Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = flue gas purification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 5321 KB  
Review
A Review on the Applications of Various Zeolites and Molecular Sieve Catalysts for Different Gas Phase Reactions: Present Trends in Research and Future Directions
by Preetha Chandrasekharan Meenu, Bhagatram Meena and Panagiotis G. Smirniotis
Processes 2026, 14(1), 132; https://doi.org/10.3390/pr14010132 - 30 Dec 2025
Viewed by 542
Abstract
Zeolites and molecular sieves have demonstrated remarkable potential in adsorption, ion exchange, and separation processes since their industrial revolution in the 1950s. Zeolites and molecular sieves are materials of choice in separation applications because of their well-defined microporous architecture, remarkable shape-selectiveness, and tunable [...] Read more.
Zeolites and molecular sieves have demonstrated remarkable potential in adsorption, ion exchange, and separation processes since their industrial revolution in the 1950s. Zeolites and molecular sieves are materials of choice in separation applications because of their well-defined microporous architecture, remarkable shape-selectiveness, and tunable characteristics. The adsorption process can be evaluated using an isotherm to determine the feasibility of gas mixture separation for practical applications. We will also discuss the basic structure of zeolites and molecular sieves based on different metals, along with their distinctive properties in detail. The purpose of this review is to contextualize the importance of zeolites and molecular sieves in adsorption and separation applications. The review has been divided into groups based on how zeolites as well as molecular sieves are established in the adsorption and separation processes. The fundamental adsorption characteristics, structures, and various separation methods that make zeolites appealing for different uses are covered. By incorporating knowledge of adsorption mechanisms, isotherms, and material changes, this review discusses the most recent developments. To augment zeolite-based materials for certain pollutant removal applications, it offers a strategic framework for future study. In this review, we will comprehensively discuss a range of separation and adsorption applications, including wastewater purification, CO2 capture from flue gases, and hydrogen storage. Furthermore, the review will explore emerging prospects of zeolites and molecular sieves in innovative fields such as energy storage, oil refining, and environmental remediation. Emphasis will be placed on understanding how their tunable pore structures, surface chemistry, and metal incorporation can enhance performance and broaden their applicability in sustainable and clean energy systems. Full article
(This article belongs to the Special Issue Novel Applications of Zeolites in Adsorption Processes)
Show Figures

Figure 1

24 pages, 3268 KB  
Review
Study on the Mechanism and Modification of Carbon-Based Materials for Pollutant Treatment
by Lingyi Meng, Zitong Shao, Wenqi Li, Jianxiong Wang, Changqing Hu, Guangqing Yang and Yan Shi
Materials 2025, 18(23), 5345; https://doi.org/10.3390/ma18235345 - 27 Nov 2025
Viewed by 556
Abstract
The implementation of ultra-low emission standards in the steel industry imposes higher demands on flue gas purification. Carbon-based materials, leveraging their porous structure and surface activity, demonstrate high adsorption potential for treating heavy metal ions, sulfur- and nitrogen-containing compounds, and volatile organic pollutants. [...] Read more.
The implementation of ultra-low emission standards in the steel industry imposes higher demands on flue gas purification. Carbon-based materials, leveraging their porous structure and surface activity, demonstrate high adsorption potential for treating heavy metal ions, sulfur- and nitrogen-containing compounds, and volatile organic pollutants. However, their application is constrained by a limited selective adsorption capacity. This paper systematically analyzes the mechanisms by which carbon-based materials treat water, air, and soil pollutants; investigates their physical and chemical degradation patterns; and summarizes practical physicochemical modification pathways. Research indicates that modification techniques can effectively overcome performance limitations of carbon-based materials, enhance pollutant adsorption efficiency, and provide new insights for the engineering application of multi-media pollution synergistic control and environmental remediation technologies. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Graphical abstract

19 pages, 864 KB  
Review
Advancements in the Utilization of Lime Kiln Flue Gas for Carbon Dioxide-Based Fertilizer in Protected Agriculture
by Bo Su, Xinmian Huang, Xiang Chen, Jia Li and Siqi Zhang
Processes 2025, 13(11), 3719; https://doi.org/10.3390/pr13113719 - 18 Nov 2025
Viewed by 555
Abstract
The utilization of lime kiln flue gas for producing CO2-based fertilizer represents an emerging pathway to link industrial emission reduction with sustainable agricultural development. This review summarizes recent progress in CO2 capture, purification, and application technologies, with a focus on [...] Read more.
The utilization of lime kiln flue gas for producing CO2-based fertilizer represents an emerging pathway to link industrial emission reduction with sustainable agricultural development. This review summarizes recent progress in CO2 capture, purification, and application technologies, with a focus on their suitability for protected agriculture. It discusses the advantages of high CO2 concentration and low-temperature tail gas, the challenges posed by impurities, and the technological routes for efficient CO2 recycling. The review highlights that controlled CO2 fertilization can significantly enhance crop growth and quality, while the effects of residual gases and uneven distribution require further investigation. Future research should prioritize the development of scalable, low-cost adsorbents and precision fertilization systems based on digital twin technologies to promote the integration of industrial carbon recycling and smart agriculture. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

27 pages, 3114 KB  
Review
Carbon Nitride-Based Catalysts for Photocatalytic NO Removal
by Sheng Wang, Fu Chen, Xiyao Niu and Huagen Liang
Catalysts 2025, 15(11), 1043; https://doi.org/10.3390/catal15111043 - 3 Nov 2025
Viewed by 1004
Abstract
Nitrogen oxides (NOx) are major atmospheric pollutants, and their escalating emissions, driven by rapid economic development and urbanization, pose a severe threat to both the ecological environment and human health. Conventional denitrification technologies are often hampered by high costs, significant energy [...] Read more.
Nitrogen oxides (NOx) are major atmospheric pollutants, and their escalating emissions, driven by rapid economic development and urbanization, pose a severe threat to both the ecological environment and human health. Conventional denitrification technologies are often hampered by high costs, significant energy consumption, and stringent operational conditions, making them increasingly inadequate in the face of tightening environmental regulations. In this context, photocatalytic technology, particularly systems based on graphitic carbon nitride (g-C3N4), has garnered significant research interest for NOx removal due to its visible-light responsiveness, high stability, and environmental benignity. To advance the performance of g-C3N4, numerous modification strategies have been explored, including morphology control, elemental doping, defect engineering, and heterostructure construction. These approaches effectively broaden the light absorption range, enhance the separation efficiency of photogenerated electron-hole pairs, and improve the adsorption and conversion capacities for NOx. Notably, constructing heterojunctions between g-C3N4 and other materials (e.g., metal oxides, noble metals, metal–organic frameworks (MOFs)) has proven highly effective in boosting catalytic activity and stability. Furthermore, the underlying photocatalytic mechanisms, encompassing the generation and migration pathways of charge carriers, the redox reaction pathways of NOx, and the influence of external factors like light intensity and reaction temperature, have been extensively investigated. From an application perspective, g-C3N4-based photocatalysis demonstrates considerable potential in flue gas denitrification, vehicle exhaust purification, and air purification. Despite these advancements, several challenges remain, such as limited solar energy utilization, rapid charge carrier recombination, and insufficient long-term stability, which hinder large-scale implementation. Future research should focus on further optimizing the material structure, developing greener synthesis routes, enhancing catalyst stability and poison resistance, and advancing cost-effective engineering applications to facilitate the practical deployment of g-C3N4-based photocatalytic technology in air pollution control. Full article
Show Figures

Figure 1

14 pages, 5404 KB  
Article
Emission Characteristics During the Co-Firing of Fine Coal and Refuse-Derived Fuel from Municipal Waste
by Zbigniew Jelonek and Przemysław Rompalski
Energies 2025, 18(20), 5414; https://doi.org/10.3390/en18205414 - 14 Oct 2025
Viewed by 661
Abstract
The co-firing of coal and refuse-derived fuel (RDF) from municipal solid waste recycling is gaining support in countries in which energy production is based on solid fuels. It is the result of the rising priority given to renewable energy sources, the circular economy, [...] Read more.
The co-firing of coal and refuse-derived fuel (RDF) from municipal solid waste recycling is gaining support in countries in which energy production is based on solid fuels. It is the result of the rising priority given to renewable energy sources, the circular economy, and effective waste management through sorting, recycling, and thermal conversion. Despite the increasing efficiency of recycling and the ever-lower quantities of waste delivered to waste dumps, the problem of the residual fraction remains unsolved. The portion of mixed municipal waste that cannot be recycled exhibits a high energy value. For this reason, it should be neither stored nor burnt in household boiler rooms, as doing so would constitute an environmental hazard. However, the waste can be used as an additive to fine coal in power boilers, provided that they are equipped with flue gas monitoring and purification systems. Tests involving proportionally prepared compositions of fine coal and refuse-derived fuel burnt in a laboratory boiler revealed a major variability in the flue gas parameters (physicochemical), depending on the applied proportions of the individual components. For instance, when burning a composition of 50% fine coal and 50% refuse-derived fuel, a reduction in CO2 emissions by about 12% was noted compared with that when burning fine coal exclusively. Furthermore, when burning refuse-derived fuel, an addition of 20% fine coal is enough to produce a 2.8% reduction in CO emission. Meanwhile, a composition of 80% fine coal and 20% refuse-derived fuel would reduce the emissions by 393 ppm. During the measurements, it was also noted that most of the measured parameters indicated a decrease in individual gas contents relative to the emissions obtained when burning fine coal or refuse-derived fuel exclusively. These relationships can be applied to prepare fuel compositions based on refuse-derived fuel and fine coal, depending on the power and flue gas purification capabilities of individual cogeneration systems. Full article
(This article belongs to the Special Issue Advanced Clean Coal Technology)
Show Figures

Figure 1

14 pages, 2552 KB  
Article
Architecting Porosity Through Monomer Engineering: Hypercrosslinked Polymers for Highly Selective CO2 Capture from CH4 or N2
by Lin Liu, Qi Zhang, Xue Leng, Rui Song and Zheng-Bo Han
Polymers 2025, 17(12), 1592; https://doi.org/10.3390/polym17121592 - 6 Jun 2025
Viewed by 1064
Abstract
Natural gas purification and the mitigation of carbon dioxide (CO2) emissions from flue gases are critical steps in alleviating the greenhouse effect and significantly mitigate multiple environmental challenges associated with global warming. Hypercrosslinked polymers (HCPs) have become a hot topic as [...] Read more.
Natural gas purification and the mitigation of carbon dioxide (CO2) emissions from flue gases are critical steps in alleviating the greenhouse effect and significantly mitigate multiple environmental challenges associated with global warming. Hypercrosslinked polymers (HCPs) have become a hot topic as prospective adsorbents for gas purification and separation, owing to their low cost and scalability. Hence, TPB-Ben, TPB-Nap, and TPB-Ant were synthesized through a solvent knitting strategy, with the modification in the size of the monomers serving as a distinctive feature. This alteration aimed to explore the impact of phenyl ring quantity on the polymers’ gas adsorption and separation efficiency. All HCPs showed outstanding selective separation capability of CO2 from CO2/CH4 and CO2/N2 mixtures, such as TPB-Ben-3-2 (CO2/CH4: 10.77; CO2/N2: 59.72), TPB-Nap-3-2 (CO2/CH4: 9.12; CO2/N2: 61.31), and TPB-Ant-3-2 (CO2/CH4: 10.00; CO2/N2: 62.89), which could be potential candidate adsorbents for natural gas purification and CO2 capture. Considering the mild reaction conditions, low cost, efficient gas adsorption, and the potential for scalable production, these polymers are considered ideal selective solid adsorbents for capturing CO2. This further highlights the significance of the solvent knitting strategy. Full article
(This article belongs to the Special Issue Application and Development of Polymer-Based Catalysts)
Show Figures

Figure 1

14 pages, 3675 KB  
Article
Synergistic Purification of Flue Gas from Straw Combustion Using Ammonia Method and Electrostatic Charged Spray
by Bo Zhang, Xinkang Hu, Congyang Zhang, Xiaohong Xu and Chundu Wu
Agriculture 2025, 15(9), 1001; https://doi.org/10.3390/agriculture15091001 - 6 May 2025
Cited by 5 | Viewed by 935
Abstract
To enhance the efficiency of flue gas purification from straw combustion, a combined approach using the ammonia method and electrostatic charged spray was investigated. This study investigated the charging characteristics of atomized droplets and their impact on flue gas purification. The results show [...] Read more.
To enhance the efficiency of flue gas purification from straw combustion, a combined approach using the ammonia method and electrostatic charged spray was investigated. This study investigated the charging characteristics of atomized droplets and their impact on flue gas purification. The results show that the charge-to-mass ratio of droplets increases and then decreases as charging voltages increase. At a constant voltage, the ratio increases with higher ammonia concentrations and shows a gradual increase with higher spray pressures. For flue gases from three common straw combustion sources, the average dust removal rate at 8 kV was 2.5 to 3 times higher than at 0 kV. Under the 8 kV condition with a 10% ammonia solution, the NO removal rate was approximately 4.7 times, and the NO2 removal rate was 2.8 times compared to water alone. Particulate matter, NO, and NO2 removal rates were 61.2%, 88.6%, and 88.1%, respectively, at a spray pressure of 0.5 MPa, 8 kV charging voltage, and 10% ammonia concentration. This study provides an experimental foundation for developing high-efficiency flue gas purification systems for straw combustion. Full article
Show Figures

Figure 1

24 pages, 4147 KB  
Review
Research Progress on Flue Gas Desulfurization and Denitrification by Activated Carbon Method
by Lingyi Meng, Wenqi Li, Jianxiong Wang, Yan Shi and Changqing Hu
Processes 2025, 13(5), 1396; https://doi.org/10.3390/pr13051396 - 3 May 2025
Cited by 3 | Viewed by 2120
Abstract
SO2 and NOx emissions from iron and steel production pollute the atmosphere. With the implementation of ultra-low emission standards, the requirements for flue gas purification have become more stringent. Activated carbon, due to its rich surface chemistry, stable physical structure, and [...] Read more.
SO2 and NOx emissions from iron and steel production pollute the atmosphere. With the implementation of ultra-low emission standards, the requirements for flue gas purification have become more stringent. Activated carbon, due to its rich surface chemistry, stable physical structure, and excellent adsorption and renewability, has a significant effect on the synergistic removal of multiple pollutants from industrial flue gas, and its industrial application has achieved a SO2 removal rate of ≥98% and a NOx removal rate of ≥83%. Firstly, we analyze the structure of activated carbon and the adsorption principle, discuss the mechanism of desulfurization and denitrification, and explore the shortcomings of the technology; then, we summarize the modification methods of activated carbon, determine the impregnation method of loading non-precious metal oxides as the optimal solution, and elucidate the loading conditions, process, and reaction mechanism; finally, we discuss the current status of the research, analyze the process deficiencies and the direction of optimization, and look forward to the prospect of development. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

27 pages, 5960 KB  
Review
Advances in Enrichment and Purification Technology of Ammonium Perrhenate
by Hailong Jing, Qidong Zhang, Zhifang Hu, Hongling Jiang, Bowen Gao, Tingan Zhang and Yanxi Yin
Separations 2025, 12(4), 89; https://doi.org/10.3390/separations12040089 - 6 Apr 2025
Cited by 2 | Viewed by 2245
Abstract
Rhenium metal is extensively utilized in the aerospace industry for the manufacturing of various superalloys due to its unique properties, and plays an indispensable role in the field of high technology. Rhenium resources are primarily associated with copper, molybdenum, and other metal ores. [...] Read more.
Rhenium metal is extensively utilized in the aerospace industry for the manufacturing of various superalloys due to its unique properties, and plays an indispensable role in the field of high technology. Rhenium resources are primarily associated with copper, molybdenum, and other metal ores. Ammonium perrhenate is predominantly derived from copper and molybdenum ore roasting flue gas scrubbers containing various impurities in the rhenium-containing contaminated acid. The complex composition of the contaminated acid renders the enrichment and purification of ammonium perrhenate more challenging, necessitating further research and development of the technology. This paper reviews the research progress in ammonium perrhenate enrichment and purification technology, encompassing chemical precipitation, adsorption, extraction, ion exchange, extraction chromatography, and recrystallization. It analyses the advantages and limitations of various methods, with the aim of providing a reference for future developments in ammonium perrhenate enrichment and purification technology. Furthermore, the paper presents a prospective view on the development of ammonium perrhenate enrichment and purification technology, focusing on the objective of obtaining more selective purification materials and more efficient purification techniques for ammonium perrhenate. Full article
Show Figures

Figure 1

61 pages, 4846 KB  
Review
Metal-Free Carbon Catalysis for Flue Gas Pollutants Purification: A Review
by Le Huang, Caiting Li, Xuan Liu, Shanhong Li, Jungang Zhao, Kuang Yang, Ziang Zhang, Ying Zhang, Qi Huang, Miaomiao Hu and Miao Zhang
Catalysts 2025, 15(3), 240; https://doi.org/10.3390/catal15030240 - 1 Mar 2025
Viewed by 1877
Abstract
Carbon materials have been employed in many applications in flue gas purification due to their high specific surface area, good chemical inertness, and tunable surface chemistry. However, traditional methods such as adsorption or metal-loaded catalysis can be financially burdensome. The surface of carbon [...] Read more.
Carbon materials have been employed in many applications in flue gas purification due to their high specific surface area, good chemical inertness, and tunable surface chemistry. However, traditional methods such as adsorption or metal-loaded catalysis can be financially burdensome. The surface of carbon materials contains abundant vacancies, interstitial atoms, boundaries, and other defects. These structural defects are often modified with saturated or unsaturated functional groups containing heteroatoms such as oxygen, nitrogen, etc., thus possessing a certain acid–base property and redox ability, which makes the carbon materials themselves have some catalytic activity. The metal-free carbon catalytic purification of flue gas pollutants offers a promising solution to improve removal efficiency while reducing costs significantly. This review examines the research on carbon materials for the removal of flue gas pollutants, presenting recent advancements in carbon catalysis purification of NOx, SO2, and VOCs. It analyzes the critical properties of carbon materials that govern carbon catalytic efficiency, such as surface functional groups, surface defects, and pore structure. Finally, it summarizes methods for regulating these properties to achieve higher efficiencies in the metal-free carbon-catalyzed purification of flue gas pollutants. Full article
Show Figures

Graphical abstract

20 pages, 2586 KB  
Article
The Properties of Diesel Blends with Tire Pyrolysis Oil and Their Wear-Related Parameters
by Leszek Chybowski, Marcin Szczepanek, Tomasz Pusty, Piotr Brożek, Robert Pełech and Andrzej Wieczorek
Energies 2025, 18(5), 1057; https://doi.org/10.3390/en18051057 - 21 Feb 2025
Cited by 3 | Viewed by 1615
Abstract
This research presents the impact of diesel blends with tire pyrolysis oil (TPO) as an additive for minimizing the wear and tear of engine components. This study investigates the blends of normative diesel oil with TPO content ranging from 5% m/m to 20% [...] Read more.
This research presents the impact of diesel blends with tire pyrolysis oil (TPO) as an additive for minimizing the wear and tear of engine components. This study investigates the blends of normative diesel oil with TPO content ranging from 5% m/m to 20% m/m. Reference measurements are made for pure diesel oil (D100) and pure TPO. This investigation included an evaluation of the corrosion effect and the effect of the fuels tested on abrasive wear. For each fuel, the sulfur content, water content, lubricity (which is defined as the corrected average diameter of the wear trace during the high-frequency reciprocating rig (HFRR) test), and impurity content are determined. Impurities are assessed using indicators such as ash residue, coking residue from 10% distillation residue, determination of wear metals and contaminants, insoluble impurity content, and total sediment by hot filtration. All parameters are determined using recognized methods described in international standards. Approximation models are built for all the analyzed parameters, which can be used in future studies. At the same time, the individual values of the analyzed factors are compared with the threshold values specified in selected standards and regulations. Consequently, it is possible to assess the usefulness of individual fuels in terms of meeting the requirements for minimum wear of engine components. The results show the suitability of pyrolysis oil and the potential for its use as an additive to fossil fuels in terms of meeting most factors. Some of the fuels tested did not meet the standards for acceptable sulfur content. However, in terms of sulfur content, all of the analyzed fuels can be used to power watercraft and land-based power and thermal power plants equipped with flue gas desulphurization systems. A second indicator for not meeting the standards is the ash residue value, which indicates the high content of non-combustible, mainly metallic, substances in the pyrolysis oil used for the tests. Post-recycled oils must, therefore, undergo appropriate purification before being used as an additive to diesel fuels for internal combustion engines. Once the post-recycling oil has been subjected to desulfurization and advanced filtration, it can be used as a fuel additive for land vehicles, which fits in with closed-loop economies and sustainable development strategies. Full article
(This article belongs to the Special Issue Internal Combustion Engine Performance 2024)
Show Figures

Figure 1

16 pages, 5232 KB  
Article
Numerical Simulation of Static Ammonia Mixer in Denox Unit of Flue Gas Purification Plant
by Anton L. Esipovich, Andrey V. Vorotyntsev, Andrey A. Roslyakov, Dmitry E. Sykhanov, Olga A. Demchenko, Anton V. Stepykin and Konstantin K. Shirshin
Energies 2025, 18(2), 295; https://doi.org/10.3390/en18020295 - 10 Jan 2025
Viewed by 1039
Abstract
The modeling of a mixer used for mixing ammonia and flue gasses is considered. Simulations were performed using Flow Vision 3.14 (TESIS LLC). As a result of the simulation, the distribution of concentrations along the mixer length was obtained at 50%, 65%, 85%, [...] Read more.
The modeling of a mixer used for mixing ammonia and flue gasses is considered. Simulations were performed using Flow Vision 3.14 (TESIS LLC). As a result of the simulation, the distribution of concentrations along the mixer length was obtained at 50%, 65%, 85%, and full flue gas loading. It was found that operations at 100% and 85% gas loads are accompanied by an acceptable distribution of ammonia in the mixer volume (Cov = 0.05). The development and creation of an experimental model in real production was carried out according to the results of the numerical simulation. The simulation results were compared with experimental data on the speed and concentration of ammonia in the control section. The discrepancy, in general, did not exceed 15%. The developed mixer corresponds to modern developments in terms of mixing quality but is simpler in design and more compact. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

14 pages, 4794 KB  
Article
The Deep Removal of Mercury in Contaminated Acid by Colloidal Agglomeration Materials M201
by Shuchen Qin, Biwen Yang, Derek O. Northwood, Kristian E. Waters and Hao Ma
Minerals 2024, 14(8), 782; https://doi.org/10.3390/min14080782 - 31 Jul 2024
Cited by 1 | Viewed by 1604
Abstract
The high-temperature roasting/smelting process of copper and zinc concentrates will cause the mercury in the concentrate to evaporate into the flue gas, and most of the mercury in the flue gas will eventually enter the waste acid in its ionic form. A highly [...] Read more.
The high-temperature roasting/smelting process of copper and zinc concentrates will cause the mercury in the concentrate to evaporate into the flue gas, and most of the mercury in the flue gas will eventually enter the waste acid in its ionic form. A highly efficient mercury removal agent M201 with long carbon chains and loaded active functional groups can adsorb and disperse fine particles for mercury removal in the system. Through bridging, the linear structure is woven into a network to achieve large-scale capture and dispersion of fine particles and colloidal substances. The recommended operating conditions for developing mercury deep purification technology are as follows: M201 reagent concentration of 50 g/L, 6 mL/L added acid solution, room temperature, mixing time of 5 min, air flotation time of 10 min, ventilation rate of 0.1 L/min, H2SO4 concentration of 33.67 g/L, and the residual mercury content of 2 mg/L (the mercury content reaches 0.01 mg/L after two-stage mercury removal treatment). Meanwhile, the residual arsenic content is 21.9 mg/L. This study shows a better separation of arsenic and mercury and achieves one-step mercury removal. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

13 pages, 1947 KB  
Article
Non-Thermal Plasma Technology for Further Purification of Flue Gas in the Resource Utilization Process of Waste Mercury Catalyst: A Case Study in Xinjiang, China
by Qinzhong Feng, Kaiyue Wang, Shitong Yang, Jianbo Guo, Jun Chen, Tongzhe Wang, Liyuan Liu and Yang Chen
Processes 2024, 12(4), 691; https://doi.org/10.3390/pr12040691 - 29 Mar 2024
Cited by 2 | Viewed by 2169
Abstract
This study aims to advance the recycling of mercury-containing waste and promote sustainable development within the polyvinyl chloride (PVC) industry. Our innovative system integrates pre-treatment technology (spraying potassium permanganate and demisting and dust removal) with efficient non-thermal plasma oxidation, resulting in excellent treatment [...] Read more.
This study aims to advance the recycling of mercury-containing waste and promote sustainable development within the polyvinyl chloride (PVC) industry. Our innovative system integrates pre-treatment technology (spraying potassium permanganate and demisting and dust removal) with efficient non-thermal plasma oxidation, resulting in excellent treatment efficiency, low cost, and simple operation. With a processing capacity of 3000 m3/h, the concentration of mercury emissions in flue gas can achieve the target of <0.01 mg/m3, boasting a removal efficiency exceeding 98%, which satisfies the standard “Emission standard of air pollutants for industrial kiln and furnace” (GB 9078-1996). Our results can provide technical support for the comprehensive purification of mercury-containing flue gas during the resource recovery process from mercury-containing waste. The application of our system can contribute to reducing mercury emissions in the PVC industry, lowering occupational exposure risks for workers, and promoting China’s better compliance with “the Minamata Convention on Mercury”. Full article
(This article belongs to the Special Issue Solid and Hazardous Waste Disposal and Resource Utilization)
Show Figures

Figure 1

19 pages, 4883 KB  
Article
Coupled Oxygen-Enriched Combustion in Cement Industry CO2 Capture System: Process Modeling and Exergy Analysis
by Leichao Wang and Bin Shi
Processes 2024, 12(4), 645; https://doi.org/10.3390/pr12040645 - 24 Mar 2024
Cited by 4 | Viewed by 3775
Abstract
The cement industry is regarded as one of the primary producers of world carbon emissions; hence, lowering its carbon emissions is vital for fostering the development of a low-carbon economy. Carbon capture, utilization, and storage (CCUS) technologies play significant roles in sectors dominated [...] Read more.
The cement industry is regarded as one of the primary producers of world carbon emissions; hence, lowering its carbon emissions is vital for fostering the development of a low-carbon economy. Carbon capture, utilization, and storage (CCUS) technologies play significant roles in sectors dominated by fossil energy. This study aimed to address issues such as high exhaust gas volume, low CO2 concentration, high pollutant content, and difficulty in carbon capture during cement production by combining traditional cement production processes with cryogenic air separation technology and CO2 purification and compression technology. Aspen Plus® was used to create the production model in its entirety, and a sensitivity analysis was conducted on pertinent production parameters. The findings demonstrate that linking the oxygen-enriched combustion process with the cement manufacturing process may decrease the exhaust gas flow by 54.62%, raise the CO2 mass fraction to 94.83%, cut coal usage by 30%, and considerably enhance energy utilization efficiency. An exergy analysis showed that the exergy efficiency of the complete kiln system was risen by 17.56% compared to typical manufacturing procedures. However, the cryogenic air separation system had a relatively low exergy efficiency in the subsidiary subsystems, while the clinker cooling system and flue gas circulation system suffered significant exergy efficiency losses. The rotary kiln system, which is the main source of the exergy losses, also had low exergy efficiency in the traditional production process. Full article
(This article belongs to the Topic CO2 Capture and Renewable Energy)
Show Figures

Figure 1

Back to TopTop