Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (97)

Search Parameters:
Keywords = fly reproduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 6326 KiB  
Article
Two Cases of Feather Dystrophy in Free-Living Griffon Vultures (Gyps fulvus fulvus) Associated with Viral-like Inclusion Bodies
by Stefano Pesaro, Donatella Volpatti, Alice Baggio, Ranieri Verin, Fulvio Genero, Luca Sicuro, Livio Galosi, Lucia Biagini, Isabella Perlin, Patrizia Robino, Barbara Colitti, Daniele Avanzato and Giacomo Rossi
Animals 2025, 15(15), 2190; https://doi.org/10.3390/ani15152190 - 25 Jul 2025
Viewed by 244
Abstract
The griffon vulture (Gyps fulvus fulvus) is a scavenger species that plays a vital ecological role in carrion removal. Successful survival and reproduction in captive and wildlife conditions require optimal physical status and plumage integrity. Nutritional and environmental factors, systemic diseases, [...] Read more.
The griffon vulture (Gyps fulvus fulvus) is a scavenger species that plays a vital ecological role in carrion removal. Successful survival and reproduction in captive and wildlife conditions require optimal physical status and plumage integrity. Nutritional and environmental factors, systemic diseases, and various etiological agents can influence feather alterations. Although frequently documented in captive psittacine species, feather abnormalities are extremely rare in wild birds. Since 2020, two free-living griffon vultures in northeastern Italy have been found in poor physical condition, unable to fly due to partial feather loss and malformation of remiges and rectrices. Histopathologic examination of follicles and peri-follicular tissue revealed atrophy, keratin replacement, vasculitis, and calamus dystrophy with lymphohistiocytic perivasculitis. Immunohistochemical and ultrastructural analysis identified the presence of virus-like particles in epithelial and inflammatory cells. Although virome analysis did not confirm the presence of this virus in pooled affected samples, this study provides the first report of an emerging plumage disorder in free-ranging griffon vultures, which requires further characterization. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

17 pages, 4171 KiB  
Article
Sexual Development of Silba adipata (Diptera: Lonchaeidae): Effects of Diet, Ultraviolet Light and Fig Latex
by Ricardo Díaz-del-Castillo, Guadalupe Córdova-García, Diana Pérez-Staples, Andrea Birke, Trevor Williams and Rodrigo Lasa
Insects 2025, 16(5), 495; https://doi.org/10.3390/insects16050495 - 5 May 2025
Cited by 1 | Viewed by 693
Abstract
The black fig fly, Silba adipata McAlpine (Diptera: Lonchaeidae), is a monophagous invasive pest of fig crops. Its recent detection in Mexico has highlighted the urgent need for control strategies. However, efforts to study and manage this pest are constrained by a limited [...] Read more.
The black fig fly, Silba adipata McAlpine (Diptera: Lonchaeidae), is a monophagous invasive pest of fig crops. Its recent detection in Mexico has highlighted the urgent need for control strategies. However, efforts to study and manage this pest are constrained by a limited understanding of its basic biology and an inability to rear this insect in the laboratory. Some species of flies are reproductively immature at adult emergence and require specific nutrients for the development of reproductive structures. Given this, we examined the development of ovaries and testes in response to different adult diets, ovary maturation in relation to access to figs and ultraviolet (UV) light exposure and behavioral responses to fig latex. Dietary protein (hydrolyzed yeast) was essential for egg maturation. The highest prevalence of sexual maturity in females was observed at age 21 days and was not influenced by UV light or access to figs. Male testes size decreased over time irrespective of the adult diet. The consumption of latex increased when protein was not available, although the sexes differed in their response to latex over time. These findings help overcome a critical barrier to the laboratory colonization of S. adipata by demonstrating that protein-supplemented diets are essential for sexual maturation. However, the lack of information on the specific role of fig latex in the diet and the absence of sexual behavior during the experiments highlight key knowledge gaps. Future research should focus on identifying those stimuli that promote copulation and oviposition to understand the complete life cycle of this pest under controlled conditions. Full article
(This article belongs to the Special Issue Fly Biology, Ecology, Behavior and Management—2nd Edition)
Show Figures

Figure 1

14 pages, 1919 KiB  
Article
Temperature Effects on the Survival and Oviposition of an Invasive Blow Fly Chrysomya rufifacies Macquart (Diptera: Calliphoridae)
by Travis W. Rusch, Samantha J. Sawyer, Abigail E. Orr, Nicholas Richter, David Sohn, Lauren Gagner, Alexandria Smith, Jeffery K. Tomberlin and Aaron M. Tarone
Insects 2025, 16(3), 310; https://doi.org/10.3390/insects16030310 - 17 Mar 2025
Viewed by 734
Abstract
The globally increased severity and frequency of elevated temperatures are altering native species’ geographic distributions and local abundances while also increasing the invasion of new areas by exotic species. These distributional shifts have affected native species. Through two experiments, we investigated the effects [...] Read more.
The globally increased severity and frequency of elevated temperatures are altering native species’ geographic distributions and local abundances while also increasing the invasion of new areas by exotic species. These distributional shifts have affected native species. Through two experiments, we investigated the effects of temperature on the survival and oviposition of the hairy maggot blow fly Chrysomya rufifacies (Macquart), a highly competitive and predatory invasive blow fly of ecological, economic, and forensic importance. In our first experiment, we exposed mixed-sex colonies of C. rufifacies to a given temperature (10–45.0 °C) for 24 h. High survival (≥90%) was observed from 10 to 40 °C, with moderate mortality at 42.5 °C (29.2%) and high mortality at 43.5 °C (75.4%). All flies died when exposed to 44.5 or 45.0 °C for 24 h. Oviposition occurred from 22.5 to 42.5 °C, with the greatest occurrences (100%) at 30 and 35 °C and the greatest number of eggs (2035) occurring at 30 °C. Although oviposition occurred from 22.5 to 42.5 °C, egg viability was only observed from 22.5 to 37.5 °C. Thus, C. rufifacies has distinct thermal limits for survival, and oviposition may exhibit a bet-hedging strategy in response to temperature exposure. In our second experiment, we assessed the effects of an acute heat shock on C. rufifacies oviposition performance. Adult virgins (males and females) were exposed to 25.0 °C, 42.0 °C, or 44.0 °C for 1 h, and then maintained at ~25 °C in mixed-sex colonies for 14 d. Pre-breeding heat exposure had no effect on male or female reproductive success, except for females exposed to 44.0 °C. Females exposed to this temperature before breeding oviposited sooner (2.5 ± 0.0 d, 37.5% decrease), more frequently (0.5 ± 0.4, 33.3% increase), and produced more eggs (10,772.9 ± 2258.6 eggs, 73.3% increase) than female flies exposed to 25 °C. The combined results show that C. rufifacies survives exposures up to 43.5 °C, successfully oviposits up to 37.5 °C, and accelerates both oviposition timing and intensity following brief exposure to near upper lethal temperatures (44.0 °C), potentially provides C. rufifacies a competitive advantage over native calliphorids in warming environments. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

12 pages, 1633 KiB  
Article
Interspecific Courtship Between Two Endemic Fireflies
by Aldair Vergara, Yara Maquitico and Carlos Cordero
Diversity 2025, 17(3), 188; https://doi.org/10.3390/d17030188 - 6 Mar 2025
Viewed by 783
Abstract
Reproductive interactions between species could have negative effects on the fitness of the species involved, which can have important ecological and evolutionary consequences, such as population declines (including local extinction) or character divergence. Here, we report the courtship and attempted mating between two [...] Read more.
Reproductive interactions between species could have negative effects on the fitness of the species involved, which can have important ecological and evolutionary consequences, such as population declines (including local extinction) or character divergence. Here, we report the courtship and attempted mating between two congeneric species of fireflies endemic to Mexico. The interactions involved males of the synchronous firefly Photinus palaciosi and females of the much larger, non-synchronous P. extensus. In the study site, the population density of P. palaciosi is much higher than that of P. extensus. Observations of marked P. extensus females throughout most of the mating season showed that 37.8% of their interactions with males were with P. palaciosi males. Although interspecific interactions were usually of shorter length, they frequently consumed a significant portion of the nightly mate-locating/courting period. These interspecific interactions are probably facilitated by the similarities in the mate location and courtship behavior of both species, which also share female brachyptery (elytra and wing reduction that makes females unable to fly). The simplest hypothesis to explain our behavioral observations is that P. palaciosi males mistakenly courted P. extensus females. The available evidence suggests that the operational sex ratio (OSR) of P. palaciosi is male-biased, as it seems to be the case in all synchronous fireflies studied to date. We hypothesize that the intense male competition for mates resulting from a male-biased OSR explains, at least in part, the “indiscriminate” sexual responses of P. palaciosi males. Another still not studied factor that could contribute to the frequent interspecific sexual interactions observed is the degree of similitude of the mating signals. The relatively high frequency of interspecific interactions and the significant amount of time invested in many of them (relative to the duration of the nightly mating period) indicate that the study of the potential fitness costs (and benefits?) of these interactions is a promising line of research. Full article
Show Figures

Graphical abstract

18 pages, 1140 KiB  
Article
Effect of Schinus areira L. Essential Oil on Attraction, Reproductive Behavior, and Survival of Ceratitis capitata Wiedemann
by Flavia Jofré Barud, María Pía Gomez, María Josefina Ruiz, Guillermo Bachmann, Diego Fernando Segura, María Teresa Vera and María Liza López
Plants 2025, 14(5), 794; https://doi.org/10.3390/plants14050794 - 4 Mar 2025
Viewed by 743
Abstract
The essential oil (EO) of Schinus areira exhibits a chemical composition dominated by monoterpene and sesquiterpene hydrocarbons, with α-phellandrene, limonene, α-pinene, and p-cymene as major constituents. This study aimed to evaluate the effects of S. areira EO on the biology and behavior of [...] Read more.
The essential oil (EO) of Schinus areira exhibits a chemical composition dominated by monoterpene and sesquiterpene hydrocarbons, with α-phellandrene, limonene, α-pinene, and p-cymene as major constituents. This study aimed to evaluate the effects of S. areira EO on the biology and behavior of the Mediterranean fruit fly, Ceratitis capitata, particularly its attraction to the EO and the impact on its reproductive behavior and survival. Females were attracted at the initial choice and the time spent in the arm of the Y-tube olfactometer with the EO was longer, while males were attracted at the final choice, indicating the attractive potential of S. areira EO for both sexes of C. capitata. Within the context of the sterile insect technique (SIT), the better performance of released sterile males allows more copulations with wild females in competition with wild males, increasing the efficacy of the SIT. Exposure of tsl sterile males to the EO did not enhance their sexual competitiveness and increased latency to initiate copulation, indicating potential adverse effects. In addition, in oviposition assays, only a low concentration of the EO stimulated egg-laying on treated substrates, possibly due to the absence of deterrent compounds such as linalool. Finally, the LD50 of the EO was <25 µg/fly for both females and males, at 72 h post-treatment. These findings highlight the potential of EOs as biopesticides that influence the behaviors of C. capitata and emphasize the need for further studies to optimize their application in integrated pest management strategies, including the SIT. Full article
(This article belongs to the Special Issue Emerging Topics in Botanical Biopesticides—2nd Edition)
Show Figures

Figure 1

18 pages, 3824 KiB  
Article
A Spatial Structure of Key Tree Species Metrodorea nigra St. Hill. (Rutaceae) Is Associated with Historical Disturbance and Isolation in Southeastern Brazil
by Rômulo Maciel de Moraes Filho, Fernando Bonifácio-Anacleto, Fabio Alberto Alzate-Martinez, Carlos Alberto Martinez and Ana Lilia Alzate-Marin
Plants 2025, 14(5), 702; https://doi.org/10.3390/plants14050702 - 25 Feb 2025
Cited by 1 | Viewed by 558
Abstract
The semi-deciduous Brazilian Atlantic Forest has faced intense fragmentation, impacting Metrodorea nigra St. Hill., a fly-pollinated and autochorous tree. We investigated population structure, inbreeding, and spatial genetic structure (SGS) across adult (Adu) and juvenile (Juv) generations in three fragmented populations of M. nigra [...] Read more.
The semi-deciduous Brazilian Atlantic Forest has faced intense fragmentation, impacting Metrodorea nigra St. Hill., a fly-pollinated and autochorous tree. We investigated population structure, inbreeding, and spatial genetic structure (SGS) across adult (Adu) and juvenile (Juv) generations in three fragmented populations of M. nigra in Ribeirão Preto, São Paulo, Brazil. We tested whether the magnitude of these effects could result from its mating system, seed dispersal, anthropogenic disturbances, matrix, and fragment size. Populations affected by selective logging, fire, and trail openings include M13-Rib (84 ha) and FAC-Crav (8 ha), both surrounded by sugar cane and BSQ-Rib (3 ha) in an urban matrix. We evaluated phenological events and germination rates in the BSQ-Rib fragment. We sampled leaves and amplified their DNA using ISSR (UBC 1, 2, 820, 834, 851, 858, 860, 886) and SSR (Mtn 1, 3, 13, 16, 19, 87, 95) molecular markers. Fst, PCoA, and AMOVA values suggest a lack of generational isolation, with most variance within generations. Inbreeding values were significant in all populations (Fis and Fit, p = 0.001), probably intensified by natural seed dispersal and pollinator behavior favoring geitonogamy. However, fragmentation, anthropogenic disturbances, and the surrounding matrix influenced SGS. The urban BSQ-Rib fragment recorded the highest SGS values (26 m Juv, 24 m Adu [ISSR]; 7 m Juv, 9 m Adu [SSR]), which may result in low fruit and seed production and germination rates. Despite being the largest fragment, M13-Rib shows SGS in the first distance class (19 m Juv, 24 m Adu [ISSR]; 0 m Juv, and 10 m Adu [SSR]), possibly due to selective logging and fire. FAC-Crav, a more conserved fragment, showed no SGS in adults but punctual SGS in juveniles (27 m [ISSR] and 8 m [SSR]), pointing to it as a promising source for seed collections for reforestation purposes. In summary, inbreeding in M. nigra, influenced by pollinator behavior and seed dispersal, along with fragmentation, anthropogenic disturbances, and the surrounding matrix, are critical in shaping SGS. These factors potentially impact the reproductive success of M. nigra and their long-term survival in the face of climate change. Full article
(This article belongs to the Special Issue Tree Ecology and Management in the Era of Climate Change)
Show Figures

Graphical abstract

11 pages, 2174 KiB  
Technical Note
Using Night-Time Drone-Acquired Thermal Imagery to Monitor Flying-Fox Productivity—A Proof of Concept
by Jessica Meade, Eliane D. McCarthy, Samantha H. Yabsley, Sienna C. Grady, John M. Martin and Justin A. Welbergen
Remote Sens. 2025, 17(3), 518; https://doi.org/10.3390/rs17030518 - 3 Feb 2025
Viewed by 1148
Abstract
Accurate and precise monitoring of species abundance is essential for determining population trends and responses to environmental change. Species, such as bats, that have slow life histories, characterized by extended lifespans and low reproductive rates, are particularly vulnerable to environmental changes, stochastic events, [...] Read more.
Accurate and precise monitoring of species abundance is essential for determining population trends and responses to environmental change. Species, such as bats, that have slow life histories, characterized by extended lifespans and low reproductive rates, are particularly vulnerable to environmental changes, stochastic events, and human activities. An accurate assessment of productivity can improve parameters for population modelling and provide insights into species’ capacity to recover from population perturbations, yet data on reproductive output are often lacking. Recently, advances in drone technology have allowed for the development of a drone-based thermal remote sensing technique to accurately and precisely count the numbers of flying-foxes (Pteropus spp.) in their tree roosts. Here, we extend that method and use a drone-borne thermal camera flown at night to count the number of flying-fox pups that are left alone in the roost whilst their mothers are out foraging. We show that this is an effective method of estimating flying-fox productivity on a per-colony basis, in a standardized fashion, and at a relatively low cost. When combined with a day-time drone flight used to estimate the number of adults in a colony, this can also provide an estimate of female reproductive performance, which is important for assessments of population health. These estimates can be related to changes in local food availability and weather conditions (including extreme heat events) and enable us to determine, for the first time, the impacts of disturbances from site-specific management actions on flying-fox population trajectories. Full article
Show Figures

Figure 1

18 pages, 1976 KiB  
Article
Temperature and Host Fruit During Immature Development Shape Adult Life History Traits of Different Ceratitis capitata Populations
by Georgia D. Papadogiorgou and Nikos T. Papadopoulos
Insects 2025, 16(1), 65; https://doi.org/10.3390/insects16010065 - 11 Jan 2025
Viewed by 1460
Abstract
Temperature and host fruit availability are key factors influencing the life history traits of the Mediterranean fruit fly (medfly) (Ceratitis capitata). This study examines how developmental temperature and host fruit type affect adult longevity and fecundity in medflies from six populations [...] Read more.
Temperature and host fruit availability are key factors influencing the life history traits of the Mediterranean fruit fly (medfly) (Ceratitis capitata). This study examines how developmental temperature and host fruit type affect adult longevity and fecundity in medflies from six populations spanning Southern to Central Europe. Larvae were reared on apples and bitter oranges at three constant temperatures (15, 20, and 25 °C), with pupae maintained under the same thermal conditions until adult emergence. Adults were then kept at 25 °C, with longevity and fecundity recorded daily. The results showed that higher developmental temperatures increased adult lifespan across all populations, regardless of host fruit. Similarly, fecundity rates in ovipositing females were higher at higher temperatures. Reproductive periods (pre-oviposition, oviposition, and post-oviposition) varied among populations, indicating population-specific responses. These findings underscore how temperature and host fruit availability shape medfly invasion dynamics, highlighting the species’ biological plasticity and adaptation to different environments. This research provides valuable insights for pest management, particularly in the context of climate change, offering strategies to mitigate the spread of medflies into new regions. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

11 pages, 2325 KiB  
Article
Study on the Influence of Different Feeding Habitats on the Behavioral Habits of Siberian Cranes in the Songnen Plain
by Shiying Zhu, Guangyi Deng, Haibo Jiang, Jie Gao, Chunguang He, Yan Zhang and Yingyue Cao
Diversity 2025, 17(1), 36; https://doi.org/10.3390/d17010036 - 2 Jan 2025
Viewed by 817
Abstract
As a habitat for waterbirds, wetlands are key to their survival, reproduction and development. Waterbirds usually prefer breeding, wintering and resting in fixed locations. Siberian cranes (Grus leucogeranus), which are highly dependent on wetlands, have long fed on farmland at migratory [...] Read more.
As a habitat for waterbirds, wetlands are key to their survival, reproduction and development. Waterbirds usually prefer breeding, wintering and resting in fixed locations. Siberian cranes (Grus leucogeranus), which are highly dependent on wetlands, have long fed on farmland at migratory stopover sites. To explore the reason for this phenomenon, the time budgets of Siberian crane populations stopping over on farmland or in wetland habitats were studied and compared in this study. The results showed that the farmlands visited by the Siberian cranes are rich in food resources and have experienced low levels of disturbance. The temporal distribution of feeding behavior on farmland (53.50%) was greater than that in wetland habitats (31.96%). The variations in warning, flying and walking behavior on farmland were less than those in wetlands. The feeding efficiency on farmland was significantly greater than that in wetlands. Therefore, Siberian cranes transiting the Songnen Plain leave wetland habitats and stop over on farmland, representing a behavior that occurs more than just occasionally. Instead, they change their foraging habitat choices based on the optimal foraging theory. As a transit feeding area for Siberian cranes, farmland poses a significant risk, and the restoration of wetland habitats and food resources is still needed. This study can provide theoretical support for the conservation of rare and endangered species (the Siberian crane) and the management of stopover sites. Full article
Show Figures

Figure 1

12 pages, 2492 KiB  
Article
Divergence in the Morphology and Energy Metabolism of Adult Polyphenism in the Cowpea Beetle Callosobruchus maculatus
by Zhong Du, Xiaokun Liu, Sipei Liu, Lei Jiang, Le Zong, Wenjie Li, Weili Fan, Lijie Zhang, Fengming Wu and Siqin Ge
Insects 2025, 16(1), 29; https://doi.org/10.3390/insects16010029 - 30 Dec 2024
Cited by 2 | Viewed by 938
Abstract
Adult polyphenism is a prevalent form of adaptive evolution that enables insects to generate discrete phenotypes based on environmental factors. However, the morphology and molecular mechanisms underlying adult dimorphism in Callosobruchus maculatus (a global storage pest) remain elusive. Understanding these mechanisms is crucial [...] Read more.
Adult polyphenism is a prevalent form of adaptive evolution that enables insects to generate discrete phenotypes based on environmental factors. However, the morphology and molecular mechanisms underlying adult dimorphism in Callosobruchus maculatus (a global storage pest) remain elusive. Understanding these mechanisms is crucial for predicting the dispersal and population dynamics of C. maculatus. This knowledge can also provide a theoretical basis for biological control strategies. In this study, we compared the morphology of the hind wing and chest muscles, the transcriptional profiles, the energy metabolism substances, and the fecundity between the flight form and the normal form. The flight form displays a lighter overall appearance with small black spots, while the normal form lacks most flight muscles. Moreover, there are differences in the energy metabolism pathways between the two forms, including carbohydrate metabolism and oxidative phosphorylation. The flight form exhibits higher contents of carbohydrates, lipids, and mitochondrial energetic storage. The normal form exhibits better fertility but has lost its ability to fly. This is the first study to analyze the morphology and molecular characteristics of adult polyphenism in C. maculatus using morphological, physiological, and behavioral approaches, providing a foundational understanding of these aspects. Our study on C. maculatus also provides supporting evidence of a trade-off between dispersion and reproduction, where the flight form is capable of flying while the normal form has more reproductive benefits. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

28 pages, 4445 KiB  
Review
Invasion History and Dispersion Dynamics of the Mediterranean Fruit Fly in the Balkan Peninsula
by Mario Bjeliš, Vasilis G. Rodovitis, Darija Lemic, Pantelis Kaniouras, Pavao Gančević and Nikos T. Papadopoulos
Insects 2024, 15(12), 975; https://doi.org/10.3390/insects15120975 - 9 Dec 2024
Viewed by 2154
Abstract
The Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann 1824; Diptera, Tephritidae), is considered one of the most important pests, infesting more than 300 species of fresh fruit and vegetables worldwide. The medfly is an important invasive species, which has spread from the eastern [...] Read more.
The Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann 1824; Diptera, Tephritidae), is considered one of the most important pests, infesting more than 300 species of fresh fruit and vegetables worldwide. The medfly is an important invasive species, which has spread from the eastern part of sub-Saharan Africa to all of the world’s continents in recent centuries. Currently, the medfly is expanding its geographical range to cooler, temperate areas of the world, including northern areas of Mediterranean countries and continental areas of Central Europe. We collected and analysed all the available information, including in historical records, on the phenology of the medfly in the Balkan Peninsula, to map and understand the path of invasion and spread dynamics on the northern Mediterranean coast and in Central Europe. The medfly was first recorded in the Balkan Peninsula in 1915, in the Aegean area on the island of Aigina, followed by a few records on its presence in the Peloponnese in the early 1930s and throughout the Adriatic coastal area in the 1950s; it was first detected on the Croatian coast in 1947. By 2010, the medfly had been detected along the entire Ionian coast, while the first record of its presence on the Balkan coast of the Black Sea was made in 2005. Since 2000 to date, there has been a significant increase in the frequency of medfly detections in the interior of the Balkan Peninsula, including occasional detections in areas with unfavourable climatic conditions for overwintering, which seems to be favourable for reproduction during the summer and lead to significant infestation of late ripening fruits (late summer and autumn). In the last 20 years, the medfly has spread to more northerly areas (43 to 45 degrees latitude) and has been detected at higher altitudes (>200 to 600 m). Along the Balkan Peninsula, the infestation of fruits from 25 host plant species, from 14 genera and 10 plant families, has been reported. Considering the extremely high invasiveness of the medfly and its wide distribution in several Balkan regions with different climatic conditions, we can assume that it is adapting to new climatic conditions and infesting new host plants. Full article
Show Figures

Figure 1

19 pages, 2661 KiB  
Article
Reproductive and Flight Characteristics of Lymantria xylina (Lepidoptera: Erebidae) in Fuzhou, China
by Jifeng Zhang, Baode Wang, Liqiang Wang, Cheng Zuo, Junnan Li, Yonghong Cui, Xuanye Wen, David Cowan, Songqing Wu, Mengxia Liu, Rong Wang and Feiping Zhang
Insects 2024, 15(11), 894; https://doi.org/10.3390/insects15110894 - 15 Nov 2024
Cited by 1 | Viewed by 1038
Abstract
The biological characteristics of Lymantria xylina Swinhoe (Lepidoptera: Erebidae), a moth that threatens coastal forests in Fuzhou, China, are closely linked to its spread risk. To characterize these traits, we primarily investigated emergence, reproductive, and flight behaviors. Our findings show that females typically [...] Read more.
The biological characteristics of Lymantria xylina Swinhoe (Lepidoptera: Erebidae), a moth that threatens coastal forests in Fuzhou, China, are closely linked to its spread risk. To characterize these traits, we primarily investigated emergence, reproductive, and flight behaviors. Our findings show that females typically emerge, mate, and copulate during specific times of day. The peak hours of emergence, courtship, and copulation are 13:00–14:00, 19:00–21:00, and around 0:00, respectively. The starting time of oviposition was concentrated before dawn and during the daytime. They preferentially lay eggs on columnar objects, including artificial ones. On average, females laid 361 eggs, lived for 4.5 days, and weighed 0.74 g. Non-ovipositing females were observed to fly for short distances, especially during the evening. Field observations suggest that these females can potentially travel up to 184.5 m in total and 34.5 m continuously. While this indicates a theoretical risk of long-distance dispersal, our findings suggest that the overall risk is limited. These results contribute to our understanding of the biology and dispersal potential of L. xylina. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

12 pages, 1838 KiB  
Article
Transgenic Drosophila Expressing Active Human LH Receptor in the Gonads Exhibit a Decreased Fecundity: Towards a Platform to Identify New Orally Active Modulators of Gonadotropin Receptor Activity
by Amir Mahamid and David Ben-Menahem
Pharmaceuticals 2024, 17(10), 1267; https://doi.org/10.3390/ph17101267 - 25 Sep 2024
Viewed by 1340
Abstract
Background/Objectives: The gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) and their receptors are major regulators of reproduction in mammals and are absent in insects. We previously established transgenic Drosophila lines expressing a constitutively active human LH receptor variant (LHRD578Y) and [...] Read more.
Background/Objectives: The gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) and their receptors are major regulators of reproduction in mammals and are absent in insects. We previously established transgenic Drosophila lines expressing a constitutively active human LH receptor variant (LHRD578Y) and the wild-type receptor (LHRwt; inactive in the absence of an agonist). That study showed that ubiquitously expression of LHRD578Y—but not of LHRwt—resulted in pupal lethality, and targeted expression in midline cells resulted in thorax/bristles defects. To further study the Drosophila model for an in vivo drug screening platform, we investigated here whether expressing LHRD578Y in the fly gonads alters reproduction, as shown in a transgenic mice model. Methods: The receptor was expressed in somatic cells of the gonads using the tissue-specific traffic jam-Gal4 driver. Western blot analysis confirmed receptor expression in the ovaries. Results: A fecundity assay indicated that the ectopic expression of LHRD578Y resulted in a decrease in egg laying compared to control flies carrying, but not expressing the transgene (~40% decrease in two independent fly lines, p < 0.001). No significant reduction in the number of laid eggs was seen in flies expressing the LHRWT (<10% decrease compared to non-driven flies, p > 0.05). The decreased egg laying demonstrates a phenotype of the active receptor in the fly gonads, the prime target organs of the gonadotropins in mammals. We suggest that this versatile Drosophila model can be used for the pharmacological search for gonadotropin modulators. Conclusions: This is expected to provide: (a) new mimetic drug candidates (receptor-agonists/signaling-activators) for assisted reproduction treatment, (b) blockers for potential fertility regulation, and (c) leads relevant for the purpose of managing extra gonadotropic reported activities. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

17 pages, 3344 KiB  
Article
A High-Throughput Method for Quantifying Drosophila Fecundity
by Andreana Gomez, Sergio Gonzalez, Ashwini Oke, Jiayu Luo, Johnny B. Duong, Raymond M. Esquerra, Thomas Zimmerman, Sara Capponi, Jennifer C. Fung and Todd G. Nystul
Toxics 2024, 12(9), 658; https://doi.org/10.3390/toxics12090658 - 9 Sep 2024
Cited by 2 | Viewed by 1945
Abstract
The fruit fly, Drosophila melanogaster, is an experimentally tractable model system that has recently emerged as a powerful “new approach methodology” (NAM) for chemical safety testing. As oogenesis is well conserved at the molecular and cellular level, measurements of Drosophila fecundity can [...] Read more.
The fruit fly, Drosophila melanogaster, is an experimentally tractable model system that has recently emerged as a powerful “new approach methodology” (NAM) for chemical safety testing. As oogenesis is well conserved at the molecular and cellular level, measurements of Drosophila fecundity can be useful for identifying chemicals that affect reproductive health across species. However, standard Drosophila fecundity assays have been difficult to perform in a high-throughput manner because experimental factors such as the physiological state of the flies and environmental cues must be carefully controlled to achieve consistent results. In addition, exposing flies to a large number of different experimental conditions (such as chemical additives in the diet) and manually counting the number of eggs laid to determine the impact on fecundity is time-consuming. We have overcome these challenges by combining a new multiwell fly culture strategy with a novel 3D-printed fly transfer device to rapidly and accurately transfer flies from one plate to another, the RoboCam, a low-cost, custom-built robotic camera to capture images of the wells automatically, and an image segmentation pipeline to automatically identify and quantify eggs. We show that this method is compatible with robust and consistent egg laying throughout the assay period and demonstrate that the automated pipeline for quantifying fecundity is very accurate (r2 = 0.98 for the correlation between the automated egg counts and the ground truth). In addition, we show that this method can be used to efficiently detect the effects on fecundity induced by dietary exposure to chemicals. Taken together, this strategy substantially increases the efficiency and reproducibility of high-throughput egg-laying assays that require exposing flies to multiple different media conditions. Full article
(This article belongs to the Special Issue Feature Papers in the Novel Methods in Toxicology Research)
Show Figures

Figure 1

16 pages, 4364 KiB  
Article
Factors Affecting Water Deprivation Resistance in Bactrocera oleae (Olive Fruit Fly)
by Evangelia I. Balampekou, Dimitrios S. Koveos, Thomas M. Koutsos, Georgios C. Menexes and Nikos A. Kouloussis
Appl. Biosci. 2024, 3(3), 310-325; https://doi.org/10.3390/applbiosci3030021 - 10 Jul 2024
Cited by 1 | Viewed by 1267
Abstract
The olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), causes significant damage to olive crops worldwide. However, the factors affecting its survival under water deprivation have not been studied yet. In this study, the water deprivation resistance of male and female olive fruit [...] Read more.
The olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), causes significant damage to olive crops worldwide. However, the factors affecting its survival under water deprivation have not been studied yet. In this study, the water deprivation resistance of male and female olive fruit flies was measured at three ages in virgin and mated adults fed either a full or a restricted diet. The experiments (24 treatments) were conducted under constant laboratory conditions, using insects collected in the wild and reared on olives. Additionally, a baseline experiment was conducted to provide data on the insects’ life expectancy under no-stress conditions. Our findings revealed that males showed much less resistance under water deprivation compared to females. Younger adults endured for longer than older ones, and adults fed a restricted diet endured water deprivation longer than those fed a full diet. Our results suggest that during periods of water scarcity, releasing sterile males is most effective, because the wild male population decreases. Since females of reproductive age are more resistant, this should ensure a higher number of matings with sterile males. These findings can be used to formulate improved pest control strategies that enhance olive product quality while relying less on insecticides. Full article
Show Figures

Figure 1

Back to TopTop