Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = flame-retardant polyurethane foams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1928 KiB  
Article
Thermal and Flammability Analysis of Polyurethane Foams with Solid and Liquid Flame Retardants: Comparative Study
by Dorota Głowacz-Czerwonka, Patrycja Zakrzewska, Beata Zygmunt-Kowalska and Iwona Zarzyka
Polymers 2025, 17(14), 1977; https://doi.org/10.3390/polym17141977 - 18 Jul 2025
Viewed by 276
Abstract
The thermal properties and flammability of rigid polyurethane foams (RPUFs) containing various flame retardants, including solid (melamine, expanded graphite (EG), Exolit OP 935, ammonium polyphosphate (APP)) and liquid (Roflam B7, Roflam PLO) types, added at 30 wt.% and 60 wt.% by weight have [...] Read more.
The thermal properties and flammability of rigid polyurethane foams (RPUFs) containing various flame retardants, including solid (melamine, expanded graphite (EG), Exolit OP 935, ammonium polyphosphate (APP)) and liquid (Roflam B7, Roflam PLO) types, added at 30 wt.% and 60 wt.% by weight have been evaluated. Thermogravimetric analysis (TGA) demonstrated enhanced thermal stability, with the maximum 10% weight loss temperature (292 °C, +34 °C vs. reference) observed for foams containing 60 wt.% Exolit OP 935 and APP. The limiting oxygen index (LOI) test demonstrated the optimal performance for 30 wt.% APP and melamine (26.4 vol.% vs. 18.7 vol.% reference). In the UL-94 test, Exolit OP 935 and APP achieved a V-0 rating. The 60 wt.% Exolit with an EG blend also demonstrated a substantial reduction in heat release rate. These findings underscore the cooperative effects of hybrid flame retardants, thereby supporting their utilization in fire-safe RPUFs for construction and transport. Full article
Show Figures

Figure 1

16 pages, 2882 KiB  
Article
Synergistic Enhancement of Fire Retardancy and Mechanical Performance in Silicone Foams Using Halogen-Free Fillers
by Seong-Jun Park, Tae-Soon Kwon, Hee-Joong Sim, Yeon-Gyo Seo, Kyungwho Choi and Hong-Lae Jang
Fire 2025, 8(7), 243; https://doi.org/10.3390/fire8070243 - 23 Jun 2025
Viewed by 365
Abstract
This study explores the flame retardancy and structural behavior of silicone foam composites filled with halogen-free flame retardants, aiming to evaluate their feasibility for use in mass transportation applications. Silicone foam specimens incorporating magnesium hydroxide and expandable graphite were prepared and compared with [...] Read more.
This study explores the flame retardancy and structural behavior of silicone foam composites filled with halogen-free flame retardants, aiming to evaluate their feasibility for use in mass transportation applications. Silicone foam specimens incorporating magnesium hydroxide and expandable graphite were prepared and compared with unfilled silicone foam under both static and dynamic loading conditions. Uniaxial compression and simple shear tests were conducted to assess mechanical behavior, and a second-order Ogden model was employed to represent hyperelasticity in the finite element analysis. Fire performance was evaluated using cone calorimeter tests in accordance with ISO 5660-1. The results showed a 53.6% reduction in peak heat release rate (PHRR) and a 48.1% decrease in MARHE upon the addition of flame retardants, satisfying relevant fire safety standards. Although the addition of fillers increased the compressive stiffness and reduced rebound resilience, static comfort indices remained within acceptable ranges. These findings confirm that halogen-free filled silicone foams exhibit significantly enhanced fire retardancy while maintaining sufficient mechanical integrity and seating comfort, demonstrating their potential as eco-friendly alternatives to conventional polyurethane foams in large-scale transportation applications. Full article
Show Figures

Graphical abstract

18 pages, 11618 KiB  
Article
Preparation and Properties of Low-Exothermic Polyurethanes Doped with Modified Hydrated Salt Phase Change Materials
by Song Xin, Mengya Sun, Shangxiao Liu, Xuan Zhang and Han Liu
Molecules 2025, 30(7), 1508; https://doi.org/10.3390/molecules30071508 - 28 Mar 2025
Cited by 1 | Viewed by 369
Abstract
In this study, fumed silica (FS) was used as a support material and infused with the hydrated salt sodium hydrogen phosphate dodecahydrate (DHPD) to create shape-stabilized constant phase change materials (CPCMs). These CPCMs were integrated into a polyurethane matrix as a functional filler, [...] Read more.
In this study, fumed silica (FS) was used as a support material and infused with the hydrated salt sodium hydrogen phosphate dodecahydrate (DHPD) to create shape-stabilized constant phase change materials (CPCMs). These CPCMs were integrated into a polyurethane matrix as a functional filler, resulting in low-exothermic polyurethane composite foams (CPCM-RPUFs) that demonstrate thermoregulation and flame-retardant properties. Recent findings show that CPCM-RPUF excels in thermal stability compared to pure polyurethane, with a melt phase transition enthalpy of 115.8 J/g. The use of fumed silica allows for the encapsulation of hydrated salts up to 87%, ensuring the structural integrity of the vesicles. As FS content in CPCMs increased, the internal temperature of the composite foam significantly decreased, showing excellent thermal regulation. Thermogravimetric analysis showed that the synergistic effect of DHPD and FS improved the thermal stability and flame retardancy of the composites. By monitoring the internal and surface temperature changes in the foam, it was verified that CPCMs can effectively alleviate heat accumulation during the curing process and reduce the core temperature (56.9 °C) and surface warming rate, thus realizing the thermal buffering effect. With the increase in FS content in CPCMs, the compressive strength of CPCM-RPUF can be maintained or even enhanced. This study provides a theoretical basis and technical support for the development of polyurethane composite foams with integrated thermal regulation and flame-retardant properties, which can have broad application prospects in the fields of building energy conservation, energy storage equipment, and thermal mine insulation. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

18 pages, 5792 KiB  
Article
Phosphorous-Based, Halogen-Free Flame Retardants for Thin, Flexible Polyurethane Artificial Leathers
by Miriam Bader, Maren Lehmann and Michael Meyer
Polymers 2025, 17(7), 841; https://doi.org/10.3390/polym17070841 - 21 Mar 2025
Cited by 2 | Viewed by 600
Abstract
Polyurethane (PUR)-based artificial leathers are often used as interior materials in public area, making flame retardants (FRs) necessary. The mode of action of different FRs varies depending on the chemical class and the structure of the supplied material. Usually, FRs are designed for [...] Read more.
Polyurethane (PUR)-based artificial leathers are often used as interior materials in public area, making flame retardants (FRs) necessary. The mode of action of different FRs varies depending on the chemical class and the structure of the supplied material. Usually, FRs are designed for bulk materials like foams, e.g., for upholstery, the main application of PUR. However, in thin materials, FRs act differently, thus leaving the PUR without sufficient flame resistance. In this study, PUR films and artificial leathers were equipped with twelve commercially available, halogen-free FRs in various concentrations and combinations. Fire resistance was tested with LOI measurements, cone calorimetry, horizontal burning behavior, and thermogravimetric analyses. An organophosphorus FR proved to be the most suited for flame-resistant artificial leather. The LOI was increased from 20 to 24.2%, the peak heat release rate was reduced by about 30%, and the sample was self-extinguishing in horizontal burning behavior. Phosphinates and aluminum trihydroxide were the least efficient FRs. Combinations of bentonite with phosphorus-based FRs showed synergistic effects in reducing the probability of igniting the material. The results demonstrate that sufficient flame retardancy for PUR-based thin materials can be achieved with commercially available halogen-free FRs, paving the way for more sustainable and greener materials by substituting ecologically harmful and health-damaging FRs. Full article
(This article belongs to the Special Issue Advances in Fire-Safe Polymer Materials)
Show Figures

Figure 1

26 pages, 5256 KiB  
Article
Unveiling the Potential of Plant-Derived Diarylheptanoids and Their Derivatives in Bio-Based Polyurethane Compositions
by Matiss Pals, Jevgenija Ponomarenko, Maris Lauberts, Lilija Jashina, Vilhelmine Jurkjane and Alexandr Arshanitsa
Plants 2025, 14(5), 775; https://doi.org/10.3390/plants14050775 - 3 Mar 2025
Viewed by 1201
Abstract
The key challenge in polymer science is developing sustainable synthesis methods using renewable feedstocks. This study explores plant-derived diarylheptanoids with various structures as the building blocks for polyurethane (PU) materials. Diarylheptanoid glucosides isolated from black alder (Alnus glutinosa) bark were hydrolyzed [...] Read more.
The key challenge in polymer science is developing sustainable synthesis methods using renewable feedstocks. This study explores plant-derived diarylheptanoids with various structures as the building blocks for polyurethane (PU) materials. Diarylheptanoid glucosides isolated from black alder (Alnus glutinosa) bark were hydrolyzed and fractionated to remove sugar moieties. The resulting diarylheptanoids, along with unhydrolyzed analogues and curcumin, were used as biomass-based polyols to synthesize model PU films. Incorporating diarylheptanoids enhanced the mechanical strength and reduced the flexibility of PU due to increased crosslinking, with effects proportional to the OH functionality of the biomass-based polyols. Weight loss, FTIR, and Py-GC-MS/FID analyses revealed that the catechol moieties and the glucosidic bonds are biodegradable structural subunits of diarylheptanoids incorporated into PU films. Rigid polyurethane foams (PURs) incorporating high-OH-functionality diarylheptanoid glucosides such as oregonin demonstrated significantly higher compression strength and less weight loss during non-isothermal thermal analysis in air compared to those of commercial polyol-based foams. A cone calorimeter test showed that the PUR foam with diarylheptanoid derivatives had a lower degradation rate, a longer flame-burning time, 30% less heat emission, and 25% less smoke, indicating improved flame retardancy. Adding 1–2% oregonin-enriched black alder bark extracts to commercial Elastopir 1132/509/0 PUR foam significantly improved its resistance to thermal oxidative aging, outperforming the commercial antioxidant Irganox. Full article
Show Figures

Figure 1

26 pages, 7725 KiB  
Review
Recent Advances in Flame-Retardant Flexible Polyurethane Foams
by Min Chen, Yao Yuan, Wei Wang and Lulu Xu
Fire 2025, 8(3), 90; https://doi.org/10.3390/fire8030090 - 23 Feb 2025
Cited by 3 | Viewed by 1370
Abstract
Flexible polyurethane foam (FPUF) is extensively applied in multiple applications, including automotive, construction, furniture cushioning, and transportation seating, due to its outstanding mechanical properties, sound absorption, breathable characteristics, and versatility. However, FPUF is highly flammable and releases significant quantities of smoke and harmful [...] Read more.
Flexible polyurethane foam (FPUF) is extensively applied in multiple applications, including automotive, construction, furniture cushioning, and transportation seating, due to its outstanding mechanical properties, sound absorption, breathable characteristics, and versatility. However, FPUF is highly flammable and releases significant quantities of smoke and harmful gases when burned, which presents considerable safety hazards and has led to extensive research into flame retardant solutions. This review covers the development of both conventional and bio-based flame-retardant agents, including reactive-type and additive-type FRs, and surface coating methods, with a focus on their preparation, characterization methods, and underlying flame retardant mechanisms. Additionally, innovative flame retardant technologies, particularly surface coatings, are discussed in terms of their impact on thermal stability, mechanical performance, and smoke toxicity reduction in the resulting FPUFs. The review also highlights future research priorities and significant challenges, including environmental concerns, cost-effectiveness, and durability. Future research will need to focus on improving flame retardant efficiency while also considering the environmental impact and recyclability of materials, aiming for the green and sustainable development of FPUFs. Full article
Show Figures

Figure 1

20 pages, 3579 KiB  
Review
Rigid Polyurethane Foam Derived from Renewable Sources: Research Progress, Property Enhancement, and Future Prospects
by Yao Yuan, Qinhe Guo, Lulu Xu and Wei Wang
Molecules 2025, 30(3), 678; https://doi.org/10.3390/molecules30030678 - 4 Feb 2025
Cited by 3 | Viewed by 2135
Abstract
Rigid polyurethane foam (RPUF) is a widely utilized thermosetting polymer across various industrial applications, valued for its exceptional properties. However, the demand for sustainable alternatives to petroleum-based polymers has grown increasingly urgent due to rising environmental concerns. Despite its widespread use, RPUF faces [...] Read more.
Rigid polyurethane foam (RPUF) is a widely utilized thermosetting polymer across various industrial applications, valued for its exceptional properties. However, the demand for sustainable alternatives to petroleum-based polymers has grown increasingly urgent due to rising environmental concerns. Despite its widespread use, RPUF faces challenges such as inadequate mechanical strength, limited thermal stability, and high flammability, all of which are crucial considerations in commercial and household applications. Globally, ongoing efforts are focused on developing innovative technologies that convert renewable sources into new monomers and polymers, some of which could serve as alternatives to traditional RPUFs. Several approaches have been explored to improve the thermal stability, mechanical strength, and flame retardancy of RPUFs, including the modification of bio-based polyols and the incorporation of performance-enhancing fillers. This review emphasizes recent advances in RPUFs derived from natural resources, focusing on their preparation, characterization, and properties, and strategies to enhance the mechanical strength and flame safety of bio-based RPUFs. Additionally, it explores the applications of RPUF materials across various fields, addressing the challenges and potential developments in packaging, household items, construction, and automotive applications. Full article
(This article belongs to the Special Issue Nanomaterials for Catalytic Upcycling/Conversion of Plastics/Biomass)
Show Figures

Figure 1

22 pages, 9843 KiB  
Article
Viscoelastic Polyurethane Foam Biocomposites with Enhanced Flame Retardancy
by Grzegorz Węgrzyk, Dominik Grzęda, Milena Leszczyńska, Bartosz Nędza, Katarzyna Bulanda, Mariusz Oleksy, Joanna Ryszkowska and Ugis Cabulis
Polymers 2024, 16(22), 3189; https://doi.org/10.3390/polym16223189 - 16 Nov 2024
Cited by 2 | Viewed by 1753
Abstract
The growing demand for viscoelastic polyurethane foams creates a need for new sustainable raw materials that support cost-effective production while maintaining the desired material performance and fire safety standards. In this regard, our study aimed to develop viscoelastic polyurethane foam composites with reduced [...] Read more.
The growing demand for viscoelastic polyurethane foams creates a need for new sustainable raw materials that support cost-effective production while maintaining the desired material performance and fire safety standards. In this regard, our study aimed to develop viscoelastic polyurethane foam composites with reduced flammability and a high proportion of renewable raw materials. To achieve this, blackcurrant pomace, expandable graphite and a third-generation blowing agent were introduced to a viscoelastic polyurethane foam composition containing a reactive flame retardant in the formulation. The effects of the incorporated additives on the foaming process, flammability, chemical structure, cellular structure, thermal properties and physico-mechanical properties of the composites were determined. The results showed that the viscoelastic foam composite containing 30 php of blackcurrant pomace and 15 php of expandable graphite had a pHRRmax 52% lower than that of the reference material. The additional use of a blowing agent enhanced the flame-retardant effect of the materials, resulting in a 67% reduction in pHRRmax of the composite compared to the reference material. Moreover, the developed biocomposites exhibited promising limiting oxygen index values of 26–28%, compared to the 21% shown for the reference sample. Consequently, the best-performing biocomposites achieved the V-0 flammability rating according to the UL-94 standard. This study’s results indicate the composites’ high application potential due to their reduced flammability and the materials’ desirable physical and mechanical properties. Full article
(This article belongs to the Special Issue Advances in Fire-Safe Polymer Materials)
Show Figures

Figure 1

16 pages, 8069 KiB  
Review
A Review of Polyurethane Foams for Multi-Functional and High-Performance Applications
by Huanhuan Dong, Shujing Li, Zhixin Jia, Yuanfang Luo, Yongjun Chen, Jiang Jiang and Sheng Ji
Polymers 2024, 16(22), 3182; https://doi.org/10.3390/polym16223182 - 15 Nov 2024
Cited by 5 | Viewed by 3986
Abstract
Polyurethane (PU) foams are cellular polymeric materials that have attracted much attention across various industries because of their versatile properties and potential for multifunctional applications. PU foams are involved in many innovations, especially in multi-functional and high-performance applications. Special attention is given to [...] Read more.
Polyurethane (PU) foams are cellular polymeric materials that have attracted much attention across various industries because of their versatile properties and potential for multifunctional applications. PU foams are involved in many innovations, especially in multi-functional and high-performance applications. Special attention is given to developing tailored PU foams for specific application needs. These foams have various applications including flame retardancy, sound absorption, radar absorption, EMI shielding, shape memory, and biomedical applications. The increasing demand for materials that can perform multiple functions while maintaining or enhancing their core properties has made PU foams a focal point of interest for engineers and researchers. This paper examines the challenges faced by the PU foam industry, particularly in developing multifunctional products, as well as the strategies for improving sustainability, such as producing PU foams from renewable resources and recycling existing materials. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

17 pages, 3018 KiB  
Article
Organophosphate Esters and Polybrominated Diphenyl Ethers in Vehicle Dust: Concentrations, Sources, and Health Risk Assessment
by Junji Wang, Jianzai Lin, Xi Zhang, Qinghong Zeng, Zhu Zhu, Siyuan Zhao, Deyan Cao and Meilin Zhu
Toxics 2024, 12(11), 806; https://doi.org/10.3390/toxics12110806 - 7 Nov 2024
Cited by 2 | Viewed by 1508
Abstract
Background: The primary flame retardants in vehicles, organophosphates (OPEs) and polybrominated diphenyl ethers (PBDEs), volatilize and accumulate in the enclosed vehicle environment, posing potential health risks. Amidst the rising number of vehicles, the scrutiny of persistent organic pollutants like OPEs and PBDEs in [...] Read more.
Background: The primary flame retardants in vehicles, organophosphates (OPEs) and polybrominated diphenyl ethers (PBDEs), volatilize and accumulate in the enclosed vehicle environment, posing potential health risks. Amidst the rising number of vehicles, the scrutiny of persistent organic pollutants like OPEs and PBDEs in vehicles is increasing. This study investigates occupational and nonoccupational population exposure to specific OPEs (TnBP, TBOEP, TEHP, TCEP, TCiPP, TDCiPP, TPhP, EHDPP) and PBDEs (BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-183, BDE-209) in vehicle dust. Methods: Data on OPEs and PBDEs in vehicle dust were sourced from PubMed and Web of Science. We applied PCA and PMF to identify pollutant sources and assessed health risks using the hazard index (HI) and carcinogenic risk (CR) methods. Monte Carlo simulations were conducted for uncertainty analysis, evaluating variable contributions to the results. Results: The predominant OPE in dust samples was TDCiPP (mean value: 4.34 × 104 ng g−1), and the main PBDE was BDE-209 (mean value: 1.52 × 104 ng g−1). Potential sources of OPEs in vehicle dust include polyvinyl chloride (PVC) upholstery, polyurethane foam (PUF) seats, electronics, carpet wear, hydraulic oil, and plastic wear in the brake system. PBDE sources likely include automotive parts, PVC upholstery, seats, carpets, and electronics. The 90th percentile HI and CR values for occupational and nonoccupational populations exposed to OPEs and PBDEs indicate that the noncarcinogenic and carcinogenic risks are relatively low. A sensitivity analysis showed that the pollutant concentration, time in the vehicle, exposure frequency, and duration significantly influence health risks. Conclusions: The health risks to both occupational and nonoccupational populations from exposure to OPEs and PBDEs in vehicle dust are relatively low. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

12 pages, 5284 KiB  
Article
The Input of Nanoclays to the Synergistic Flammability Reduction in Flexible Foamed Polyurethane/Ground Tire Rubber Composites
by Aleksander Hejna, Paulina Kosmela, Adam Olszewski and Wiktoria Żukowska
Materials 2024, 17(21), 5344; https://doi.org/10.3390/ma17215344 - 31 Oct 2024
Viewed by 1307
Abstract
Currently, postulated trends and law regulations tend to direct polymer technology toward sustainability and environmentally friendly solutions. These approaches are expressed by keeping materials in a loop aimed at the circular economy and by reducing the environmental burdens related to the production and [...] Read more.
Currently, postulated trends and law regulations tend to direct polymer technology toward sustainability and environmentally friendly solutions. These approaches are expressed by keeping materials in a loop aimed at the circular economy and by reducing the environmental burdens related to the production and use of polymers and polymer-based materials. The application of recycled or waste-based materials often deals efficiently with the first issue but at the expense of the final products’ performance, which requires various additives, often synthetic and petroleum-based, with limited sustainability. Therefore, a significant portion of research is often required to address the drawbacks induced by the application of secondary raw materials. Herein, the presented study aimed to investigate the fire performance of polymer composites containing highly flammable matrix polyurethane (PU) foam and filler ground tire rubber (GTR) originating from car tire recycling. Due to the nature of both phases and potential applications in the construction and building or automotive sectors, the flammability of these composites should be reduced. Nevertheless, this issue has hardly been analyzed in literature and dominantly in our previous works. Herein, the presented work provided the next step and investigated the input of nanoclays to the synergistic flammability reduction in flexible, foamed PU/GTR composites. Hybrid compositions of organophosphorus FRs with expandable graphite (EG) in varying proportions and with the addition of surface-modified nanoclays were examined. Changes in the parameters obtained during cone calorimeter tests were determined, discussed, and evaluated with the fire performance index and flame retardancy index, two parameters whose goal is to quantify the overall fire performance of polymer-based materials. Full article
Show Figures

Figure 1

21 pages, 4491 KiB  
Article
Synergistic Reinforcing Effect of Hazelnut Shells and Hydrotalcite on Properties of Rigid Polyurethane Foam Composites
by Sylwia Makowska, Karolina Miedzińska, Agnė Kairytė and Krzysztof Strzelec
Polymers 2024, 16(21), 2968; https://doi.org/10.3390/polym16212968 - 23 Oct 2024
Cited by 1 | Viewed by 1140
Abstract
Recently, the development of composite materials from agricultural and forestry waste has become an attractive area of research. The use of bio-waste is beneficial for economic and environmental reasons, adapting it to cost effectiveness and environmental sustainability. In the presented study, the possibility [...] Read more.
Recently, the development of composite materials from agricultural and forestry waste has become an attractive area of research. The use of bio-waste is beneficial for economic and environmental reasons, adapting it to cost effectiveness and environmental sustainability. In the presented study, the possibility of using hazelnut shell (HS) and hydrotalcite (HT) mineral filler was investigated. The effects of fillers in the amount of 10 wt.% on selected properties of polyurethane composites, such as rheological properties (dynamic viscosity, processing times), mechanical properties (compressive strength, flexural strength, hardness), insulating properties (thermal conductivity), and flame-retardant properties (e.g., ignition time, limiting oxygen index, peak heat release), were investigated. Polyurethane foams containing fillers have been shown to have better performance properties compared to unmodified polyurethane foams. For example, the addition of 10 wt% of hydrotalcite filler leads to PU composite foams with improved compression strength (improvement by ~20%), higher flexural strength (increase of ~38%), and comparable thermal conductivity (0.03055 W m–1 K–1 at 20 °C). Moreover, the incorporation of organic fillers has a positive effect on the fire resistance of PU materials. For example, the results from the cone calorimeter test showed that the incorporation of 10 wt% of hydrotalcite filler significantly reduced the peak of the heat release rate (pHRR) by ca. 30% compared with that of unmodified PU foam, and increased the value of the limiting oxygen index from 19.8% to 21.7%. Full article
Show Figures

Figure 1

14 pages, 4146 KiB  
Article
Preparation and Characterization of Glucose-Based Self-Blowing Non-Isocyanate Polyurethane (NIPU) Foams with Different Acid Catalysts
by Tianjiao Yang, Antonio Pizzi, Xuedong Xi, Xiaojian Zhou and Qianyu Zhang
Polymers 2024, 16(20), 2899; https://doi.org/10.3390/polym16202899 - 15 Oct 2024
Cited by 2 | Viewed by 1507
Abstract
The preparation and application of non-isocyanate polyurethane (NIPU) from biomass raw materials as a substitute for traditional polyurethane (PU) has recently become a research hot topic as it avoids the toxicity and moisture sensitivity of isocyanate-based PU. In the work presented here, self-blowing [...] Read more.
The preparation and application of non-isocyanate polyurethane (NIPU) from biomass raw materials as a substitute for traditional polyurethane (PU) has recently become a research hot topic as it avoids the toxicity and moisture sensitivity of isocyanate-based PU. In the work presented here, self-blowing GNIPU non-isocyanate polyurethane (NIPU) rigid foams were prepared at room temperature, based on glucose, with acids as catalysts and glutaraldehyde as a cross-linker. The effects of different acids and glutaraldehyde addition on foam morphology and properties were investigated. The water absorption, compressive resistance, fire resistance, and limiting oxygen index (LOI) were tested to evaluate the relevant properties of the foams, and scanning electron microscopy (SEM) was used to observe the foams’ cell structure. The results show that all these foams have a similar apparent density, while their 24 h water absorption is different. The foam prepared with phosphoric acid as a catalyst presented a better compressive strength compared to the other types prepared with different catalysts when above 65% compression. It also presents the best fire resistance with an LOI value of 24.3% (great than 22%), indicating that it possesses a good level of flame retardancy. Thermogravimetric analysis also showed that phosphoric acid catalysis slightly improved the GNIPU foams’ thermal stability. This is mainly due to the flame-retardant effect of the phosphate ion. In addition, scanning electron microscopy (SEM) results showed that all the GNIPU foams exhibited similar open-cell morphologies with the cell pore sizes mainly distributed in the 200–250 μm range. Full article
Show Figures

Figure 1

23 pages, 9574 KiB  
Article
Investigating Intumescent Flame-Retardant Additives in Polyurethane Foam to Improve the Flame Resistance and Sustainability of Aircraft Cabin Materials
by Oliver Loewenthal, Preety Doley, Cheng Wang, Guan Heng Yeoh and Imrana I. Kabir
Fire 2024, 7(10), 351; https://doi.org/10.3390/fire7100351 - 1 Oct 2024
Cited by 3 | Viewed by 2246
Abstract
Polyurethane (PU) foam has a high flammability and is widely used in aircraft interiors, presenting a significant danger to occupants. This study analysed three composite intumescent flame-retardant (IFR) coatings for flexible PU foam; expandable graphite (EG), ammonium polyphosphate (APP) and alginate (AG). The [...] Read more.
Polyurethane (PU) foam has a high flammability and is widely used in aircraft interiors, presenting a significant danger to occupants. This study analysed three composite intumescent flame-retardant (IFR) coatings for flexible PU foam; expandable graphite (EG), ammonium polyphosphate (APP) and alginate (AG). The coatings were prepared in concentrations of 5 wt%, 10 wt%, and 50 wt% with an acrylic binder. The coated samples were characterised using cone calorimetry, SEM, and mechanical testing. The findings showed peak heat release rate, total heat release, and carbon dioxide production from the 10 wt% triple-layer coating (EG:APP:AG) was 52%, 32%, and 58% less than the PU control. The char of the 10 wt% triple-layer sample effectively suppressed smoke release and inhibited the transfer of fuel and gas volatiles. Mechanical testing demonstrated a 3.4 times increase in tensile strength and a 15.4 times increase in compressive strength (50% compression) compared to the control PU with the 10 wt% triple-layer coating. A fire dynamics simulator model was developed that demonstrated large-scale flammability modelling for commercial aircraft. Future work can explore the integration of IFR coatings into computational analysis. These new bio-based coatings produced promising results for aircraft fire safety and flammability performance for PU polymers. Full article
Show Figures

Figure 1

23 pages, 5146 KiB  
Article
Flame Retardancy and Thermal Stability of Rigid Polyurethane Foams Filled with Walnut Shells and Mineral Fillers
by Sylwia Makowska, Karolina Miedzińska, Agnė Kairytė, Jurga Šeputytė-Jucikė and Krzysztof Strzelec
Materials 2024, 17(18), 4629; https://doi.org/10.3390/ma17184629 - 21 Sep 2024
Cited by 3 | Viewed by 1592
Abstract
Recently, the influence of the concept of environmental sustainability has increased, which includes environmentally friendly measures related to reducing the consumption of petrochemical fuels and converting post-production feedstocks into raw materials for the synthesis of polymeric materials, the addition of which would improve [...] Read more.
Recently, the influence of the concept of environmental sustainability has increased, which includes environmentally friendly measures related to reducing the consumption of petrochemical fuels and converting post-production feedstocks into raw materials for the synthesis of polymeric materials, the addition of which would improve the performance of the final product. In this regard, the development of bio-based polyurethane foams can be carried out by, among other things, modifying polyurethane foams with vegetable or waste fillers. This paper investigates the possibility of using walnut shells (WS) and the mineral fillers vermiculite (V) and perlite (P) as a flame retardant to increase fire safety and thermal stability at higher temperatures. The effects of the fillers in amounts of 10 wt.% on selected properties of the polyurethane composites, such as rheological properties (dynamic viscosity and processing times), mechanical properties (compressive strength, flexural strength, and hardness), insulating properties (thermal conductivity), and flame retardant properties (e.g., ignition time, limiting oxygen index, and peak heat release) were investigated. It has been shown that polyurethane foams containing fillers have better performance properties compared to unmodified polyurethane foams. Full article
(This article belongs to the Special Issue Advances in Bio-Polymer and Polymer Composites)
Show Figures

Figure 1

Back to TopTop