Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = flexible MEAs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3345 KB  
Article
Edge-Side Electricity-Carbon Coordinated Hybrid Trading Mechanism for Microgrid Cluster Flexibility
by Hualei Zou, Qiang Xing, Bitao Xiao, Xilong Xing, Andrew Yang Wu and Jiaqi Liu
Processes 2026, 14(1), 83; https://doi.org/10.3390/pr14010083 - 25 Dec 2025
Viewed by 279
Abstract
High penetration of renewable energy sources (RES) in power systems introduces substantial source-load uncertainty and flexibility challenges, leading to misalignments between economic optimization and environmental sustainability. An edge-side electricity-carbon coordinated hybrid trading mechanism was proposed to enhance flexibility in microgrid clusters. A three-layer [...] Read more.
High penetration of renewable energy sources (RES) in power systems introduces substantial source-load uncertainty and flexibility challenges, leading to misalignments between economic optimization and environmental sustainability. An edge-side electricity-carbon coordinated hybrid trading mechanism was proposed to enhance flexibility in microgrid clusters. A three-layer time-varying carbon emission factor (CEF) model is developed to quantify negative emissions as tradable Chinese Certified Emission Reductions (CCERs). An endogenous economic equilibrium point enables dynamic switching between Incentive-Based Demand Response during high-carbon periods and Price-Based Demand Response during low-carbon periods, based on marginal profit comparisons. A Wasserstein distance-based distributionally robust CVaR (WDR-CVaR) strategy constructs a data-driven ambiguity set to optimize decisions under worst-case distributional shifts in edge-side data. Simulations on a modified IEEE 33-bus system show that the mechanism increases the Multi-Energy Aggregator’s (MEA) expected profit by 12.3%, reduces carbon emissions by 17.6%, with WDR-CVaR demonstrating superior out-of-sample performance compared to sample average approximation methods. The approach internalizes environmental values through carbon-electricity coupling and edge intelligence, providing a resilient framework for low-carbon distribution network operations. Full article
Show Figures

Figure 1

17 pages, 2747 KB  
Article
Flexible and Stretchable Microneedle Electrode Arrays by Soft Lithography for Continuous Monitoring of Glucose
by Yong-Ho Choi, Honglin Piao, Jia Lee, Jaehyun Kim, Heon-Jin Choi and Dahl-Young Khang
Biosensors 2025, 15(9), 576; https://doi.org/10.3390/bios15090576 - 2 Sep 2025
Viewed by 1429
Abstract
Continuous monitoring of glucose (CGM) level is of utmost importance to diabetic patients, especially with no or minimal pain. Microneedle arrays with desired electrode patterns have been fabricated by soft lithographic molding, and the patterned electrodes were formed via shadow evaporation through a [...] Read more.
Continuous monitoring of glucose (CGM) level is of utmost importance to diabetic patients, especially with no or minimal pain. Microneedle arrays with desired electrode patterns have been fabricated by soft lithographic molding, and the patterned electrodes were formed via shadow evaporation through a shadow mask that was made from a modified molding technique. With immobilization of glucose oxidase (GOx), the microneedle electrode arrays (MEAs) have been successfully employed for the in vitro CGM using impedance spectroscopy. The fabricated MEAs could monitor the varying glucose level continuously for up to ~10 days. Similar processes have been applied for the fabrication of stretchable MEAs, which can conform to complex curvilinear surfaces. The simple and low-cost fabrication of MEAs, either in flexible or stretchable forms, may find various applications in wearable health monitoring techniques. Full article
(This article belongs to the Special Issue Recent Advances in Glucose Biosensors)
Show Figures

Figure 1

21 pages, 7973 KB  
Article
Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices
by José Ignacio Del Río De Vicente, Valeria Marchetti, Ivano Lucarini, Elena Palmieri, Davide Polese, Luca Montaina, Francesco Maita, Jan Kriska, Jana Tureckova, Miroslava Anderova and Luca Maiolo
Nanomaterials 2025, 15(15), 1173; https://doi.org/10.3390/nano15151173 - 30 Jul 2025
Viewed by 1030
Abstract
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) [...] Read more.
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) are essential for real-time monitoring of these electrophysiological processes both in vivo and in vitro, but their sensitivity and signal quality are critical for accurate detection of extracellular brain activity. In this study, we evaluate the performance of a flexible microelectrode array based on gold-coated zinc oxide nanorods (ZnO NRs), referred to as nano-fMEA, specifically for high-fidelity electrophysiological recording under pathological conditions. Acute mouse brain slices were tested under two ischemic models: oxygen–glucose deprivation (OGD) and hyperkalemia. The nano-fMEA demonstrated significant improvements in event detection rates and in capturing subtle fluctuations in neural signals compared to flat fMEAs. This enhanced performance is primarily attributed to an optimized electrode–tissue interface that reduces impedance and improves charge transfer. These features enabled the nano-fMEA to detect weak or transient electrophysiological events more effectively, making it a valuable platform for investigating neural dynamics during metabolic stress. Overall, the results underscore the promise of ZnO NRs in advancing electrophysiological tools for neuroscience research. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

37 pages, 7797 KB  
Review
Recent Progress in Flexible Microelectrode Arrays for Combined Electrophysiological and Electrochemical Sensing
by Umisha Siwakoti, Steven A. Jones, Deepak Kumbhare, Xinyan Tracy Cui and Elisa Castagnola
Biosensors 2025, 15(2), 100; https://doi.org/10.3390/bios15020100 - 10 Feb 2025
Cited by 5 | Viewed by 7360
Abstract
Understanding brain function requires advanced neural probes to monitor electrical and chemical signaling across multiple timescales and brain regions. Microelectrode arrays (MEAs) are widely used to record neurophysiological activity across various depths and brain regions, providing single-unit resolution for extended periods. Recent advancements [...] Read more.
Understanding brain function requires advanced neural probes to monitor electrical and chemical signaling across multiple timescales and brain regions. Microelectrode arrays (MEAs) are widely used to record neurophysiological activity across various depths and brain regions, providing single-unit resolution for extended periods. Recent advancements in flexible MEAs, built on micrometer-thick polymer substrates, have improved integration with brain tissue by mimicking the brain’s soft nature, reducing mechanical trauma and inflammation. These flexible, subcellular-scale MEAs can record stable neural signals for months, making them ideal for long-term studies. In addition to electrical recording, MEAs have been functionalized for electrochemical neurotransmitter detection. Electroactive neurotransmitters, such as dopamine, serotonin, and adenosine, can be directly measured via electrochemical methods, particularly on carbon-based surfaces. For non-electroactive neurotransmitters like acetylcholine, glutamate, and γ-aminobutyric acid, alternative strategies, such as enzyme immobilization and aptamer-based recognition, are employed to generate electrochemical signals. This review highlights recent developments in flexible MEA fabrication and functionalization to achieve both electrochemical and electrophysiological recordings, minimizing sensor fowling and brain damage when implanted long-term. It covers multi-time scale neurotransmitter detection, development of conducting polymer and nanomaterial composite coatings to enhance sensitivity, incorporation of enzyme and aptamer-based recognition methods, and the integration of carbon electrodes on flexible MEAs. Finally, it summarizes strategies to acquire electrochemical and electrophysiological measurements from the same device. Full article
Show Figures

Figure 1

11 pages, 5295 KB  
Article
Enhancing the Strength and Ductility Synergy of Lightweight Ti-Rich Medium-Entropy Alloys through Ni Microalloying
by Po-Sung Chen, Jun-Rong Liu, Pei-Hua Tsai, Yu-Chin Liao, Jason Shian-Ching Jang, Hsin-Jay Wu, Shou-Yi Chang, Chih-Yen Chen and I-Yu Tsao
Materials 2024, 17(12), 2900; https://doi.org/10.3390/ma17122900 - 13 Jun 2024
Cited by 5 | Viewed by 1603
Abstract
Medium-entropy alloys (MEAs) have attracted considerable attention in recent decades due to their exceptional material properties and design flexibility. In this study, lightweight and non-equiatomic MEAs with low density (~5 g/cm3), high strength (yield strength: 1200 MPa), and high ductility (plastic [...] Read more.
Medium-entropy alloys (MEAs) have attracted considerable attention in recent decades due to their exceptional material properties and design flexibility. In this study, lightweight and non-equiatomic MEAs with low density (~5 g/cm3), high strength (yield strength: 1200 MPa), and high ductility (plastic deformation: ≧10%) were explored. We fine-tuned a previously developed Ti-rich MEA by microalloying it with small amounts of Ni (reducing the atomic radius and increasing the elastic modulus) through solid solution strengthening to achieve a series of MEAs with enhanced mechanical properties. Among the prepared MEAs, Ti65Ni1 and Ti65Ni3 exhibited optimal properties in terms of the balance between strength and ductility. Furthermore, the Ti65Ni3 MEA was subjected to thermo-mechanical treatment (TMT) followed by cold rolling 70% (CR70) and cold rolling 85% (CR85). Subsequently, the processed samples were rapidly annealed at 743 °C, 770 °C, 817 °C, and 889 °C at a heating rate of 15 °C/s. X-ray diffraction analysis revealed that the MEA could retain its single-body-centered cubic solid solution structure after TMT. Additionally, the tensile testing results revealed that increasing the annealing temperature led to a decrease in yield strength and an increase in ductility. Notably, the Ti65Ni3 MEA sample that was subjected to CR70 and CR85 processing and annealed for 30 s exhibited high yield strength (>1250 MPa) and ductility (>13%). In particular, the Ti65Ni3 MEA subjected to CR85 exhibited a specific yield strength of 264 MPa·cm3/g, specific tensile strength of 300 MPa·cm3/g, and ductility of >13%. Full article
(This article belongs to the Special Issue Future Trends in High-Entropy Alloys (2nd Edition))
Show Figures

Figure 1

20 pages, 19063 KB  
Article
3D-CFD Modeling of Hollow-Fiber Membrane Contactor for CO2 Absorption Using MEA Solution
by Alexandru-Constantin Bozonc, Vlad-Cristian Sandu, Calin-Cristian Cormos and Ana-Maria Cormos
Membranes 2024, 14(4), 86; https://doi.org/10.3390/membranes14040086 - 9 Apr 2024
Cited by 10 | Viewed by 4134
Abstract
Membrane technology is considered an innovative and promising approach due to its flexibility and low energy consumption. In this work, a comprehensive 3D-CFD model of the Hollow-Fiber Membrane Contactor (HFMC) system for CO2 capture into aqueous MEA solution, considering a counter-current fluid [...] Read more.
Membrane technology is considered an innovative and promising approach due to its flexibility and low energy consumption. In this work, a comprehensive 3D-CFD model of the Hollow-Fiber Membrane Contactor (HFMC) system for CO2 capture into aqueous MEA solution, considering a counter-current fluid flow, was developed and validated with experimental data. Two different flow arrangements were considered for the gas mixture and liquid solution inside the HFMC module. The simulation results showed that the CO2 absorption efficiency was considerably higher when the gas mixture was channeled through the membranes and the liquid phase flowed externally between the membranes, across a wide range of gas and liquid flow rates. Sensitivity studies were performed in order to determine the optimal CO2 capture process parameters under different operating conditions (flow rates/flow velocities and concentrations) and HFMC geometrical characteristics (e.g., porosity, diameter, and thickness of membranes). It was found that increasing the membrane radius, while maintaining a constant thickness, positively influenced the efficiency of CO2 absorption due to the higher mass transfer area and residence time. Conversely, higher membrane thickness resulted in higher mass transfer resistance. The optimal membrane thickness was also investigated for various inner fiber diameters, resulting in a thickness of 0.2 mm as optimal for a fiber inner radius of 0.225 mm. Additionally, a significant improvement in CO2 capture efficiency was observed when increasing membrane porosity to values below 0.2, at which point the increase dampened considerably. The best HFMC configuration involved a combination of low porosity, moderate thickness, and large fiber inner diameter, with gas flow occurring within the fiber membranes. Full article
(This article belongs to the Special Issue Advanced Membrane Materials for CO2 Capture and Separation)
Show Figures

Figure 1

12 pages, 1666 KB  
Article
Techno-Economic Assessment for the Best Flexible Operation of the CO2 Removal Section by Potassium Taurate Solvent in a Coal-Fired Power Plant
by Stefania Moioli, Elvira Spatolisano and Laura A. Pellegrini
Energies 2024, 17(7), 1736; https://doi.org/10.3390/en17071736 - 4 Apr 2024
Cited by 3 | Viewed by 1542
Abstract
Alternative solvents based on aqueous solutions of amino acids have been recently developed as possible substitutes for Mono Ethanol Amine (MEA) for CO2 removal from flue gas streams. The potassium taurate solvent has the advantages of degradation resistance, low toxicity and low [...] Read more.
Alternative solvents based on aqueous solutions of amino acids have been recently developed as possible substitutes for Mono Ethanol Amine (MEA) for CO2 removal from flue gas streams. The potassium taurate solvent has the advantages of degradation resistance, low toxicity and low energy requirements for its regeneration. With any type of solvent, CO2 removal applied to a power production plant decreases the revenues obtained from selling electricity because of the energy requirements. Operating the CO2 removal section in flexible mode avoids significant effects on the profits of the power plant, while accomplishing environmental regulations. This work is the first journal paper focusing on the application in flexible mode of the potassium taurate system for treating a flue gas stream from a 500 MW coal-fired power plant. Techno-economic evaluations are performed to determine the best operating conditions considering the variation in the electricity demand and its price, and different values of carbon tax. In the summer period, with high electricity prices and demands, carbon tax values between 45 EUR/tCO2 and 60 EUR/tCO2 favor CO2 absorption in the flexible mode, without periods of full CO2 emissions during the day. Full article
(This article belongs to the Special Issue Advances in Carbon Capture, Utilization and Storage (CCUS))
Show Figures

Figure 1

18 pages, 3877 KB  
Article
Batch Fabrication of Microelectrode Arrays with Glassy Carbon Microelectrodes and Interconnections for Neurochemical Sensing: Promises and Challenges
by Emma-Bernadette A. Faul, Austin M. Broussard, Daniel R. Rivera, May Yoon Pwint, Bingchen Wu, Qun Cao, Davis Bailey, X. Tracy Cui and Elisa Castagnola
Micromachines 2024, 15(2), 277; https://doi.org/10.3390/mi15020277 - 15 Feb 2024
Cited by 6 | Viewed by 3679
Abstract
Flexible multielectrode arrays with glassy carbon (GC) electrodes and metal interconnection (hybrid MEAs) have shown promising performance in multi-channel neurochemical sensing. A primary challenge faced by hybrid MEAs fabrication is the adhesion of the metal traces with the GC electrodes, as prolonged [...] Read more.
Flexible multielectrode arrays with glassy carbon (GC) electrodes and metal interconnection (hybrid MEAs) have shown promising performance in multi-channel neurochemical sensing. A primary challenge faced by hybrid MEAs fabrication is the adhesion of the metal traces with the GC electrodes, as prolonged electrical and mechanical stimulation can lead to adhesion failure. Previous devices with GC electrodes and interconnects made of a homogeneous material (all GC) demonstrated exceptional electrochemical stability but required miniaturization for enhanced tissue integration and chronic electrochemical sensing. In this study, we used two different methods for the fabrication of all GC-MEAs on thin flexible substrates with miniaturized features. The first method, like that previously reported, involves a double pattern-transfer photolithographic process, including transfer-bonding on temporary polymeric support. The second method requires a double-etching process, which uses a 2 µm-thick low stress silicon nitride coating of the Si wafer as the bottom insulator layer for the MEAs, bypassing the pattern-transfer and demonstrating a novel technique with potential advantages. We confirmed the feasibility of the two fabrication processes by verifying the practical conductivity of 3 µm-wide 2 µm-thick GC traces, the GC microelectrode functionality, and their sensing capability for the detection of serotonin using fast scan cyclic voltammetry. Through the exchange and discussion of insights regarding the strengths and limitations of these microfabrication methods, our goal is to propel the advancement of GC-based MEAs for the next generation of neural interface devices. Full article
(This article belongs to the Special Issue Biosensors for Biomedical and Environmental Applications, Volume 2)
Show Figures

Figure 1

16 pages, 11707 KB  
Article
Stepwise Laser Cladding of TiNbZr and TiTaZr Medium-Entropy Alloys on Pure Ti Substrate
by Hao Lv, Mingyu Gao, Xinying Liu, Jiabin Liu, Weiping Dong and Youtong Fang
Metals 2023, 13(7), 1280; https://doi.org/10.3390/met13071280 - 16 Jul 2023
Cited by 1 | Viewed by 1825
Abstract
This work aimed to fabricate two varieties of near-equiatomic TiNbZr and TiTaZr medium-entropy alloy (MEA) claddings on pure Ti as protective layers by stepwise laser cladding. Their stratified component distribution, microstructural characteristics, and phase constitutions were analyzed, with their hardness and wear resistance [...] Read more.
This work aimed to fabricate two varieties of near-equiatomic TiNbZr and TiTaZr medium-entropy alloy (MEA) claddings on pure Ti as protective layers by stepwise laser cladding. Their stratified component distribution, microstructural characteristics, and phase constitutions were analyzed, with their hardness and wear resistance were compared with that of pristine Ti. It was found that a single body-centered-cubic solid-solution phase in both MEA claddings were realized on the hexagonal closed-packed pure Ti substrates. The subgrain structures in the TiNbZr cladding were cellular grains, while the ones in the TiTaZr cladding were much denser dendrite arms, which led to increased residual stress. The results showed that the hardness of the TiNbZr and TiTaZr claddings were 450 ± 30 HV0.2 and 513 ± 27 HV0.2, respectively, 2.6 times and 3 times that of the pure Ti (170 ± 11 HV0.2). Also, the consequent wear rates decreased from 2.08 × 10−4 mm3·N−1·m−1 (pure Ti) to 0.49 × 10−4 mm3·N−1·m−1 (TiNbZr) and 0.32 × 10−4 mm3·N−1·m−1 (TiTaZr). Such high hardness and enhanced wear resistance are attributed to the solid-solution strengthening of the body-centered-cubic phase and the residual stress in the claddings. The realization of hard MEA layers by stepwise laser cladding offers a flexible and effective way for protecting pure Ti. Full article
Show Figures

Figure 1

14 pages, 6574 KB  
Article
Flexible Seven-in-One Microsensor Embedded in High-Pressure Proton Exchange Membrane Water Electrolyzer for Real-Time Microscopic Monitoring
by Chi-Yuan Lee, Chia-Hung Chen, Hsian-Chun Chuang, Shan-Yu Chen and Yu-Chen Chiang
Sensors 2023, 23(12), 5489; https://doi.org/10.3390/s23125489 - 10 Jun 2023
Cited by 3 | Viewed by 2639
Abstract
The voltage, current, temperature, humidity, pressure, flow, and hydrogen in the high-pressure proton exchange membrane water electrolyzer (PEMWE) can influence its performance and life. For example, if the temperature is too low to reach the working temperature of the membrane electrode assembly (MEA), [...] Read more.
The voltage, current, temperature, humidity, pressure, flow, and hydrogen in the high-pressure proton exchange membrane water electrolyzer (PEMWE) can influence its performance and life. For example, if the temperature is too low to reach the working temperature of the membrane electrode assembly (MEA), the performance of the high-pressure PEMWE cannot be enhanced. However, if the temperature is too high, the MEA may be damaged. In this study, the micro-electro-mechanical systems (MEMS) technology was used to innovate and develop a high-pressure-resistant flexible seven-in-one (voltage, current, temperature, humidity, pressure, flow, and hydrogen) microsensor. It was embedded in the upstream, midstream, and downstream of the anode and cathode of the high-pressure PEMWE and the MEA for the real-time microscopic monitoring of internal data. The aging or damage of the high-pressure PEMWE was observed through the changes in the voltage, current, humidity, and flow data. The over-etching phenomenon was likely to occur when this research team used wet etching to make microsensors. The back-end circuit integration was unlikely to be normalized. Therefore, this study used lift-off process to further stabilize the quality of the microsensor. In addition, the PEMWE is more prone to aging and damage under high pressure, so its material selection is very important. Full article
Show Figures

Figure 1

20 pages, 3552 KB  
Article
Zwitterionic Polymer Coated and Aptamer Functionalized Flexible Micro-Electrode Arrays for In Vivo Cocaine Sensing and Electrophysiology
by Bingchen Wu, Elisa Castagnola and Xinyan Tracy Cui
Micromachines 2023, 14(2), 323; https://doi.org/10.3390/mi14020323 - 27 Jan 2023
Cited by 17 | Viewed by 4507
Abstract
The number of people aged 12 years and older using illicit drugs reached 59.3 million in 2020, among which 5.2 million are cocaine users based on the national data. In order to fully understand cocaine addiction and develop effective therapies, a tool is [...] Read more.
The number of people aged 12 years and older using illicit drugs reached 59.3 million in 2020, among which 5.2 million are cocaine users based on the national data. In order to fully understand cocaine addiction and develop effective therapies, a tool is needed to reliably measure real-time cocaine concentration and neural activity in different regions of the brain with high spatial and temporal resolution. Integrated biochemical sensing devices based upon flexible microelectrode arrays (MEA) have emerged as a powerful tool for such purposes; however, MEAs suffer from undesired biofouling and inflammatory reactions, while those with immobilized biologic sensing elements experience additional failures due to biomolecule degradation. Aptasensors are powerful tools for building highly selective sensors for analytes that have been difficult to detect. In this work, DNA aptamer-based electrochemical cocaine sensors were integrated on flexible MEAs and protected with an antifouling zwitterionic poly (sulfobetaine methacrylate) (PSB) coating, in order to prevent sensors from biofouling and degradation by the host tissue. In vitro experiments showed that without the PSB coating, both adsorption of plasma protein albumin and exposure to DNase-1 enzyme have detrimental effects on sensor performance, decreasing signal amplitude and the sensitivity of the sensors. Albumin adsorption caused a 44.4% sensitivity loss, and DNase-1 exposure for 24 hr resulted in a 57.2% sensitivity reduction. The PSB coating successfully protected sensors from albumin fouling and DNase-1 enzyme digestion. In vivo tests showed that the PSB coated MEA aptasensors can detect repeated cocaine infusions in the brain for 3 hrs after implantation without sensitivity degradation. Additionally, the same MEAs can record electrophysiological signals at different tissue depths simultaneously. This novel flexible MEA with integrated cocaine sensors can serve as a valuable tool for understanding the mechanisms of cocaine addiction, while the PSB coating technology can be generalized to improve all implantable devices suffering from biofouling and inflammatory host responses. Full article
Show Figures

Figure 1

21 pages, 6791 KB  
Article
Dynamic Modeling of CO2 Absorption Process Using Hollow-Fiber Membrane Contactor in MEA Solution
by Alexandru-Constantin Bozonc, Ana-Maria Cormos, Simion Dragan, Cristian Dinca and Calin-Cristian Cormos
Energies 2022, 15(19), 7241; https://doi.org/10.3390/en15197241 - 2 Oct 2022
Cited by 10 | Viewed by 4040
Abstract
In this work, a comprehensive mathematical model was developed in order to evaluate the CO2 capture process in a microporous polypropylene hollow-fiber membrane countercurrent contactor, using monoethanolamine (MEA) as the chemical solvent. In terms of CO2 chemical absorption, the developed model [...] Read more.
In this work, a comprehensive mathematical model was developed in order to evaluate the CO2 capture process in a microporous polypropylene hollow-fiber membrane countercurrent contactor, using monoethanolamine (MEA) as the chemical solvent. In terms of CO2 chemical absorption, the developed model showed excellent agreement with the experimental data published in the literature for a wide range of operating conditions (R2 > 0.96), 1–2.7 L/min gas flow rates and 10–30 L/h liquid flow rates. Based on developed model, the effects of the gas flow rate, aqueous liquid absorbents’ flow rate and also inlet CO2 concentration on the removal efficiency of CO2 were determined. The % removal of CO2 increased while increasing the MEA solution flow rate; 81% of CO2 was removed at the high flow rate. The CO2 removal efficiency decreased while increasing the gas flow rate, and the residence time in the hollow-fiber membrane contactors increased when the gas flow rate was lower, reaching 97% at a gas flow rate of 1 L‧min−1. However, the effect was more pronounced while operating at high gas flow rates. Additionally, the influence of momentous operational parameters such as the number of fibers and module length on the CO2 separation efficiency was evaluated. On this basis, the developed model was also used to evaluate CO2 capture process in hollow-fiber membrane contactors in a flexible operation scenario (with variation in operating conditions) in order to predict the process parameters (liquid and gaseous flows, composition of the streams, mass transfer area, mass transfer coefficient, etc.). Full article
Show Figures

Figure 1

14 pages, 3078 KB  
Article
Nanocone-Array-Based Platinum-Iridium Oxide Neural Microelectrodes: Structure, Electrochemistry, Durability and Biocompatibility Study
by Qi Zeng, Shoujun Yu, Zihui Fan, Yubin Huang, Bing Song and Tian Zhou
Nanomaterials 2022, 12(19), 3445; https://doi.org/10.3390/nano12193445 - 1 Oct 2022
Cited by 25 | Viewed by 4399
Abstract
Neural interfaces provide a window for bio-signal modulation and recording with the assistance of neural microelectrodes. However, shrinking the size of electrodes results in high electrochemical impedance and low capacitance, thus limiting the stimulation/recording efficiency. In order to achieve critical stability and low [...] Read more.
Neural interfaces provide a window for bio-signal modulation and recording with the assistance of neural microelectrodes. However, shrinking the size of electrodes results in high electrochemical impedance and low capacitance, thus limiting the stimulation/recording efficiency. In order to achieve critical stability and low power consumption, here, nanocone-shaped platinum (Pt) with an extensive surface area is proposed as an adhesive layer on a bare Pt substrate, followed by the deposition of a thin layer of iridium oxide (IrOx) to fabricate high-performance nanocone-array-based Pt-IrOx neural microelectrodes (200 μm in diameter). A uniform nanocone-shaped Pt with significant roughness is created via controlling the ratio of NH4+ and Pt4+ ions in the electrolyte, which can be widely applicable for batch production on multichannel flexible microelectrode arrays (fMEAs) and various substrates with different dimensions. The Pt-IrOx nanocomposite-coated microelectrode presents a significantly low impedance down to 0.72 ± 0.04 Ω cm2 at 1 kHz (reduction of ~92.95%). The cathodic charge storage capacity (CSCc) and charge injection capacity (CIC) reaches up to 52.44 ± 2.53 mC cm2 and 4.39 ± 0.36 mC cm2, respectively. Moreover, superior chronic stability and biocompatibility are also observed. The modified microelectrodes significantly enhance the adhesion of microglia, the major immune cells in the central nervous system. Therefore, such a coating strategy presents great potential for biomedical and other practical applications. Full article
Show Figures

Figure 1

18 pages, 2475 KB  
Article
Flexible Glassy Carbon Multielectrode Array for In Vivo Multisite Detection of Tonic and Phasic Dopamine Concentrations
by Elisa Castagnola, Elaine M. Robbins, Bingchen Wu, May Yoon Pwint, Raghav Garg, Tzahi Cohen-Karni and Xinyan Tracy Cui
Biosensors 2022, 12(7), 540; https://doi.org/10.3390/bios12070540 - 20 Jul 2022
Cited by 24 | Viewed by 6020
Abstract
Dopamine (DA) plays a central role in the modulation of various physiological brain functions, including learning, motivation, reward, and movement control. The DA dynamic occurs over multiple timescales, including fast phasic release, as a result of neuronal firing and slow tonic release, which [...] Read more.
Dopamine (DA) plays a central role in the modulation of various physiological brain functions, including learning, motivation, reward, and movement control. The DA dynamic occurs over multiple timescales, including fast phasic release, as a result of neuronal firing and slow tonic release, which regulates the phasic firing. Real-time measurements of tonic and phasic DA concentrations in the living brain can shed light on the mechanism of DA dynamics underlying behavioral and psychiatric disorders and on the action of pharmacological treatments targeting DA. Current state-of-the-art in vivo DA detection technologies are limited in either spatial or temporal resolution, channel count, longitudinal stability, and ability to measure both phasic and tonic dynamics. We present here an implantable glassy carbon (GC) multielectrode array on a SU-8 flexible substrate for integrated multichannel phasic and tonic measurements of DA concentrations. The GC MEA demonstrated in vivo multichannel fast-scan cyclic voltammetry (FSCV) detection of electrically stimulated phasic DA release simultaneously at different locations of the mouse dorsal striatum. Tonic DA measurement was enabled by coating GC electrodes with poly(3,4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) and using optimized square-wave voltammetry (SWV). Implanted PEDOT/CNT-coated MEAs achieved stable detection of tonic DA concentrations for up to 3 weeks in the mouse dorsal striatum. This is the first demonstration of implantable flexible MEA capable of multisite electrochemical sensing of both tonic and phasic DA dynamics in vivo with chronic stability. Full article
(This article belongs to the Special Issue Biosensors in 2022)
Show Figures

Figure 1

15 pages, 6583 KB  
Article
Load Identification for the More Electric Aircraft Distribution System Based on Intelligent Algorithm
by Juan Yang, Xingwang Bao and Zhangang Yang
Aerospace 2022, 9(7), 350; https://doi.org/10.3390/aerospace9070350 - 29 Jun 2022
Cited by 5 | Viewed by 3829
Abstract
Accurate identification of electrical load working status can provide information support to the remote electrical distribution system (EDS) of more electric aircraft (MEA), which could use it to realize redundant switching and protection. This paper presents a method to automatically identify the load [...] Read more.
Accurate identification of electrical load working status can provide information support to the remote electrical distribution system (EDS) of more electric aircraft (MEA), which could use it to realize redundant switching and protection. This paper presents a method to automatically identify the load status on the remote power distribution unit (RPDU) of MEA by using an intelligent algorithm. The experimental platform is built in an aircraft Electrical Power System (EPS) distribution large-scale test cabin. Four pieces of typical aviation equipment are installed in the test cabin and powered from RPDU. Voltage and current values under 15 working combinations on the RPDU are measured to extract the steady-state V-I trajectory. In total, 750 group samples were collected in the feature parameter database. A generalized regression neural network (GRNN) identification model was established, and the smoothing factor was calculated by using a conventional cross-validation method to train and reach an optimal value. However, the identification results are not ideal. In order to improve the accuracy, the parameter of GRNN was optimized by genetic algorithms. The proposed model shows great performance as accuracy of all 15 classifications reached 100%. The proposed model has advantages of flexible network structure, high fault tolerance, and robustness. It can realize global approximation optimization, avoid local optimization, effectively improve GRNN fitting accuracy, improve model generalization ability, and reduce model training calculation. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop