleMeng, Zheting, Yuting Xiao, Lianwei Chen, Si Wang, Yao Fang, Jiangning Zhou, Yang Li, Dapeng Zhang, Mingbo Pu, and Xiangang Luo. 2025. "Floating Multi-Focus Metalens for High-Efficiency Airborne Laser Wireless Charging" Photonics 12, no. 2: 150. https://doi.org/10.3390/photonics12020150
APA StyleMeng, Z., Xiao, Y., Chen, L., Wang, S., Fang, Y., Zhou, J., Li, Y., Zhang, D., Pu, M., & Luo, X. (2025). Floating Multi-Focus Metalens for High-Efficiency Airborne Laser Wireless Charging. Photonics, 12(2), 150. https://doi.org/10.3390/photonics12020150