Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = fixed-wing delivery UAV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 17647 KB  
Article
Design and Control of an Ultra-Low-Cost Logistic Delivery Fixed-Wing UAV
by Yixuan Zhang, Qinyang Zhao, Peifu Mao, Qiaofeng Bai, Fuzhong Li and Svitlana Pavlova
Appl. Sci. 2024, 14(11), 4358; https://doi.org/10.3390/app14114358 - 21 May 2024
Cited by 11 | Viewed by 6800
Abstract
In contemporary logistics, the deployment of fixed-wing unmanned aerial vehicles (UAVs) as a transportation platform is experiencing rapid advancements, garnering substantial application within numerous logistic operations with pronounced efficacies. There are notable impediments to the utilization of commercial logistic-oriented fixed-wing UAVs, including elevated [...] Read more.
In contemporary logistics, the deployment of fixed-wing unmanned aerial vehicles (UAVs) as a transportation platform is experiencing rapid advancements, garnering substantial application within numerous logistic operations with pronounced efficacies. There are notable impediments to the utilization of commercial logistic-oriented fixed-wing UAVs, including elevated procurement and maintenance costs, extensive maintenance intervals, and unsuitability for small-volume, low-altitude transport tasks. These factors collectively exacerbate the risk associated with enterprise procurement and elevate the cost–benefit ratio. This study introduces the design and fabrication of a cost-efficient UAV for logistic delivery purposes, constructed primarily from cost-effective wood materials. This UAV is engineered to ferry payloads of up to 1000 g across a predefined aerial route at an altitude of 40 m. Upon reaching the designated location, the UAV is programmed to initiate the identification of the drop zone, thereafter descending to facilitate the release of the cargo. To mitigate the impact force during the landing phase, the payload was encapsulated within a sponge-damping layer, thereby preserving the integrity of the transported items. The empirical findings from outdoor delivery trials underscore the UAV’s ability to precisely execute payload drops at the targeted locations, confirming its potential to fulfill the logistical requirements for the transportation and delivery of small-volume items in a cost-effective, low-altitude framework. This investigation contributes to the burgeoning discourse on leveraging ultra-low-cost UAVs in logistics, offering a feasible solution to the challenges of cost and efficiency in UAV-operated delivery systems. Full article
Show Figures

Figure 1

20 pages, 12294 KB  
Article
Research on Scenario Modeling for V-Tail Fixed-Wing UAV Dynamic Obstacle Avoidance
by Peihao Huang, Yong Tang, Bingsan Yang and Tao Wang
Drones 2023, 7(10), 601; https://doi.org/10.3390/drones7100601 - 25 Sep 2023
Cited by 3 | Viewed by 10431
Abstract
With the advantages of long-range flight and high payload capacity, large fixed-wing UAVs are often used in anti-terrorism missions, disaster surveillance, and emergency supply delivery. In the existing research, there is little research on the 3D model design of the V-tail fixed-wing UAV [...] Read more.
With the advantages of long-range flight and high payload capacity, large fixed-wing UAVs are often used in anti-terrorism missions, disaster surveillance, and emergency supply delivery. In the existing research, there is little research on the 3D model design of the V-tail fixed-wing UAV and 3D flight environment modeling. The study focuses on designing a comprehensive simulation environment using Gazebo and ROS, referencing existing large fixed-wing UAVs, to design a V-tail aircraft, incorporating realistic aircraft dynamics, aerodynamics, and flight controls. Additionally, we present a simulation environment modeling approach tailored for obstacle avoidance in no-fly zones, and have created a 3D flight environment in Gazebo, generating a large-scale terrain map based on the original grayscale heightmap. This terrain map is used to simulate potential mountainous terrain threats that a fixed-wing UAV might encounter during mission execution. We have also introduced wind disturbances and other specific no-fly zones. We integrated the V-tail fixed-wing aircraft model into the 3D flight environment in Gazebo and designed PID controllers to stabilize the aircraft’s flight attitude. Full article
Show Figures

Figure 1

21 pages, 1001 KB  
Article
Clothoid-Based Path Planning for a Formation of Fixed-Wing UAVs
by Luciano Blasi, Egidio D’Amato, Immacolata Notaro and Gennaro Raspaolo
Electronics 2023, 12(10), 2204; https://doi.org/10.3390/electronics12102204 - 12 May 2023
Cited by 8 | Viewed by 3284
Abstract
Unmanned aerial vehicles (UAVs) are playing an increasingly crucial role in many applications such as search and rescue, delivery services, and military operations. However, one of the significant challenges in this area is to plan efficient and safe trajectories for UAV formations. This [...] Read more.
Unmanned aerial vehicles (UAVs) are playing an increasingly crucial role in many applications such as search and rescue, delivery services, and military operations. However, one of the significant challenges in this area is to plan efficient and safe trajectories for UAV formations. This paper presents an optimization procedure for trajectory planning for fixed-wing UAV formations using graph theory and clothoid curves. The proposed planning strategy consists of two main steps. Firstly, the geometric optimization of paths is carried out using graphs for each UAV, providing piece-wise linear paths whose smooth connections are made with clothoids. Secondly, the geometric paths are transformed into time-dependent trajectories, optimizing the assigned aircraft speeds to avoid collisions by solving a mixed-integer optimal control problem for each UAV of the flight formation. The proposed method is effective in achieving suboptimal paths while ensuring collision avoidance between aircraft. A sensitivity analysis of the main parameters of the algorithm was conducted in ideal conditions, highlighting the possibility of decreasing the length of the optimal path by about 4.19%, increasing the number of points used in the discretization and showing a maximum path length reduction of about 10% compared with the average solution obtained with a similar algorithm using a graph based on random directions. Furthermore, the use of clothoids, whose parameters depend on the UAV performance constraints, provides smoother connections, giving a significant improvement over traditional straight-line or circular trajectories in terms of flight dynamics compliance and trajectory tracking capabilities. The method can be applied to various UAV formation scenarios, making it a versatile and practical tool for mission planning. Full article
(This article belongs to the Special Issue Positioning and Localization in UAV Networks/Flying Ad Hoc Networks)
Show Figures

Figure 1

25 pages, 10761 KB  
Article
Gusts Encountered by Flying Vehicles in Proximity to Buildings
by Abdulghani Mohamed, Matthew Marino, Simon Watkins, Justin Jaworski and Anya Jones
Drones 2023, 7(1), 22; https://doi.org/10.3390/drones7010022 - 28 Dec 2022
Cited by 38 | Viewed by 12940 | Correction
Abstract
There is a growing desire to operate Uncrewed Air Vehicles (UAVs) in urban environments for parcel delivery, and passenger-carrying air taxis for Advanced Air Mobility (AAM). The turbulent flows and gusts around buildings and other urban infrastructure can affect the steadiness and stability [...] Read more.
There is a growing desire to operate Uncrewed Air Vehicles (UAVs) in urban environments for parcel delivery, and passenger-carrying air taxis for Advanced Air Mobility (AAM). The turbulent flows and gusts around buildings and other urban infrastructure can affect the steadiness and stability of such air vehicles by generating a highly transient relative flow field. Our aim is to review existing gust models, then consider gust encounters in the vicinity of buildings as experienced by flight trajectories over the roof of a nominally cuboid building in a suburban atmospheric boundary layer. Simplified models of fixed- and rotary-wing aircraft are used to illustrate the changes in lift and thrust experienced by flight around the building. The analysis showed that fixed-wing aircraft experienced a substantial increase in angle of attack over a relatively short period of time (<1 s) as they fly through the shear layer at a representative forward velocity, which can be well above typical stall angles. Due to the slow flight speeds required for landing and take-off, significant control authority of rotor systems is required to ensure safe operation due to the high disturbance effects caused by localized gusts from buildings and protruding structures. Currently there appears to be negligible certification or regulation for AAM systems to ensure safe operations when traversing building flow fields under windy conditions and it is hoped that the insights provided in this paper will assist with future certification and regulation. Full article
(This article belongs to the Special Issue Urban Air Mobility (UAM))
Show Figures

Figure 1

20 pages, 1657 KB  
Article
Rotor Failure Compensation in a Biplane Quadrotor Based on Virtual Deflection
by Nihal Dalwadi, Dipankar Deb and Stepan Ozana
Drones 2022, 6(7), 176; https://doi.org/10.3390/drones6070176 - 17 Jul 2022
Cited by 7 | Viewed by 3333
Abstract
A biplane quadrotor is a hybrid type of UAV that has wide applications such as payload pickup and delivery, surveillance, etc. This simulation study mainly focuses on handling the total rotor failure, and for that, we propose a control architecture that does not [...] Read more.
A biplane quadrotor is a hybrid type of UAV that has wide applications such as payload pickup and delivery, surveillance, etc. This simulation study mainly focuses on handling the total rotor failure, and for that, we propose a control architecture that does not only handle rotor failure but is also able to navigate the biplane quadrotor to a safe place for landing. In this structure, after the detection of total rotor failure, the biplane quadrotor will imitate reallocating control signals and then perform the transition maneuver and switch to the fixed-wing mode; control signals are also reallocated. A synthetic jet actuator (SJA) is used as the redundancy that generates the desired virtual deflection to control the pitch angle, while other states are taken care of by the three rotors. The SJA has parametric nonlinearity, and to handle it, an inverse adaptive compensation scheme is applied and a closed-loop stability analysis is performed based on the Lyapunov method for the pitch subsystem. The effectiveness of the proposed control structure is validated using numerical simulation carried out in the MATLAB Simulink. Full article
Show Figures

Figure 1

24 pages, 23044 KB  
Article
A Small UAV Optimized for Efficient Long-Range and VTOL Missions: An Experimental Tandem-Wing Quadplane Drone
by Michał Okulski and Maciej Ławryńczuk
Appl. Sci. 2022, 12(14), 7059; https://doi.org/10.3390/app12147059 - 13 Jul 2022
Cited by 22 | Viewed by 17165
Abstract
Most types of Unmanned Aerial Vehicle (UAV, drone) missions requiring Vertical-Take-Off-and-Landing (VTOL) capability could benefit if a drone’s effective range could be extended. Example missions include Search-And-Rescue (SAR) operations, a remote inspection of distant objects, or parcel delivery. There are numerous research works [...] Read more.
Most types of Unmanned Aerial Vehicle (UAV, drone) missions requiring Vertical-Take-Off-and-Landing (VTOL) capability could benefit if a drone’s effective range could be extended. Example missions include Search-And-Rescue (SAR) operations, a remote inspection of distant objects, or parcel delivery. There are numerous research works on multi-rotor drones (e.g., quadcopters), fixed-wing drones, VTOL quadplanes, or tilt-motor/tilt-wing VTOLs. We propose a unique compact VTOL UAV optimized for long hover and long-range missions with great lifting capacity and manoeuvrability: a tandem-wing quadplane with fixed motors only. To the best of our knowledge, such a drone has not yet been researched. The drone was designed, built, and tested in flight. Construction details, its advantages, and issues are discussed in this research. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicles)
Show Figures

Figure 1

25 pages, 2968 KB  
Article
Internet-Of-Things in Motion: A UAV Coalition Model for Remote Sensing in Smart Cities
by Adiel Ismail, Bigomokero Antoine Bagula and Emmanuel Tuyishimire
Sensors 2018, 18(7), 2184; https://doi.org/10.3390/s18072184 - 6 Jul 2018
Cited by 43 | Viewed by 5094
Abstract
Unmanned aerial vehicles (UAVs) or drones are increasingly used in cities to provide service tasks that are too dangerous, expensive or difficult for human beings. Drones are also used in cases where a task can be performed more economically and or more efficiently [...] Read more.
Unmanned aerial vehicles (UAVs) or drones are increasingly used in cities to provide service tasks that are too dangerous, expensive or difficult for human beings. Drones are also used in cases where a task can be performed more economically and or more efficiently than if done by humans. These include remote sensing tasks where drones can be required to form coalitions by pooling their resources to meet the service requirements at different locations of interest in a city. During such coalition formation, finding the shortest path from a source to a location of interest is key to efficient service delivery. For fixed-wing UAVs, Dubins curves can be applied to find the shortest flight path. When a UAV flies to a location of interest, the angle or orientation of the UAV upon its arrival is often not important. In such a case, a simplified version of the Dubins curve consisting of two instead of three parts can be used. This paper proposes a novel model for UAV coalition and an algorithm derived from basic geometry that generates a path derived from the original Dubins curve for application in remote sensing missions of fixed-wing UAVs. The algorithm is tested by incorporating it into three cooperative coalition formation algorithms. The performance of the model is evaluated by varying the number of types of resources and the sensor ranges of the UAVs to reveal the relevance and practicality of the proposed model. Full article
(This article belongs to the Special Issue Unmanned Aerial Vehicle Networks, Systems and Applications)
Show Figures

Figure 1

Back to TopTop