Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = floating solar PV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 2898 KiB  
Review
Floating Solar Energy Systems: A Review of Economic Feasibility and Cross-Sector Integration with Marine Renewable Energy, Aquaculture and Hydrogen
by Marius Manolache, Alexandra Ionelia Manolache and Gabriel Andrei
J. Mar. Sci. Eng. 2025, 13(8), 1404; https://doi.org/10.3390/jmse13081404 - 23 Jul 2025
Viewed by 420
Abstract
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. [...] Read more.
Excessive reliance on traditional energy sources such as coal, petroleum, and gas leads to a decrease in natural resources and contributes to global warming. Consequently, the adoption of renewable energy sources in power systems is experiencing swift expansion worldwide, especially in offshore areas. Floating solar photovoltaic (FPV) technology is gaining recognition as an innovative renewable energy option, presenting benefits like minimized land requirements, improved cooling effects, and possible collaborations with hydropower. This study aims to assess the levelized cost of electricity (LCOE) associated with floating solar initiatives in offshore and onshore environments. Furthermore, the LCOE is assessed for initiatives that utilize floating solar PV modules within aquaculture farms, as well as for the integration of various renewable energy sources, including wind, wave, and hydropower. The LCOE for FPV technology exhibits considerable variation, ranging from 28.47 EUR/MWh to 1737 EUR/MWh, depending on the technologies utilized within the farm as well as its geographical setting. The implementation of FPV technology in aquaculture farms revealed a notable increase in the LCOE, ranging from 138.74 EUR/MWh to 2306 EUR/MWh. Implementation involving additional renewable energy sources results in a reduction in the LCOE, ranging from 3.6 EUR/MWh to 315.33 EUR/MWh. The integration of floating photovoltaic (FPV) systems into green hydrogen production represents an emerging direction that is relatively little explored but has high potential in reducing costs. The conversion of this energy into hydrogen involves high final costs, with the LCOH ranging from 1.06 EUR/kg to over 26.79 EUR/kg depending on the complexity of the system. Full article
(This article belongs to the Special Issue Development and Utilization of Offshore Renewable Energy)
Show Figures

Figure 1

23 pages, 1811 KiB  
Article
Transforming Grid Systems for Sustainable Energy Futures: The Role of Energy Storage in Offshore Wind and Floating Solar
by Sajid Hussain Qazi, Marvi Dashi Kalhoro, Dimitar Bozalakov and Lieven Vandevelde
Batteries 2025, 11(6), 233; https://doi.org/10.3390/batteries11060233 - 16 Jun 2025
Viewed by 765
Abstract
Integrating offshore renewable energy (ORE) into power systems is vital for sustainable energy transitions. This paper examines the challenges and opportunities in integrating ORE, focusing on offshore wind and floating solar, into grid systems. A simulation was conducted using a 5 MW offshore [...] Read more.
Integrating offshore renewable energy (ORE) into power systems is vital for sustainable energy transitions. This paper examines the challenges and opportunities in integrating ORE, focusing on offshore wind and floating solar, into grid systems. A simulation was conducted using a 5 MW offshore wind turbine and a 2 MW floating PV (FPV) system, complemented by a 10 MWh battery energy storage system (BESS). The simulation utilized the typical load profile of Belgium and actual 2023 electricity price data, along with realistic wind and solar generation patterns for a location at the sea border of Belgium and the Netherlands. The use of real operational and market data ensures the practical relevance of the results. This study highlights the importance of BESS, targeting a significant revenue by participating in system imbalance and providing ancillary services (aFRR and mFRR). Key findings emphasize the need for grid infrastructure transformation to support ORE’s growing investments and deployment. This research underscores the essential role of technological innovation and strategic planning in optimizing the potential of ORE sources. Full article
Show Figures

Figure 1

18 pages, 2828 KiB  
Article
The Philippines’ Energy Transition: Assessing Emerging Technology Options Using OSeMOSYS (Open-Source Energy Modelling System)
by Lara Dixon, Rudolf Yeganyan, Naomi Tan, Carla Cannone, Mark Howells, Vivien Foster and Fernando Plazas-Niño
Climate 2025, 13(1), 14; https://doi.org/10.3390/cli13010014 - 8 Jan 2025
Viewed by 2796
Abstract
The Philippines aspires for a clean energy future but has become increasingly reliant on imported fossil fuels due to rising energy demands. Despite renewable energy targets and a coal moratorium, emissions reductions have yet to materialize. This study evaluates the potential of offshore [...] Read more.
The Philippines aspires for a clean energy future but has become increasingly reliant on imported fossil fuels due to rising energy demands. Despite renewable energy targets and a coal moratorium, emissions reductions have yet to materialize. This study evaluates the potential of offshore wind (floating and fixed), floating solar PV, in-stream tidal, and nuclear power to contribute to a Net-Zero energy plan for the Philippines, utilizing the Open-Source Energy Modelling System (OSeMOSYS). Seven scenarios were analyzed, including least-cost, renewable energy targets; Net-Zero emissions; and variations in offshore wind growth and nuclear power integration. Floating solar PV and offshore wind emerged as key decarbonization technologies, with uptake in all scenarios. Achieving Net-Zero CO2 emissions by 2050 proved technically feasible but requires substantial capital, particularly after 2037. Current renewable energy targets are inadequate to induce emissions reductions; and a higher target of ~42% by 2035 was found to be more cost-effective. The addition of nuclear power showed limited cost and emissions benefits. Emissions reductions were projected to mainly occur after 2038, highlighting the need for more immediate policy action. Recommendations include setting a higher renewables target, offshore wind capacity goals, a roadmap for floating solar PV, and better incentives for private investment in renewables and electric transport. Full article
Show Figures

Figure 1

26 pages, 16984 KiB  
Article
An Enhanced Solar Battery Charger Using a DC-DC Single-Ended Primary-Inductor Converter and Fuzzy Logic-Based Control for Off-Grid Photovoltaic Applications
by Julio López Seguel, Samuel Zenteno, Crystopher Arancibia, José Rodríguez, Mokhtar Aly, Seleme I. Seleme and Lenin M. F. Morais
Processes 2025, 13(1), 99; https://doi.org/10.3390/pr13010099 - 3 Jan 2025
Cited by 1 | Viewed by 3892
Abstract
Battery charging systems are crucial for energy storage in off-grid photovoltaic (PV) installations. Since the power generated by a PV panel is conditioned by climatic conditions and load characteristics, a maximum power point tracking (MPPT) technique is required to maximize PV power and [...] Read more.
Battery charging systems are crucial for energy storage in off-grid photovoltaic (PV) installations. Since the power generated by a PV panel is conditioned by climatic conditions and load characteristics, a maximum power point tracking (MPPT) technique is required to maximize PV power and accelerate battery charging. On the other hand, a battery must be carefully charged, ensuring that its charging current and voltage limits are not exceeded, thereby preventing premature degradation. However, the voltage generated by the PV panel during MPPT operation fluctuates, which can harm the battery, particularly during periods of intense radiation when overvoltages are likely to occur. To address these issues, the design and construction of an enhanced solar battery charger utilizing a single-ended primary-inductor converter (SEPIC) and soft computing (SC)-based control is presented. A control strategy is employed that integrates voltage stabilization and MPPT functions through two dedicated fuzzy logic controllers (FLCs), which manage battery charging using a three-mode scheme: MPPT, Absorption, and Float. This approach optimizes available PV power while guaranteeing fast and safe battery charging. The developed charger leverages the SEPIC’s notable features for PV applications, including a wide input voltage range, minimal input current ripple, and an easy-to-drive switch. Moreover, unlike most PV charger control strategies in the literature that combine improved traditional MPPT methods with classical proportional integral (PI)-based control loops, the proposed control adopts a fully SC-based strategy, effectively addressing common drawbacks of conventional methods, such as slowness and inaccuracy during sudden atmospheric fluctuations. Simulations in MATLAB/Simulink compared the FLCs’ performance with conventional methods (P&O, IncCond, and PID). Additionally, a low-power hardware prototype using an Arduino Due microcontroller was built to evaluate the battery charger’s behavior under real weather conditions. The simulated and experimental results both demonstrate the robustness and effectiveness of the solar charger. Full article
(This article belongs to the Special Issue Advances in Renewable Energy Systems (2nd Edition))
Show Figures

Figure 1

50 pages, 14654 KiB  
Systematic Review
Renewable Solar Energy Facilities in South America—The Road to a Low-Carbon Sustainable Energy Matrix: A Systematic Review
by Carlos Cacciuttolo, Valentina Guzmán and Patricio Catriñir
Energies 2024, 17(22), 5532; https://doi.org/10.3390/en17225532 - 6 Nov 2024
Cited by 4 | Viewed by 3030
Abstract
South America is a place on the planet that stands out with enormous potential linked to renewable energies. Countries in this region have developed private investment projects to carry out an energy transition from fossil energies to clean energies and contribute to climate [...] Read more.
South America is a place on the planet that stands out with enormous potential linked to renewable energies. Countries in this region have developed private investment projects to carry out an energy transition from fossil energies to clean energies and contribute to climate change mitigation. The sun resource is one of the more abundant sources of renewable energies that stands out in South America, especially in the Atacama Desert. In this context, South American countries are developing sustainable actions/strategies linked to implementing solar photovoltaic (PV) and concentrated solar power (CSP) facilities and achieving carbon neutrality for the year 2050. As a result, this systematic review presents the progress, new trends, and the road to a sustainable paradigm with disruptive innovations like artificial intelligence, robots, and unmanned aerial vehicles (UAVs) for solar energy facilities in the region. According to the findings, solar energy infrastructure was applied in South America during the global climate change crisis era. Different levels of implementation in solar photovoltaic (PV) facilities have been reached in each country, with the region being a worldwide research and development (R&D) hotspot. Also, high potential exists for concentrated solar power (CSP) facilities considering the technology evolution, and for the implementation of the hybridization of solar photovoltaic (PV) facilities with onshore wind farm infrastructures, decreasing the capital/operation costs of the projects. Finally, synergy between solar energy infrastructures with emerging technologies linked with low-carbon economies like battery energy storage systems (BESSs) and the use of floating solar PV plants looks like a promising sustainable solution. Full article
Show Figures

Figure 1

16 pages, 4708 KiB  
Review
Review of Recent Offshore Floating Photovoltaic Systems
by Gang Liu, Jiamin Guo, Huanghua Peng, Huan Ping and Qiang Ma
J. Mar. Sci. Eng. 2024, 12(11), 1942; https://doi.org/10.3390/jmse12111942 - 31 Oct 2024
Cited by 7 | Viewed by 5282
Abstract
Photovoltaic (PV) power generation is a form of clean, renewable, and distributed energy that has become a hot topic in the global energy field. Compared to terrestrial solar PV systems, floating photovoltaic (FPV) systems have gained great interest due to their advantages in [...] Read more.
Photovoltaic (PV) power generation is a form of clean, renewable, and distributed energy that has become a hot topic in the global energy field. Compared to terrestrial solar PV systems, floating photovoltaic (FPV) systems have gained great interest due to their advantages in conserving land resources, optimizing light utilization, and slowing water evaporation. This paper provides a comprehensive overview of recent advancements in the research and application of FPV systems. First, the main components of FPV systems and their advantages as well as disadvantages are analyzed in detail. Furthermore, the research and practical applications of offshore FPV systems, including rigid floating structures and flexible floating structures, are discussed. Finally, the challenges of offshore FPV systems are analyzed in terms of their stability and economic performance. By summarizing current research on FPV systems, this overview aims to serve as a valuable resource for the development of offshore FPV systems. Full article
(This article belongs to the Special Issue Advances in Offshore Renewable Energy Systems)
Show Figures

Figure 1

38 pages, 7303 KiB  
Article
Towards Sustainable Energy Solutions: Evaluating the Impact of Floating PV Systems in Reducing Water Evaporation and Enhancing Energy Production in Northern Cyprus
by Youssef Kassem, Hüseyin Gökçekuş and Rifat Gökçekuş
Energies 2024, 17(21), 5300; https://doi.org/10.3390/en17215300 - 25 Oct 2024
Cited by 3 | Viewed by 1548
Abstract
Floating photovoltaic systems (FPVSs) are gaining popularity, especially in countries with high population density and abundant solar energy resources. FPVSs provide a variety of advantages, particularly in situations where land is limited. Therefore, the main objective of the study is to evaluate the [...] Read more.
Floating photovoltaic systems (FPVSs) are gaining popularity, especially in countries with high population density and abundant solar energy resources. FPVSs provide a variety of advantages, particularly in situations where land is limited. Therefore, the main objective of the study is to evaluate the solar energy potential and investigate the techno-economic perspective of FPVSs at 15 water reservoirs in Northern Cyprus for the first time. Due to the solar radiation variations, solar power generation is uncertain; therefore, precise characterization is required to manage the grid effectively. In this paper, four distribution functions (Johnson SB, pert, Phased Bi-Weibull, and Kumaraswamy) are newly introduced to analyze the characteristics of solar irradiation, expressed by global horizontal irradiation (GHI), at the selected sites. These distribution functions are compared with common distribution functions to assess their suitability. The results demonstrated that the proposed distribution functions, with the exception of Phased Bi-Weibull, outperform the common distribution regarding fitting GHI distribution. Moreover, this work aims to evaluate the effects of floating photovoltaic systems on water evaporation rates at 15 reservoirs. To this aim, five methods were used to estimate the rate of water evaporation based on weather data. Different scenarios of covering the reservoir’s surface with an FPVS were studied and discussed. The findings showed that annual savings at 100% coverage can reach 6.21 × 105 m3 compared to 0 m3 without PV panels. Finally, technical and economic assessment of FPVSs with various scales, floating assemblies, and PV technologies was conducted to determine the optimal system. The results revealed that a floating structure (North orientation-tilt 6°) and bifacial panels produced the maximum performance for the proposed FPVSs at the selected sites. Consequently, it is observed that the percentage of reduction in electricity production from fossil fuel can be varied from 10.19% to 47.21% at 75% FPV occupancy. Full article
Show Figures

Figure 1

26 pages, 2184 KiB  
Review
Floating Photovoltaic Plant Monitoring: A Review of Requirements and Feasible Technologies
by Silvia Bossi, Luciano Blasi, Giacomo Cupertino, Ramiro dell’Erba, Angelo Cipollini, Saverio De Vito, Marco Santoro, Girolamo Di Francia and Giuseppe Marco Tina
Sustainability 2024, 16(19), 8367; https://doi.org/10.3390/su16198367 - 26 Sep 2024
Cited by 3 | Viewed by 3624
Abstract
Photovoltaic energy (PV) is considered one of the pillars of the energy transition. However, this energy source is limited by a power density per unit surface lower than 200 W/m2, depending on the latitude of the installation site. Compared to fossil [...] Read more.
Photovoltaic energy (PV) is considered one of the pillars of the energy transition. However, this energy source is limited by a power density per unit surface lower than 200 W/m2, depending on the latitude of the installation site. Compared to fossil fuels, such low power density opens a sustainability issue for this type of renewable energy in terms of its competition with other land uses, and forces us to consider areas suitable for the installation of photovoltaic arrays other than farmlands. In this frame, floating PV plants, installed in internal water basins or even offshore, are receiving increasing interest. On the other hand, this kind of installation might significantly affect the water ecosystem environment in various ways, such as by the effects of solar shading or of anchorage installation. As a result, monitoring of floating PV (FPV) plants, both during the ex ante site evaluation phase and during the operation of the PV plant itself, is therefore necessary to keep such effects under control. This review aims to examine the technical and academic literature on FPV plant monitoring, focusing on the measurement and discussion of key physico-chemical parameters. This paper also aims to identify the additional monitoring features required for energy assessment of a floating PV system compared to a ground-based PV system. Moreover, due to the intrinsic difficulty in the maintenance operations of PV structures not installed on land, novel approaches have introduced autonomous solutions for monitoring the environmental impacts of FPV systems. Technologies for autonomous mapping and monitoring of water bodies are reviewed and discussed. The extensive technical literature analyzed in this review highlights the current lack of a cohesive framework for monitoring these impacts. This paper concludes that there is a need to establish general guidelines and criteria for standardized water quality monitoring (WQM) and management in relation to FPV systems. Full article
(This article belongs to the Special Issue Sustainable Energy Systems and Applications)
Show Figures

Figure 1

17 pages, 23181 KiB  
Article
Improving Module Temperature Prediction Models for Floating Photovoltaic Systems: Analytical Insights from Operational Data
by Monica Nicola and Matthew Berwind
Energies 2024, 17(17), 4289; https://doi.org/10.3390/en17174289 - 27 Aug 2024
Cited by 1 | Viewed by 1495
Abstract
Floating photovoltaic (FPV) systems are gaining popularity as a valuable means of harnessing solar energy on unused water surfaces. However, a significant gap persists in our comprehension of their thermal dynamics and the purported cooling benefits they provide. The lack of comprehensive monitoring [...] Read more.
Floating photovoltaic (FPV) systems are gaining popularity as a valuable means of harnessing solar energy on unused water surfaces. However, a significant gap persists in our comprehension of their thermal dynamics and the purported cooling benefits they provide. The lack of comprehensive monitoring data across different climatic regions and topographies aggravates this uncertainty. This paper reviews the applicability of established module temperature prediction models, originally developed for land-based PV systems, to FPVs. It then details the refinement of these models using FPV-specific data and their subsequent validation through large-scale, ongoing FPV projects. The result is a significant improvement in the accuracy of temperature predictions, as evidenced by the reduced Mean Absolute Error (MAE) and improved R-squared (R2) after parameter optimisation. This reduction means that the tailored models better reflect the distinct environmental influences and cooling processes characteristic of FPV systems. The results not only confirm the success of the proposed method in refining the accuracy of current models, but also indicate significant post-tuning changes in the parameters representing wind and convective effects. These adjustments highlight the increased responsiveness of FPVs to convective actions, especially when compared to ground-based systems, possibly due to the evaporative cooling effect of bodies of water. Through this research, we address a critical gap in our understanding of heat transfer in FPV systems and aim to enrich the knowledge surrounding the acknowledged cooling effect of FPVs. Full article
(This article belongs to the Special Issue Floating PV Systems On and Offshore)
Show Figures

Figure 1

24 pages, 6004 KiB  
Article
Predictive Modeling of Solar PV Panel Operating Temperature over Water Bodies: Comparative Performance Analysis with Ground-Mounted Installations
by Karmendra Kumar Agrawal, Shibani Khanra Jha, Ravi Kant Mittal, Ajit Pratap Singh, Sanjay Vashishtha, Saurabh Gupta and Manoj Kumar Soni
Energies 2024, 17(14), 3489; https://doi.org/10.3390/en17143489 - 16 Jul 2024
Cited by 1 | Viewed by 1701
Abstract
Solar panel efficiency is significantly influenced by its operating temperature. Recent advancements in emerging renewable energy alternatives have enabled photovoltaic (PV) module installation over water bodies, leveraging their increased efficiency and associated benefits. This paper examines the operational performance of solar panels placed [...] Read more.
Solar panel efficiency is significantly influenced by its operating temperature. Recent advancements in emerging renewable energy alternatives have enabled photovoltaic (PV) module installation over water bodies, leveraging their increased efficiency and associated benefits. This paper examines the operational performance of solar panels placed over water bodies, comparing them to ground-mounted solar PV installations. Regression models for panel temperature are developed based on experimental setups at BITS Pilani, India. Developed regression models, including linear, quadratic, and exponential, are utilized to predict the operating temperature of solar PV installations above water bodies. These models incorporated parameters such as ambient temperature, solar insolation, wind velocity, water temperature, and humidity. Among these, the one-degree regression models with three parameters outperformed the models with four or five parameters with a prediction error of 5.5 °C. Notably, the study found that the annual energy output estimates from the best model had an error margin of less than 0.2% compared to recorded data. Research indicates that solar PV panels over water bodies produce approximately 2.59% more annual energy output than ground-mounted systems. The newly developed regression models provide a predictive tool for estimating the operating temperature of solar PV installations above water bodies, using only three meteorological parameters: ambient temperature, solar insolation, and wind velocity, for accurate temperature prediction. Full article
(This article belongs to the Topic Solar Thermal Energy and Photovoltaic Systems, 2nd Volume)
Show Figures

Figure 1

18 pages, 2995 KiB  
Perspective
Accelerating the Low-Carbon Energy Transition in Sub-Saharan Africa through Floating Photovoltaic Solar Farms
by Tarelayefa Igedibor Ingo, Louis Gyoh, Yong Sheng, Mustafa Kemal Kaymak, Ahmet Duran Şahin and Hamid M. Pouran
Atmosphere 2024, 15(6), 653; https://doi.org/10.3390/atmos15060653 - 30 May 2024
Cited by 4 | Viewed by 1796
Abstract
Climate change has become a global issue and is predicted to impact less-developed regions, such as sub-Saharan Africa, severely. Innovative, sustainable renewable energy systems are essential to mitigate climate change’s effects and unlock the region’s potential, especially with the increasing energy demands and [...] Read more.
Climate change has become a global issue and is predicted to impact less-developed regions, such as sub-Saharan Africa, severely. Innovative, sustainable renewable energy systems are essential to mitigate climate change’s effects and unlock the region’s potential, especially with the increasing energy demands and population growth. The region relies heavily on fossil fuels, which calls for urgent action towards energy security and expansion. Hybrid floating solar photovoltaic-hydropower (FPV-HEP) technology has emerged as a cost-effective and transformative solution to accelerate the low-carbon energy transition in sub-Saharan Africa. The technology combines solar panels with existing hydropower infrastructure, ensuring energy security while reducing carbon emissions. This technology offers several benefits over conventional ground-mounted solar systems, including efficient land utilization, energy generation, and water conservation. However, its adoption remains challenging due to technical complexities and evolving regulatory frameworks. Despite these challenges, Nigerian energy professionals have preferred renewable alternatives, mainly distributed solar PV and FPV-HEP plants. This collective embrace of FPV and renewables reflects a growing understanding of their critical role in mitigating climate change through sustainable energy practices. This research aims to contribute to the existing body of knowledge and assist policymakers in making informed decisions on adopting this technology. It also stimulates further research on this topic, offering a new potential solution to the ever-increasing demand for green energy in the region to meet their sustainable development needs. Full article
(This article belongs to the Special Issue Climate Change and the Potential Impacts on Wind/Solar Power Systems)
Show Figures

Figure 1

20 pages, 9059 KiB  
Article
Assessing the Theoretical, Minimal Intervention Potential of Floating Solar in Greece: A Policy-Oriented Planning Exercise on Lentic Water Systems of the Greek Mainland
by Despoina Athanasiou and Dimitrios Zafirakis
Energies 2024, 17(9), 2144; https://doi.org/10.3390/en17092144 - 30 Apr 2024
Cited by 1 | Viewed by 1270
Abstract
According to the recent revision of the Greek National Energy and Climate Plan, the country sets out to accomplish an ambitious target concerning the integration of renewables in the local electricity mix during the ongoing decade, at the levels of 80% by 2030. [...] Read more.
According to the recent revision of the Greek National Energy and Climate Plan, the country sets out to accomplish an ambitious target concerning the integration of renewables in the local electricity mix during the ongoing decade, at the levels of 80% by 2030. This implies the need to more than double the existing wind and PV capacity at the national level, which in turn introduces numerous challenges. Amongst them, spatial planning for new RES installations seems to be the most demanding, with the adoption of novel technological solutions in the field of RES potentially holding a key role. New technologies, like offshore wind and floating solar, are gradually gaining maturity and may offer such an alternative, challenged at the same time however by the need to entail minimum disruption for local ecosystems. To that end, we currently assess the theoretical potential of floating PVs for lentic water systems of the Greek mainland. We do so by looking into 53 different lentic water systems across the Greek territory that meet the constraint of 1 km2 minimum surface area, and we proceed with the estimation of the relevant floating PV capacity per system under the application of a minimal intervention approach, assuming PV coverage of 1% over the total lentic water system area. In this context, our findings indicate a maximum, aggregate theoretical capacity that could exceed 2 GWp at the national level, with the respective annual energy yield reaching approximately 4 TWh or, equivalently, >6% of the country’s anticipated annual electricity consumption in 2030. Finally, our results extend further, offering a regional level analysis and a set of policy directions and considerations on the development of floating solar in Greece, while also designating the energy merits of floating PVs against similar, land-based installations. Full article
(This article belongs to the Special Issue Floating PV Systems On and Offshore)
Show Figures

Figure 1

13 pages, 29690 KiB  
Article
The Impact of System Sizing and Water Temperature on the Thermal Characteristics of Floating Photovoltaic Systems
by Maarten Dörenkämper, Simona Villa, Jan Kroon and Minne M. de Jong
Energies 2024, 17(9), 2027; https://doi.org/10.3390/en17092027 - 25 Apr 2024
Cited by 5 | Viewed by 1773
Abstract
Accurately calculating the annual yield of floating PV (FPV) systems necessitates incorporating appropriate FPV-specific heat loss coefficients into the calculation, including both wind-dependent and wind-independent factors. The thermal behavior of several FPV systems has been investigated within this study, through the analysis of [...] Read more.
Accurately calculating the annual yield of floating PV (FPV) systems necessitates incorporating appropriate FPV-specific heat loss coefficients into the calculation, including both wind-dependent and wind-independent factors. The thermal behavior of several FPV systems has been investigated within this study, through the analysis of heat loss coefficients across various system sizes and configurations. Over a one-year period, data were collected from two measurement sites with three distinct systems: two ~50 kWp demonstrator-scale setups of Solarisfloat (azimuthal tracking) and Solar Float (East-West orientation) and a 2 MWp commercial-scale East–West system by Groenleven. The Solarisfloat demonstrator revealed a wind-dependent heat loss coefficient of 3.2 W/m3Ks. In comparison, the Solar Float demonstrator system displayed elevated wind-dependent heat loss coefficients, measuring 4.0 W/m3Ks for the east-facing module and 5.1 W/m3Ks for the west-facing module. The Groenleven system, which shares design similarities with Solar Float, showed lower wind-dependent heat loss coefficients of 2.7 W/m3Ks for the east-facing module and 2.8 W/m3Ks for the west-facing module. A notable discrepancy in the wind-dependent coefficients, particularly evident under a north wind direction, indicates a more efficient convective cooling effect by the wind on the demonstrator scale system of Solar Float. This could possibly be attributed to improved wind flow beneath its PV modules, setting it apart from the Groenleven system. Additionally, a thermal model founded on a ‘balance-of-energy’ methodology, integrating water temperature as a variable was introduced. The heat loss coefficient, dependent on the surface water temperature, fluctuated around zero, depending on whether the water temperature surpassed or fell below the ambient air temperature. It can be concluded that it is not of added value to introduce this floating specific heat loss coefficient parameter, as this parameter can be integrated in the wind speed independent Uc parameter. Full article
(This article belongs to the Special Issue Floating PV Systems On and Offshore)
Show Figures

Figure 1

27 pages, 44288 KiB  
Review
State of the Art of Renewable Sources Potentialities in the Middle East: A Case Study in the Kingdom of Saudi Arabia
by Gianfranco Di Lorenzo, Erika Stracqualursi, Giovanni Vescio and Rodolfo Araneo
Energies 2024, 17(8), 1816; https://doi.org/10.3390/en17081816 - 10 Apr 2024
Cited by 4 | Viewed by 2618
Abstract
The Kingdom of Saudi Arabia is experiencing a surge in electricity demand, with power generation increasing 4 times in 25 years from 1990 to 2014. Despite the abundant primary renewable energy sources, the country has overlooked them in the past in national energy [...] Read more.
The Kingdom of Saudi Arabia is experiencing a surge in electricity demand, with power generation increasing 4 times in 25 years from 1990 to 2014. Despite the abundant primary renewable energy sources, the country has overlooked them in the past in national energy policies. However, in recent years, renewable energy has become a part of the Kingdom of Saudi Arabia’s energy conservation policy due to climate changes, technological progress, economies of scale, and increased competitiveness in supply chains. The Saudi government has created the King Abdullah City for Atomic and Renewable Energy (KACARE) to develop national strategies for effectively utilizing renewable and nuclear energy. This paper reviews the current state of the art of the renewable energy technologies available on the market and evaluates the installation of renewable energy plants near Saudi Arabia’s East Coast for a new town, focusing on technical rather than economic aspects. The paper provides a wide review of the possible technical solutions to exploit the producibility of different renewable sources, considering the challenging climate conditions typical of desert areas. The analysis of a real case study shows a high availability of wind and solar irradiance that allow a net energy production of 354 and 129 GWh, respectively. In addition, the comparison between a typical ground-mounted photovoltaic (PV) system and an emerging floating PV reveals that for the same installed power, occupied area, and environmental conditions, the latter has a 4% greater performance ratio due to the cooling effect of water. Full article
(This article belongs to the Topic Sustainable Energy Technology, 2nd Edition)
Show Figures

Figure 1

24 pages, 1360 KiB  
Article
Floating Offshore Photovoltaics across Geographies: An Enhanced Model of Water Cooling
by Abdulhadi Ayyad, Sara Golroodbari and Wilfried van Sark
Energies 2024, 17(5), 1131; https://doi.org/10.3390/en17051131 - 27 Feb 2024
Cited by 4 | Viewed by 2238
Abstract
Solar photovoltaics (PV) continues to grow rapidly across the world and now accounts for a very considerable proportion of all non-fossil-fuel electricity. With the continuing urgency of greenhouse gas abatement, the growth of solar PV is inevitable. Competition with other land uses and [...] Read more.
Solar photovoltaics (PV) continues to grow rapidly across the world and now accounts for a very considerable proportion of all non-fossil-fuel electricity. With the continuing urgency of greenhouse gas abatement, the growth of solar PV is inevitable. Competition with other land uses and the desire to optimize the efficiency of the panels by making use of water cooling are compelling arguments for offshore floating PV (OFPV), a trend that could also benefit from the existing infrastructure recently built for offshore wind farms. Building on our earlier work, we present a larger dataset (n = 82) located around the globe to assess global yield (dis)advantages while also accounting for a modified form of water cooling of the offshore panels. Using our results regarding the Köppen–Geiger (KG) classification system and using a statistical learning method, we demonstrate that the KG climate classification system has limited validity in predicting the likely gains from OFPV. Finally, we also explore a small subset of sites to demonstrate that economics, alongside geography and technology, impacts the feasibility of locating PV panels offshore. Full article
(This article belongs to the Special Issue Floating PV Systems On and Offshore)
Show Figures

Figure 1

Back to TopTop