Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = floral organogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8876 KiB  
Article
Functional Characterization of KNOX and BELL Genes in Temperature-Responsive Floral Morphogenesis of Passion Fruit (Passiflora edulis)
by Xinni Jiang, Jie Miao, Weifan Zu, Ruohan Zhou, Lexin Zheng, Ying Wei, Chunmei Lai, Rongjuan Qin, Ping Zheng, Xiuqing Wei, Jiahui Xu, Yuan Qin and Xiaoping Niu
Plants 2025, 14(10), 1440; https://doi.org/10.3390/plants14101440 - 12 May 2025
Viewed by 545
Abstract
Passion fruit (Passiflora edulis), a tropical crop of significant economic value, exhibits temperature-sensitive floral development. Here, we identified 23 TALE transcription factors (PeTALEs) and characterized their roles in floral organogenesis and thermal adaptation. Phylogenetic analysis classified PeTALEs into KNOX and [...] Read more.
Passion fruit (Passiflora edulis), a tropical crop of significant economic value, exhibits temperature-sensitive floral development. Here, we identified 23 TALE transcription factors (PeTALEs) and characterized their roles in floral organogenesis and thermal adaptation. Phylogenetic analysis classified PeTALEs into KNOX and BELL subfamilies, with conserved domain architectures and cis-regulatory elements linked to stress and hormone signaling. Spatiotemporal expression profiling revealed PeTALE21 as a key regulator of corona initiation, while PeTALE17 dominated in later floral stages. Temperature stress assays demonstrated cold-induced upregulation of PeTALE15/16/19/22 and heat-mediated suppression of PeTALE10/18/21. Yeast two-hybrid assays uncovered functional interactions between PeTALE3/16/18/22/23, highlighting a network governing floral thermoresilience. This study provides the first genome-wide analysis of PeTALEs, offering insights for breeding climate-resilient passion fruit varieties. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Graphical abstract

28 pages, 7013 KiB  
Article
Comparative Analysis of Floral Transcriptomes in Gossypium hirsutum (Malvaceae)
by Alexander Nobles, Jonathan F. Wendel and Mi-Jeong Yoo
Plants 2025, 14(4), 502; https://doi.org/10.3390/plants14040502 - 7 Feb 2025
Viewed by 781
Abstract
Organ-specific transcriptomes provide valuable insight into the genes involved in organ identity and developmental control. This study investigated transcriptomes of floral organs and subtending bracts in wild and domesticated Gossypium hirsutum, focusing on MADS-box genes critical for floral development. The expression profiles [...] Read more.
Organ-specific transcriptomes provide valuable insight into the genes involved in organ identity and developmental control. This study investigated transcriptomes of floral organs and subtending bracts in wild and domesticated Gossypium hirsutum, focusing on MADS-box genes critical for floral development. The expression profiles of A, B, C, D, and E class genes were analyzed, confirming their roles in floral organ differentiation. Hierarchical clustering revealed similar expression patterns between bracts and sepals, as well as between petals and stamens, while carpels clustered with developing cotton fibers, reflecting their shared characteristics. Beyond MADS-box genes, other transcription factors were analyzed to explore the genetic basis of floral development. While wild and domesticated cotton showed similar expression patterns for key genes, domesticated cotton exhibited significantly higher expression in carpels compared to wild cotton, which aligns with the increased number of ovules in the carpels of domesticated cotton. Functional enrichment analysis highlighted organ-specific roles: genes upregulated in bracts were enriched for photosynthesis-related GO terms, while diverse functions were enriched in floral organs, supporting their respective functions. Notably, A class genes were not significantly expressed in petals, deviating from the ABCDE model, which warrants further analysis. Lastly, the ABCDE class genes exhibited differential homoeolog expression bias toward each subgenome between two accessions, suggesting that the domestication process has influenced homoeolog utilization despite functional constraints in floral organogenesis. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

17 pages, 945 KiB  
Review
Research Progress on Gene Regulation of Plant Floral Organogenesis
by Lixia Zhou, Amjad Iqbal, Mengdi Yang and Yaodong Yang
Genes 2025, 16(1), 79; https://doi.org/10.3390/genes16010079 - 12 Jan 2025
Cited by 1 | Viewed by 2008
Abstract
Flowers, serving as the reproductive structures of angiosperms, perform an integral role in plant biology and are fundamental to understanding plant evolution and taxonomy. The growth and organogenesis of flowers are driven by numerous factors, such as external environmental conditions and internal physiological [...] Read more.
Flowers, serving as the reproductive structures of angiosperms, perform an integral role in plant biology and are fundamental to understanding plant evolution and taxonomy. The growth and organogenesis of flowers are driven by numerous factors, such as external environmental conditions and internal physiological processes, resulting in diverse traits across species or even within the same species. Among these factors, genes play a central role, governing the entire developmental process. The regulation of floral genesis by these genes has become a significant focus of research. In the AE model of floral development, the five structural whorls (calyx, corolla, stamens, pistils, and ovules) are controlled by five groups of genes: A, B, C, D, and E. These genes interact to give rise to a complex control system that governs the floral organsgenesis. The activation or suppression of specific gene categories results in structural modifications to floral organs, with variations observed across different species. The present article examines the regulatory roles of key genes, including genes within the MADS-box and AP2/ERF gene clusters, such as AP1, AP2, AP3, AG, STK, SHP, SEP, PI, and AGL6, as well as other genes, like NAP, SPL, TGA, PAN, and WOX, in shaping floral organ genesis. In addition, it analyzes the molecular-level effects of these genes on floral organ formation. The findings offer a deeper understanding of the genetic governance of floral organ genesis across plant species. Full article
(This article belongs to the Special Issue Forest Genetics and Plant Physiology)
Show Figures

Figure 1

15 pages, 2085 KiB  
Review
Paradigm and Framework of WUS-CLV Feedback Loop in Stem Cell Niche for SAM Maintenance and Cell Identity Transition
by Yamini Agarwal, Bhavya Shukla, Abinaya Manivannan and Prabhakaran Soundararajan
Agronomy 2022, 12(12), 3132; https://doi.org/10.3390/agronomy12123132 - 9 Dec 2022
Cited by 3 | Viewed by 4729
Abstract
Shoot apical meristem (SAM) consists of stem cells that act as a reservoir for the aerial growth. It plays an important role in the differential architectural development in plants. SAM actively performs parallel functions by maintaining the pluripotent of stem cells and continuous [...] Read more.
Shoot apical meristem (SAM) consists of stem cells that act as a reservoir for the aerial growth. It plays an important role in the differential architectural development in plants. SAM actively performs parallel functions by maintaining the pluripotent of stem cells and continuous organogenesis throughout the plant’s life cycle. Molecular mechanisms regulating the signaling networks of this dual function of the SAM have been progressively understood. In the SAM, the feedback loop of WUSCHEL (WUS)-CLAVATA (CLV) has been found to be the key regulator in stabilizing stem cell proliferation and differentiation. In general, WUS migrates into central zone (CZ) from organizing center (OC) and activates the expression of CLV3 by binding to the promoter elements. CLV3 acts as a ligand to interact with the CLV1, leucine rich repeats (LRR) receptor-like kinase (RLK) and LRR receptor-like protein CLV2, and protein kinase coryne (CRN) (CLV2/CRN) to restrict WUS transcription to the OC. Evolution of CLV3 is one of the main factors contributing to the transformation of two-dimensional (2D) to 3D plants. WUS-CLV loop is involved in several pathways and networks that integrate on meristem maintenance and cell identity transition. WUS-CLV maintains stem cells with simultaneous differentiation signals by the spatial-temporal signaling of the phytohormones. WUS-CLV loop has an interaction with reactive oxygen species (ROS), an important signaling molecules regulating cell proliferation and developmental transition. WUS also forms feedback loop with AGAMOUS (AG) for differentiation, proliferation, and termination of floral meristem. These loops might also involve in interaction with vernalization and its regulatory factors that oversees the precise timing of flowering after exposure to cold temperatures. In this review, we highlight the evolutionary and developmental importance of the WUS-CLV feedback loop on SAM maintenance and cell identity transition for inflorescence and floral meristem development. Full article
Show Figures

Figure 1

19 pages, 984 KiB  
Review
From Floral Induction to Blooming: The Molecular Mysteries of Flowering in Woody Plants
by Liyong Sun, Tangjie Nie, Yao Chen and Zengfang Yin
Int. J. Mol. Sci. 2022, 23(18), 10959; https://doi.org/10.3390/ijms231810959 - 19 Sep 2022
Cited by 21 | Viewed by 6351
Abstract
Flowering is a pivotal developmental process in response to the environment and determines the start of a new life cycle in plants. Woody plants usually possess a long juvenile nonflowering phase followed by an adult phase with repeated flowering cycles. The molecular mechanism [...] Read more.
Flowering is a pivotal developmental process in response to the environment and determines the start of a new life cycle in plants. Woody plants usually possess a long juvenile nonflowering phase followed by an adult phase with repeated flowering cycles. The molecular mechanism underlying flowering regulation in woody plants is believed to be much more complex than that in annual herbs. In this review, we briefly describe the successive but distinct flowering processes in perennial trees, namely the vegetative phase change, the floral transition, floral organogenesis, and final blooming, and summarize in detail the most recent advances in understanding how woody plants regulate flowering through dynamic gene expression. Notably, the florigen gene FLOWERING LOCUS T(FT) and its antagonistic gene TERMINAL FLOWER 1 (TFL1) seem to play a central role in various flowering transition events. Flower development in different taxa requires interactions between floral homeotic genes together with AGL6 conferring floral organ identity. Finally, we illustrate the issues and corresponding measures of flowering regulation investigation. It is of great benefit to the future study of flowering in perennial trees. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 4307 KiB  
Article
Fall Applications of Ethephon Modulates Gene Networks Controlling Bud Development during Dormancy in Peach (Prunus Persica)
by Jianyang Liu, Md Tabibul Islam, Suzanne Laliberte, David C. Haak and Sherif M. Sherif
Int. J. Mol. Sci. 2022, 23(12), 6801; https://doi.org/10.3390/ijms23126801 - 18 Jun 2022
Cited by 5 | Viewed by 2914
Abstract
Ethephon (ET) is an ethylene-releasing plant growth regulator (PGR) that can delay the bloom time in Prunus, thus reducing the risk of spring frost, which is exacerbated by global climate change. However, the adoption of ET is hindered by its detrimental effects on [...] Read more.
Ethephon (ET) is an ethylene-releasing plant growth regulator (PGR) that can delay the bloom time in Prunus, thus reducing the risk of spring frost, which is exacerbated by global climate change. However, the adoption of ET is hindered by its detrimental effects on tree health. Little knowledge is available regarding the mechanism of how ET shifts dormancy and flowering phenology in peach. This study aimed to further characterize the dormancy regulation network at the transcriptional level by profiling the gene expression of dormant peach buds from ET-treated and untreated trees using RNA-Seq data. The results revealed that ET triggered stress responses during endodormancy, delaying biological processes related to cell division and intercellular transportation, which are essential for the floral organ development. During ecodormancy, ET mainly impeded pathways related to antioxidants and cell wall formation, both of which are closely associated with dormancy release and budburst. In contrast, the expression of dormancy-associated MADS (DAM) genes remained relatively unaffected by ET, suggesting their conserved nature. The findings of this study signify the importance of floral organogenesis during dormancy and shed light on several key processes that are subject to the influence of ET, therefore opening up new avenues for the development of effective strategies to mitigate frost risks. Full article
(This article belongs to the Topic Temperature Stress and Responses in Plants)
Show Figures

Figure 1

14 pages, 68785 KiB  
Article
Serial Section-Based Three-Dimensional Reconstruction of Anaxagorea (Annonaceae) Carpel Vasculature and Implications for the Morphological Relationship between the Carpel and the Ovule
by Ya Li, Wei Du, Ye Chen, Shuai Wang and Xiao-Fan Wang
Plants 2021, 10(10), 2221; https://doi.org/10.3390/plants10102221 - 19 Oct 2021
Cited by 1 | Viewed by 2892
Abstract
Elucidating the origin of flowers has been a challenge in botany for a long time. One of the central questions surrounding the origin of flowers is how to interpret the carpel, especially the relationship between the phyllome part (carpel wall) and the ovule. [...] Read more.
Elucidating the origin of flowers has been a challenge in botany for a long time. One of the central questions surrounding the origin of flowers is how to interpret the carpel, especially the relationship between the phyllome part (carpel wall) and the ovule. Recently, consensus favors the carpel originating from the fusion of an ovule-bearing part and the phyllome part that subtends it. Considering the carpel is a complex organ, the accurate presentation of the anatomical structure of the carpel is necessary for resolving this question. Anaxagorea is the most basal genus in a primitive angiosperm family, Annonaceae. The conspicuous stipe at the base of each carpel makes it an ideal material for exploring the histological relationships among the receptacle, the carpel, and the ovule. In the present study, floral organogenesis and vasculature were delineated in Anaxagorea luzonensis and Anaxagorea javanica, and a three-dimensional model of the carpel vasculature was reconstructed based on serial sections. The results show that in Anaxagorea, the vasculature in the carpel branches in the form of shoots. The radiosymmetrical vasculature pattern is repeatedly presented in the receptacle, the carpel, and the funiculus of the ovule. This provides anatomical evidence of the composite origin of the carpel. Full article
(This article belongs to the Special Issue Mechanisms of Plant Ovule Development and Plasticity)
Show Figures

Figure 1

17 pages, 3944 KiB  
Article
Genome-Wide Identification and Expression Analysis of MADS-Box Family Genes in Litchi (Litchi chinensis Sonn.) and Their Involvement in Floral Sex Determination
by Hongling Guan, Han Wang, Jianjun Huang, Mingxin Liu, Ting Chen, Xiaozhen Shan, Houbin Chen and Jiyuan Shen
Plants 2021, 10(10), 2142; https://doi.org/10.3390/plants10102142 - 9 Oct 2021
Cited by 22 | Viewed by 3672
Abstract
Litchi possesses unique flower morphology and adaptive reproduction strategies. Although previous attention has been intensively devoted to the mechanisms underlying its floral induction, the molecular basis of flower sex determination remains largely unknown. MADS-box genes are promising candidates for this due to their [...] Read more.
Litchi possesses unique flower morphology and adaptive reproduction strategies. Although previous attention has been intensively devoted to the mechanisms underlying its floral induction, the molecular basis of flower sex determination remains largely unknown. MADS-box genes are promising candidates for this due to their significant roles in various aspects of inflorescence and flower organogenesis. Here, we present a detailed overview of phylogeny and expression profiles of 101 MADS-box genes that were identified in litchi. These LcMADSs are unevenly located across the 15 chromosomes and can be divided into type I and type II genes. Fifty type I MADS-box genes are subdivided into Mα, Mβ and Mγ subgroups, while fifty-one type II LcMADSs consist of 37 MIKCC -type and 14 MIKC *-type genes. Promoters of both types of LcMADS genes contain mainly ABA and MeJA response elements. Tissue-specific and development-related expression analysis reveal that LcMADS51 could be positively involved in litchi carpel formation, while six MADS-box genes, including LcMADS42/46/47/75/93/100, play a possible role in stamen development. GA is positively involved in the sex determination of litchi flowers by regulating the expression of LcMADS51 (LcSTK). However, JA down-regulates the expression of floral organ identity genes, suggesting a negative role in litchi flower development. Full article
(This article belongs to the Special Issue Floral Biology)
Show Figures

Figure 1

16 pages, 3301 KiB  
Article
Arabidopsis LSH8 Positively Regulates ABA Signaling by Changing the Expression Pattern of ABA-Responsive Proteins
by Jinpeng Zou, Zhifang Li, Haohao Tang, Li Zhang, Jingdu Li, Yuhong Li, Nan Yao, Yaxing Li, Deguang Yang and Zecheng Zuo
Int. J. Mol. Sci. 2021, 22(19), 10314; https://doi.org/10.3390/ijms221910314 - 25 Sep 2021
Cited by 12 | Viewed by 3886
Abstract
Phytohormone ABA regulates the expression of numerous genes to significantly affect seed dormancy, seed germination and early seedling responses to biotic and abiotic stresses. However, the function of many ABA-responsive genes remains largely unknown. In order to improve the ABA-related signaling network, we [...] Read more.
Phytohormone ABA regulates the expression of numerous genes to significantly affect seed dormancy, seed germination and early seedling responses to biotic and abiotic stresses. However, the function of many ABA-responsive genes remains largely unknown. In order to improve the ABA-related signaling network, we conducted a large-scale ABA phenotype screening. LSH, an important transcription factor family, extensively participates in seedling development and floral organogenesis in plants, but whether its family genes are involved in the ABA signaling pathway has not been reported. Here we describe a new function of the transcription factor LSH8 in an ABA signaling pathway. In this study, we found that LSH8 was localized in the nucleus, and the expression level of LSH8 was significantly induced by exogenous ABA at the transcription level and protein level. Meanwhile, seed germination and root length measurements revealed that lsh8 mutant lines were ABA insensitive, whereas LSH8 overexpression lines showed an ABA-hypersensitive phenotype. With further TMT labeling quantitative proteomic analysis, we found that under ABA treatment, ABA-responsive proteins (ARPs) in the lsh8 mutant presented different changing patterns with those in wild-type Col4. Additionally, the number of ARPs contained in the lsh8 mutant was 397, six times the number in wild-type Col4. In addition, qPCR analysis found that under ABA treatment, LSH8 positively mediated the expression of downstream ABA-related genes of ABI3, ABI5, RD29B and RAB18. These results indicate that in Arabidopsis, LSH8 is a novel ABA regulator that could specifically change the expression pattern of APRs to positively mediate ABA responses. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 4396 KiB  
Article
Genome-Wide Identification and Analysis of the MADS-Box Gene Family in American Beautyberry (Callicarpa americana)
by Tareq Alhindi and Ayed M. Al-Abdallat
Plants 2021, 10(9), 1805; https://doi.org/10.3390/plants10091805 - 30 Aug 2021
Cited by 13 | Viewed by 3498
Abstract
The MADS-box gene family encodes a number of transcription factors that play key roles in various plant growth and development processes from response to environmental cues to cell differentiation and organ identity, especially the floral organogenesis, as in the prominent ABCDE model of [...] Read more.
The MADS-box gene family encodes a number of transcription factors that play key roles in various plant growth and development processes from response to environmental cues to cell differentiation and organ identity, especially the floral organogenesis, as in the prominent ABCDE model of flower development. Recently, the genome of American beautyberry (Callicarpa americana) has been sequenced. It is a shrub native to the southern region of United States with edible purple-colored berries; it is a member of the Lamiaceae family, a family of medical and agricultural importance. Seventy-eight MADS-box genes were identified from 17 chromosomes of the C. americana assembled genome. Peptide sequences blast and analysis of phylogenetic relationships with MADS-box genes of Sesame indicum, Solanum lycopersicum, Arabidopsis thaliana, and Amborella trichopoda were performed. Genes were separated into 32 type I and 46 type II MADS-box genes. C. americana MADS-box genes were clustered into four groups: MIKCC, MIKC*, Mα-type, and Mγ-type, while the Mβ-type group was absent. Analysis of the gene structure revealed that from 1 to 15 exons exist in C. americana MADS-box genes. The number of exons in type II MADS-box genes (5–15) greatly exceeded the number in type I genes (1–9). The motif distribution analysis of the two types of MADS-box genes showed that type II MADS-box genes contained more motifs than type I genes. These results suggested that C. americana MADS-box genes type II had more complex structures and might have more diverse functions. The role of MIKC-type MADS-box genes in flower and fruit development was highlighted when the expression profile was analyzed in different organs transcriptomes. This study is the first genome-wide analysis of the C. americana MADS-box gene family, and the results will further support any functional and evolutionary studies of C. americana MADS-box genes and serve as a reference for related studies of other plants in the medically important Lamiaceae family. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

12 pages, 4753 KiB  
Article
Identification and Characterization of MIKCc-Type MADS-Box Genes in the Flower Organs of Adonis amurensis
by Lulu Ren, Hongwei Sun, Shengyue Dai, Shuang Feng, Kun Qiao, Jingang Wang, Shufang Gong and Aimin Zhou
Int. J. Mol. Sci. 2021, 22(17), 9362; https://doi.org/10.3390/ijms22179362 - 28 Aug 2021
Cited by 8 | Viewed by 2737
Abstract
Adonis amurensis is a perennial herbaceous flower that blooms in early spring in northeast China, where the night temperature can drop to −15 °C. To understand flowering time regulation and floral organogenesis of A. amurensis, the MIKCc-type MADS (Mcm1/Agamous/ Deficiens/Srf)-box [...] Read more.
Adonis amurensis is a perennial herbaceous flower that blooms in early spring in northeast China, where the night temperature can drop to −15 °C. To understand flowering time regulation and floral organogenesis of A. amurensis, the MIKCc-type MADS (Mcm1/Agamous/ Deficiens/Srf)-box genes were identified and characterized from the transcriptomes of the flower organs. In this study, 43 non-redundant MADS-box genes (38 MIKCc, 3 MIKC*, and 2 Mα) were identified. Phylogenetic and conserved motif analysis divided the 38 MIKCc-type genes into three major classes: ABCDE model (including AP1/FUL, AP3/PI, AG, STK, and SEPs/AGL6), suppressor of overexpression of constans1 (SOC1), and short vegetative phase (SVP). qPCR analysis showed that the ABCDE model genes were highly expressed mainly in flowers and differentially expressed in the different tissues of flower organs, suggesting that they may be involved in the flower organ identity of A. amurensis. Subcellular localization revealed that 17 full-length MADSs were mainly localized in the nucleus: in Arabidopsis, the heterologous expression of three full-length SOC1-type genes caused early flowering and altered the expression of endogenous flowering time genes. Our analyses provide an overall insight into MIKCc genes in A. amurensis and their potential roles in floral organogenesis and flowering time regulation. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

15 pages, 3393 KiB  
Article
Inflorescence Development and Floral Organogenesis in Taraxacum kok-saghyz
by Carolina Schuchovski, Tea Meulia, Bruno Francisco Sant’Anna-Santos and Jonathan Fresnedo-Ramírez
Plants 2020, 9(10), 1258; https://doi.org/10.3390/plants9101258 - 24 Sep 2020
Cited by 9 | Viewed by 7480
Abstract
Rubber dandelion (Taraxacum kok-saghyz Rodin; TK) has received attention for its natural rubber content as a strategic biomaterial, and a promising, sustainable, and renewable alternative to synthetic rubber from fossil carbon sources. Extensive research on the domestication and rubber content of TK [...] Read more.
Rubber dandelion (Taraxacum kok-saghyz Rodin; TK) has received attention for its natural rubber content as a strategic biomaterial, and a promising, sustainable, and renewable alternative to synthetic rubber from fossil carbon sources. Extensive research on the domestication and rubber content of TK has demonstrated TK’s potential in industrial applications as a relevant natural rubber and latex-producing alternative crop. However, many aspects of its biology have been neglected in published studies. For example, floral development is still poorly characterized. TK inflorescences were studied by scanning electron microscopy. Nine stages of early inflorescence development are proposed, and floral micromorphology is detailed. Individual flower primordia development starts at the periphery and proceeds centripetally in the newly-formed inflorescence meristem. Floral organogenesis begins in the outermost flowers of the capitulum, with corolla ring and androecium formation. Following, pappus primordium—forming a ring around the base of the corolla tube—and gynoecium are observed. The transition from vegetative to inflorescence meristem was observed 21 days after germination. This description of inflorescence and flower development in TK sheds light on the complex process of flowering, pollination, and reproduction. This study will be useful for genetics, breeding, systematics, and development of agronomical practices for this new rubber-producing crop. Full article
(This article belongs to the Special Issue Floral Biology)
Show Figures

Graphical abstract

29 pages, 4316 KiB  
Article
Global Quantitative Proteomics Studies Revealed Tissue-Preferential Expression and Phosphorylation of Regulatory Proteins in Arabidopsis
by Jianan Lu, Ying Fu, Mengyu Li, Shuangshuang Wang, Jingya Wang, Qi Yang, Juanying Ye, Xumin Zhang, Hong Ma and Fang Chang
Int. J. Mol. Sci. 2020, 21(17), 6116; https://doi.org/10.3390/ijms21176116 - 25 Aug 2020
Cited by 7 | Viewed by 3779
Abstract
Organogenesis in plants occurs across all stages of the life cycle. Although previous studies have identified many genes as important for either vegetative or reproductive development at the RNA level, global information on translational and post-translational levels remains limited. In this study, six [...] Read more.
Organogenesis in plants occurs across all stages of the life cycle. Although previous studies have identified many genes as important for either vegetative or reproductive development at the RNA level, global information on translational and post-translational levels remains limited. In this study, six Arabidopsis stages/organs were analyzed using quantitative proteomics and phosphoproteomics, identifying 2187 non-redundant proteins and evidence for 1194 phosphoproteins. Compared to the expression observed in cauline leaves, the expression of 1445, 1644, and 1377 proteins showed greater than 1.5-fold alterations in stage 1–9 flowers, stage 10–12 flowers, and open flowers, respectively. Among these, 294 phosphoproteins with 472 phosphorylation sites were newly uncovered, including 275 phosphoproteins showing differential expression patterns, providing molecular markers and possible candidates for functional studies. Proteins encoded by genes preferentially expressed in anther (15), meiocyte (4), or pollen (15) were enriched in reproductive organs, and mutants of two anther-preferentially expressed proteins, acos5 and mee48, showed obviously reduced male fertility with abnormally organized pollen exine. In addition, more phosphorylated proteins were identified in reproductive stages (1149) than in the vegetative organs (995). The floral organ-preferential phosphorylation of GRP17, CDC2/CDKA.1, and ATSK11 was confirmed with western blot analysis. Moreover, phosphorylation levels of CDPK6 and MAPK6 and their interacting proteins were elevated in reproductive tissues. Overall, our study yielded extensive data on protein expression and phosphorylation at six stages/organs and provides an important resource for future studies investigating the regulatory mechanisms governing plant development. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 2945 KiB  
Article
Different Summer and Autumn Water Deficit Affect the Floral Differentiation and Flower Bud Growth in Apricot (Prunus armeniaca L.)
by Susanna Bartolini, Ermes Lo Piccolo and Damiano Remorini
Agronomy 2020, 10(6), 914; https://doi.org/10.3390/agronomy10060914 - 26 Jun 2020
Cited by 9 | Viewed by 3897
Abstract
In deciduous fruit species, floral bud initiation, differentiation and organogenesis take place during the summer–autumn season that precedes anthesis. Among factors able to modify the regularity of these processes, water availability represents a crucial aspect. This investigation aimed to assess the influence of [...] Read more.
In deciduous fruit species, floral bud initiation, differentiation and organogenesis take place during the summer–autumn season that precedes anthesis. Among factors able to modify the regularity of these processes, water availability represents a crucial aspect. This investigation aimed to assess the influence of different summer and autumn water deficit and re-watering treatments on floral morphogenesis, xylem vessel differentiation and quality of flower buds. Trials were carried out on two-year-old potted apricot trees (cv. ‘Portici’) which were submitted to different regimes: (i) fully irrigated plants; (ii) stressed plants in June (S1), July (S2) and October (S3) followed to re-watering. Midday stem water potential was used to determine water status, and leaf gas exchanges were measured during trials. Histological analyses on floral differentiation, xylem progression within flower buds and biological observations were carried out. Both summer water stress periods affected the floral differentiation leading to a temporary shutdown. The S1 trees were able to recover the development of meristematic apices while S2 had a strong delay. All drought treatments caused a slower xylem progression, variations in bud size, blooming entity and flower anomalies. Results particularly highlights the importance of water availability also in early autumn. Full article
Show Figures

Figure 1

25 pages, 7384 KiB  
Article
Floral Organogenesis in Three Members of the Tribe Delphinieae (Ranunculaceae)
by Hongli Chang, Stephen R. Downie, Hongli Peng and Fengjie Sun
Plants 2019, 8(11), 493; https://doi.org/10.3390/plants8110493 - 11 Nov 2019
Cited by 10 | Viewed by 4220
Abstract
Three species (Aconitum taipeicum, Delphinium giraldii, and Consolida ajacis) of the tribe Delphinieae (Ranunculaceae) were examined using scanning electron microscopy and histological methods. The results showed that members of Delphinieae differ from their polysymmetrical relatives by four unique features: [...] Read more.
Three species (Aconitum taipeicum, Delphinium giraldii, and Consolida ajacis) of the tribe Delphinieae (Ranunculaceae) were examined using scanning electron microscopy and histological methods. The results showed that members of Delphinieae differ from their polysymmetrical relatives by four unique features: (1) a spiral phyllotaxis of their perianth and stamens, and a series of carpels, which initiated superficially in a whorl-liked arrangement; (2) sepal 2 being the largest one among the five sepals and becoming helmet-shaped or having a spur; (3) petals 2 and 5 initiated adaxially of sepal 2 and also becoming spurred; and (4) the monosymmetry of the first flower becoming established when sepal 2 becomes the largest. Major differences among the species include the timing of development of the second series; the fusion of two petals into a single one in C. ajacis; and, during early developmental stages, the two young spurred petals giving rise to a stalk and two bulges in A. taipeicum, a single bulge in D. giraldii, or an arch blade in C. ajacis. The unequal growth of the perianth, together with the reduction and the rearrangement of the carpels, are critical in inducing the symmetrical transformation of the flowers. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

Back to TopTop