Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = fire refugia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1713 KB  
Article
Fine-Scale Environmental Heterogeneity Shapes Post-Fire Macrofungal Richness in a Mediterranean Relict Forest
by Celeste Santos-Silva, Bruno Natário and Ricardo Pita
Fire 2025, 8(11), 438; https://doi.org/10.3390/fire8110438 - 9 Nov 2025
Viewed by 326
Abstract
Mediterranean relict forests, including Laurisilva and other humid forest refugia, are rare and ecologically distinctive habitats often embedded in fire-prone landscapes. Understanding how these ecosystems respond to disturbance is essential for biodiversity conservation and land management under increasing fire risk. However, the effects [...] Read more.
Mediterranean relict forests, including Laurisilva and other humid forest refugia, are rare and ecologically distinctive habitats often embedded in fire-prone landscapes. Understanding how these ecosystems respond to disturbance is essential for biodiversity conservation and land management under increasing fire risk. However, the effects of fire on key components of these forests, such as macrofungi, remain poorly understood. Here, we examined how fine-scale spatial heterogeneity in fire severity, topography and vegetation shapes post-fire macrofungal communities in a Laurisilva relict forest in central Portugal. Fire severity reduced mycorrhizal richness while having negligible effects on saprotrophs, leading to shifts in the mycorrhizal-to-saprotrophic richness ratio along severity gradients. A similar shift toward saprotrophs also occurred from low to moderate–high elevations, consistent with more exposed, drier conditions at higher elevations. Aspect, topographic ruggedness, and wetness showed weaker, guild-specific associations with macrofungal richness, while vegetation cover and richness had more limited influence, possibly reflecting the complexity and vulnerability of post-fire plant–fungus interactions. Overall, these results highlight the importance of conserving humid and structurally complex environments to foster post-fire fungal diversity in relict forests. More broadly, our findings suggest that fine-scale environmental heterogeneity may help sustain relict forest resilience under intensifying wildfires and other disturbances associated with land-use and climate change. Full article
Show Figures

Figure 1

14 pages, 6868 KB  
Article
First Characterization of Megafire Refugia in a South American Subtropical Mountain Forest
by Daihana Soledad Argibay, Ana María Cingolani, Javier Sparacino, Ricardo Suárez, Isabell Hensen and Daniel Renison
Forests 2025, 16(11), 1705; https://doi.org/10.3390/f16111705 - 8 Nov 2025
Viewed by 302
Abstract
Fire refugia play an important role in post-fire ecosystem recovery because they preserve areas that represent a persistent legacy in the landscape and serve as propagule sources for forest regeneration. Our objective was to identify the pre-fire topographic and land cover conditions that [...] Read more.
Fire refugia play an important role in post-fire ecosystem recovery because they preserve areas that represent a persistent legacy in the landscape and serve as propagule sources for forest regeneration. Our objective was to identify the pre-fire topographic and land cover conditions that determine the presence and quality of megafire refugia in the mountains of central Argentina. In 208 1-ha field-based plots, we assessed pre-fire topographic and land cover variables along with post-fire vegetation responses two years after the megafires. Based on these assessments, we developed a fire refugia quality index ranging from 0 (no refugia) to 5 (high-quality refugia). Using ordinal logistic regression and a model selection approach, we found that high-quality fire refugia were associated with the more humid east mountain flank and east- and north-facing slopes, as well as with smooth terrain, high topographic positions, greater rock cover, steep slopes, and higher tree-to-grass cover proportions. Our findings highlight the importance of topographic and land cover variables in shaping fire refugia and provide insights into post-fire management and the conservation of biodiversity in mountain ecosystems. Full article
(This article belongs to the Special Issue Forest Fire Detection, Prevention and Management)
Show Figures

Figure 1

20 pages, 7291 KB  
Article
Mapping Delayed Canopy Loss and Durable Fire Refugia for the 2020 Wildfires in Washington State Using Multiple Sensors
by Anika M. Anderson, Meg A. Krawchuk, Flavie Pelletier and Jeffrey A. Cardille
Fire 2025, 8(6), 230; https://doi.org/10.3390/fire8060230 - 11 Jun 2025
Viewed by 1579
Abstract
Fire refugia are unburned and low severity patches within wildfires that contribute heterogeneity that is important to retaining biodiversity and regenerating forest following fire. With increasingly intense and frequent wildfires in the Pacific Northwest, fire refugia are important for re-establishing populations sensitive to [...] Read more.
Fire refugia are unburned and low severity patches within wildfires that contribute heterogeneity that is important to retaining biodiversity and regenerating forest following fire. With increasingly intense and frequent wildfires in the Pacific Northwest, fire refugia are important for re-establishing populations sensitive to fire and maintaining resilience to future disturbances. Mapping fire refugia and delayed canopy loss is useful for understanding patterns in their distribution. The increasing abundance of satellite data and advanced analysis platforms offer the potential to map fire refugia in high detail. This study uses the Bayesian Updating of Land Cover (BULC-D) algorithm to map fire refugia and delayed canopy loss three years after fire. The algorithm compiles Normalized Burn Ratio data from Sentinel-2 and Landsat 8 and 9 and uses Bayes’ Theorem to map land cover changes. Four wildfires that occurred across Washington State in 2020 were mapped. Additionally, to consider the longevity of ‘durable’ fire refugia, the fire perimeters were analyzed to map delayed canopy loss in the years 2021–2023. The results showed that large losses in fire refugia can occur in the 1–3 years after fire due to delayed effects, but with some patches enduring. Full article
Show Figures

Figure 1

21 pages, 8376 KB  
Article
Influence of Mixed Conifer Forest Thinning and Prescribed Fire on Soil Temperature and Moisture Dynamics in Proximity to Forest Logs: A Case Study in New Mexico, USA
by Robert R. Parmenter and Mark V. Losleben
Forests 2023, 14(6), 1117; https://doi.org/10.3390/f14061117 - 28 May 2023
Cited by 2 | Viewed by 2449
Abstract
Forest management activities often include fuels reduction through mechanized thinning followed by prescribed fire to remove slash. Management prescriptions may include the retention of logs for wildlife habitat and microsites for enhanced tree regeneration. We examined aboveground microclimate and belowground soil temperature and [...] Read more.
Forest management activities often include fuels reduction through mechanized thinning followed by prescribed fire to remove slash. Management prescriptions may include the retention of logs for wildlife habitat and microsites for enhanced tree regeneration. We examined aboveground microclimate and belowground soil temperature and volumetric water content (VWC) dynamics beneath and adjacent to logs at 10, 20, and 30 cm depths in a mixed conifer forest. We assessed the soil variables over 7 years during pre-treatment, post-thinning, and post-fire using a Before–After/Control–Impact experimental design. We found that thinning and burning caused large increases in solar radiation and mean and maximum wind speeds, but only small changes in air temperature and humidity. The treatments increased the soil temperatures beneath the logs by up to 2.7 °C during spring, summer, and fall; the soil VWC increased from 0.05 to 0.08 m3/m3 year-round at 20 and 30 cm depths. Microsites 1–2 m away from the logs also showed soil temperature increases of up to 3.6 °C in spring, summer, and fall, while the measurements of the soil VWC produced variable results (moderate increases and decreases). The increased VWC in late winter/spring likely resulted from reduced plant transpiration and greater snow amounts reaching the ground without being intercepted by the forest canopy. Log retention on thinned and burned sites provided microsites with increased soil temperature and moisture in the top 30 cm, which can enhance soil ecosystem processes and provide refugia for invertebrate and vertebrate wildlife. Full article
Show Figures

Figure 1

25 pages, 3289 KB  
Article
Effects of Pre-Fire Vegetation on the Post-Fire Plant Community Response to Wildfire along a Successional Gradient in Western Juniper Woodlands
by Eva K. Strand and Stephen C. Bunting
Fire 2023, 6(4), 141; https://doi.org/10.3390/fire6040141 - 2 Apr 2023
Cited by 6 | Viewed by 2862
Abstract
Western juniper was often historically restricted to fire refugia such as rocky outcrops but has since Euro-American settlement expanded into areas previously dominated by sagebrush steppe. Wildfires in developed woodlands have been rare. In 2007, the Tongue-Crutcher Wildland Fire burned 18,890 ha in [...] Read more.
Western juniper was often historically restricted to fire refugia such as rocky outcrops but has since Euro-American settlement expanded into areas previously dominated by sagebrush steppe. Wildfires in developed woodlands have been rare. In 2007, the Tongue-Crutcher Wildland Fire burned 18,890 ha in southwestern Idaho along a woodland development gradient, providing unique research opportunities. To assess fire effects on vascular plants, field data were collected in 2012/2013 and 2019/2020. Species richness was uniform along the sere, while species diversity declined in late woodland stages attributed to juniper dominance. The greatest changes in species composition following fire occurred in later woodland development phases. Herbaceous vegetation increased following fire, but sagebrush cover was still lower in burned plots 12–13 years post-fire. Many stands dominated by juniper pre-fire became dominated by snowbrush ceanothus post-fire. Juniper seedlings were observed post-fire, indicating that juniper will reoccupy the area. Our research demonstrates resilience to fire and resistance to annual grasses particularly in early successional stages, which provides opportunities for fire use as a management tool on cool and moist ecological sites. Loss of old-growth juniper to wildfire underlines the importance of maintaining and provisioning for future development of some old growth on the landscape given century-long recovery times. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Figure 1

10 pages, 254 KB  
Review
Conserving Refugia: What Are We Protecting and Why?
by Maurizio Rossetto and Robert Kooyman
Diversity 2021, 13(2), 67; https://doi.org/10.3390/d13020067 - 7 Feb 2021
Cited by 22 | Viewed by 5659
Abstract
Refugia play an important role in contributing to the conservation of species and communities by buffering environmental conditions over time. As large natural landscapes worldwide are declining and are increasingly threatened by extreme events, critical decision-making in biological conservation depends on improved understanding [...] Read more.
Refugia play an important role in contributing to the conservation of species and communities by buffering environmental conditions over time. As large natural landscapes worldwide are declining and are increasingly threatened by extreme events, critical decision-making in biological conservation depends on improved understanding of what is being protected by refugia and why. We provide three novel definitions for refugia (i.e., persistent, future, and temporary) that incorporate ecological and evolutionary dynamics into a land management decision framework and are applicable across changing temporal and spatial settings. Definitions are supported by identification, core value, and management strategy criteria to assist short- and long-term decision-making. We illustrate these concepts using the World Heritage Gondwana Rainforests (WHGR) of eastern Australia, briefly exploring the spatial and temporal factors that can inform the development of conservation management strategies following the extreme fire events of 2019–2020. For the WHGR, available knowledge can be used to protect critical assets by recognizing and implementing buffer zones and corridor connections, and by undertaking emergency translocations of target species into safe areas that will act as future refugia. More broadly, we suggest that the identification and protection of ecological and evolutionary processes across varying temporal and spatial scales is central to securing improved biodiversity conservation outcomes. Full article
(This article belongs to the Special Issue Evolutionary Ecology and Conservation of Native Plants)
20 pages, 3665 KB  
Article
How Much Forest Persists Through Fire? High-Resolution Mapping of Tree Cover to Characterize the Abundance and Spatial Pattern of Fire Refugia Across Mosaics of Burn Severity
by Ryan B. Walker, Jonathan D. Coop, William M. Downing, Meg A. Krawchuk, Sparkle L. Malone and Garrett W. Meigs
Forests 2019, 10(9), 782; https://doi.org/10.3390/f10090782 - 8 Sep 2019
Cited by 30 | Viewed by 4698
Abstract
Wildfires in forest ecosystems produce landscape mosaics that include relatively unaffected areas, termed fire refugia. These patches of persistent forest cover can support fire-sensitive species and the biotic legacies important for post-fire forest recovery, yet little is known about their abundance and distribution [...] Read more.
Wildfires in forest ecosystems produce landscape mosaics that include relatively unaffected areas, termed fire refugia. These patches of persistent forest cover can support fire-sensitive species and the biotic legacies important for post-fire forest recovery, yet little is known about their abundance and distribution within fire perimeters. Readily accessible 30-m resolution satellite imagery and derived burn severity products are commonly employed to characterize post-fire landscapes; however, coarse image resolution, generalized burn severity thresholds, and other limitations can constrain accurate representation of fire refugia. This study quantifies the abundance and pattern of fire refugia within 10 fires occurring in ponderosa pine and dry mixed-conifer forests between 2000 and 2003. We developed high-resolution maps of post-fire landscapes using semi-automated, object-based classification of 1-m aerial imagery, conducted imagery- and field-based accuracy assessments, and contrasted these with Landsat-derived burn severity metrics. Fire refugia area within burn perimeters ranged from 20% to 57%. Refugia proportion generally decreased with increasing Landsat-derived burn severity, but still accounted for 3–12% of areas classified as high severity. Patch size ranged from 1-m2 isolated trees to nearly 8000 ha, and median patch size was 0.01 ha—substantially smaller than a 30-m Landsat pixel. Patch size was negatively related to burn severity; distance to fire refugia from open areas was positively related to burn severity. Finally, optimized thresholds of 30-m post-fire normalized burn ratio (NBR) and relative differenced normalized burn ratio (RdNBR) delineated fire refugia with an accuracy of 77% when validated against the 1-m resolution maps. Estimations of fire refugia abundance based on Landsat-derived burn severity metrics are unlikely to detect small, isolated fire refugia patches. Finer-resolution maps can improve understanding of the distribution of forest legacies and inform post-fire management activities including reforestation and treatments. Full article
Show Figures

Figure 1

13 pages, 3692 KB  
Article
Relationships between Satellite-Based Spectral Burned Ratios and Terrestrial Laser Scanning
by Akira Kato, L. Monika Moskal, Jonathan L. Batchelor, David Thau and Andrew T. Hudak
Forests 2019, 10(5), 444; https://doi.org/10.3390/f10050444 - 23 May 2019
Cited by 13 | Viewed by 4212
Abstract
Three-dimensional point data acquired by Terrestrial Lidar Scanning (TLS) is used as ground observation in comparisons with fire severity indices computed from Landsat satellite multi-temporal images through Google Earth Engine (GEE). Forest fires are measured by the extent and severity of fire. Current [...] Read more.
Three-dimensional point data acquired by Terrestrial Lidar Scanning (TLS) is used as ground observation in comparisons with fire severity indices computed from Landsat satellite multi-temporal images through Google Earth Engine (GEE). Forest fires are measured by the extent and severity of fire. Current methods of assessing fire severity are limited to on-site visual inspection or the use of satellite and aerial images to quantify severity over larger areas. On the ground, assessment of fire severity is influenced by the observers’ knowledge of the local ecosystem and ability to accurately assess several forest structure measurements. The objective of this study is to introduce TLS to validate spectral burned ratios obtained from Landsat images. The spectral change was obtained by an image compositing technique through GEE. The 32 plots were collected using TLS in Wood Buffalo National Park, Canada. TLS-generated 3D points were converted to voxels and the counted voxels were compared in four height strata. There was a negative linear relationship between spectral indices and counted voxels in the height strata between 1 to 5 m to produce R2 value of 0.45 and 0.47 for unburned plots and a non-linear relationship in the height strata between 0 to 0.5m for burned plots to produce R2 value of 0.56 and 0.59. Shrub or stand development was related with the spectral indices at unburned plots, and vegetation recovery in the ground surface was related at burned plots. As TLS systems become more cost efficient and portable, techniques used in this study will be useful to produce objective assessments of structure measurements for fire refugia and ecological response after a fire. TLS is especially useful for the quick ground assessments which are needed for forest fire applications. Full article
Show Figures

Figure 1

11 pages, 2303 KB  
Article
An Assessment of Fire Refugia Importance Criteria Ranked by Land Managers
by Anthony Martinez, Arjan Meddens, Crystal Kolden and Andrew Hudak
Fire 2019, 2(2), 27; https://doi.org/10.3390/fire2020027 - 22 May 2019
Cited by 6 | Viewed by 3959
Abstract
There is evidence that forest resiliency is declining in the western US due to recent increases in both areas burned by wildfire and the number of large fires. Fire refugia may increase forest resiliency; however, for land managers to incorporate fire refugia into [...] Read more.
There is evidence that forest resiliency is declining in the western US due to recent increases in both areas burned by wildfire and the number of large fires. Fire refugia may increase forest resiliency; however, for land managers to incorporate fire refugia into their management plans, methods need to be developed to identify and rank criteria for what make fire refugia important. As part of a larger effort to build a spatially explicit ranking model for unburned islands in the inland northwestern US, we investigated the perceived importance of criteria used to inform a ranking model to identify high-value fire refugia. We developed a survey targeting land managers within the inland northwestern US. Participants were asked to score a predetermined list of criteria by their importance for determining the value of fire refugia. These scores were analyzed to identify trends among respondents that could be used to develop a fire refugia ranking model. The results indicate that respondents generally organized criteria into two groups: Human infrastructure and wildlife habitat. However, there was little consensus among respondents in their scoring of fire refugia importance criteria, suggesting that a single region-wide fire refugia ranking model may not be feasible. More research with a larger sample size is needed to develop targeted ranking models. Full article
Show Figures

Figure 1

20 pages, 7242 KB  
Article
Effect of Topography on Persistent Fire Refugia of the Canadian Rocky Mountains
by Marie-Pierre Rogeau, Quinn E. Barber and Marc-André Parisien
Forests 2018, 9(6), 285; https://doi.org/10.3390/f9060285 - 23 May 2018
Cited by 18 | Viewed by 6910
Abstract
Persistent fire refugia, which are forest stands that have survived multiple fires, play an important ecological role in the resilience of mountainous forest ecosystems following disturbances. The loss of numerous refugia patches to large, high-severity fires in recent years is prompting the need [...] Read more.
Persistent fire refugia, which are forest stands that have survived multiple fires, play an important ecological role in the resilience of mountainous forest ecosystems following disturbances. The loss of numerous refugia patches to large, high-severity fires in recent years is prompting the need to better understand drivers of fire refugia endurance. We investigate the role of topographic features on fire refugia survivorship based on pre-1950 fire regime conditions. Mapped refugia patches (n = 557) covering 28% of the forested landscape were used to develop three predictive models based on patch size (all sizes, <30 ha, <10 ha), as a function of explanatory variables describing several components of topography. Five topographic variables consistently favoured persistent fire refugia occurrence, though the ranking of explanatory variable importance varied among patch-size models. For the all-refugia model, elevation (23.7%), proportion of non-fuel at a 5000-m scale (20.3%), solar radiation (14.6%), Topographic Position Index at a 2000-m scale (10.1%), and distance from rivers (10.1%) were the top variables. The models’ predictive abilities were high, but decreased with larger patch sizes. We conclude that many suitable areas are currently unoccupied by fire refugia; that random elements affect their survivorship; and that additional environmental factors not considered in this study may contribute to their persistence. With changing climate and fire-regime conditions, careful fire and forest management considerations will be needed to limit future losses of persistent fire refugia forests. Full article
Show Figures

Figure 1

20 pages, 4713 KB  
Article
Composition and Structure of Forest Fire Refugia: What Are the Ecosystem Legacies across Burned Landscapes?
by Garrett W. Meigs and Meg A. Krawchuk
Forests 2018, 9(5), 243; https://doi.org/10.3390/f9050243 - 2 May 2018
Cited by 33 | Viewed by 7196
Abstract
Locations within forest fires that remain unburned or burn at low severity—known as fire refugia—are important components of contemporary burn mosaics, but their composition and structure at regional scales are poorly understood. Focusing on recent, large wildfires across the US Pacific Northwest (Oregon [...] Read more.
Locations within forest fires that remain unburned or burn at low severity—known as fire refugia—are important components of contemporary burn mosaics, but their composition and structure at regional scales are poorly understood. Focusing on recent, large wildfires across the US Pacific Northwest (Oregon and Washington), our research objectives are to (1) classify fire refugia and burn severity based on relativized spectral change in Landsat time series; (2) quantify the pre-fire composition and structure of mapped fire refugia; (3) in forested areas, assess the relative abundance of fire refugia and other burn severity classes across forest composition and structure types. We analyzed a random sample of 99 recent fires in forest-dominated landscapes from 2004 to 2015 that collectively encompassed 612,629 ha. Across the region, fire refugia extent was substantial but variable from year to year, with an annual mean of 38% of fire extent and range of 15–60%. Overall, 85% of total fire extent was forested, with the other 15% being non-forest. In comparison, 31% of fire refugia extent was non-forest prior to the most recent fire, highlighting that mapped refugia do not necessarily contain tree-based ecosystem legacies. The most prevalent non-forest cover types in refugia were vegetated: shrub (40%), herbaceous (33%), and crops (18%). In forested areas, the relative abundance of fire refugia varied widely among pre-fire forest types (20–70%) and structural conditions (23–55%). Consistent with fire regime theory, fire refugia and high burn severity areas were inversely proportional. Our findings underscore that researchers, managers, and other stakeholders should interpret burn severity maps through the lens of pre-fire land cover, especially given the increasing importance of fire and fire refugia under global change. Full article
(This article belongs to the Special Issue Wildland Fire, Forest Dynamics, and Their Interactions)
Show Figures

Figure 1

14 pages, 17351 KB  
Article
What Drives Low-Severity Fire in the Southwestern USA?
by Sean A. Parks, Solomon Z. Dobrowski and Matthew H. Panunto
Forests 2018, 9(4), 165; https://doi.org/10.3390/f9040165 - 24 Mar 2018
Cited by 22 | Viewed by 5238
Abstract
Many dry conifer forests in the southwestern USA and elsewhere historically (prior to the late 1800’s) experienced fairly frequent surface fire at intervals ranging from roughly five to 30 years. Due to more than 100 years of successful fire exclusion, however, many of [...] Read more.
Many dry conifer forests in the southwestern USA and elsewhere historically (prior to the late 1800’s) experienced fairly frequent surface fire at intervals ranging from roughly five to 30 years. Due to more than 100 years of successful fire exclusion, however, many of these forests are now denser and more homogenous, and therefore they have a greater probability of experiencing stand-replacing fire compared to prior centuries. Consequently, there is keen interest in restoring such forests to conditions that are conducive to low-severity fire. Yet, there have been no regional assessments in the southwestern USA that have specifically evaluated those factors that promote low-severity fire. Here, we defined low-severity fire using satellite imagery and evaluated the influence of several variables that potentially drive such fire; these variables characterize live fuel, topography, climate (30-year normals), and inter-annual climate variation. We found that live fuel and climate variation (i.e., year-of-fire climate) were the main factors driving low-severity fire; fuel was ~2.4 times more influential than climate variation. Low-severity fire was more likely in settings with lower levels of fuel and in years that were wetter and cooler than average. Surprisingly, the influence of topography and climatic normals was negligible. Our findings elucidate those conditions conducive to low-severity fire and provide valuable information to land managers tasked with restoring forest structures and processes in the southwestern USA and other regions dominated by dry forest types. Full article
(This article belongs to the Special Issue Wildland Fire, Forest Dynamics, and Their Interactions)
Show Figures

Figure 1

16 pages, 2663 KB  
Article
Fire Effects on Historical Wildfire Refugia in Contemporary Wildfires
by Crystal A. Kolden, Tyler M. Bleeker, Alistair M. S. Smith, Helen M. Poulos and Ann E. Camp
Forests 2017, 8(10), 400; https://doi.org/10.3390/f8100400 - 20 Oct 2017
Cited by 38 | Viewed by 6938
Abstract
Wildfire refugia are forest patches that are minimally-impacted by fire and provide critical habitats for fire-sensitive species and seed sources for post-fire forest regeneration. Wildfire refugia are relatively understudied, particularly concerning the impacts of subsequent fires on existing refugia. We opportunistically re-visited 122 [...] Read more.
Wildfire refugia are forest patches that are minimally-impacted by fire and provide critical habitats for fire-sensitive species and seed sources for post-fire forest regeneration. Wildfire refugia are relatively understudied, particularly concerning the impacts of subsequent fires on existing refugia. We opportunistically re-visited 122 sites classified in 1994 for a prior fire refugia study, which were burned by two wildfires in 2012 in the Cascade mountains of central Washington, USA. We evaluated the fire effects for historically persistent fire refugia and compared them to the surrounding non-refugial forest matrix. Of 122 total refugial (43 plots) and non-refugial (79 plots) sites sampled following the 2012 wildfires, one refugial and five non-refugial plots did not burn in 2012. Refugial sites burned more severely and experienced higher tree mortality than non-refugial plots, potentially due to the greater amount of time since the last fire, producing higher fuel accumulation. Although most sites maintained the pre-fire development stage, 19 percent of sites transitioned to Early development and 31 percent of sites converted from Closed to Open canopy. These structural transitions may contribute to forest restoration in fire-adapted forests where fire has been excluded for over a century, but this requires further analysis. Full article
(This article belongs to the Special Issue Wildland Fire, Forest Dynamics, and Their Interactions)
Show Figures

Figure 1

24 pages, 3211 KB  
Article
Characterizing Spatial Neighborhoods of Refugia Following Large Fires in Northern New Mexico USA
by Sandra L. Haire, Jonathan D. Coop and Carol Miller
Land 2017, 6(1), 19; https://doi.org/10.3390/land6010019 - 7 Mar 2017
Cited by 22 | Viewed by 6941
Abstract
The spatial patterns resulting from large fires include refugial habitats that support surviving legacies and promote ecosystem recovery. To better understand the diverse ecological functions of refugia on burn mosaics, we used remotely sensed data to quantify neighborhood patterns of areas relatively unchanged [...] Read more.
The spatial patterns resulting from large fires include refugial habitats that support surviving legacies and promote ecosystem recovery. To better understand the diverse ecological functions of refugia on burn mosaics, we used remotely sensed data to quantify neighborhood patterns of areas relatively unchanged following the 2011 Las Conchas fire. Spatial patterns of refugia measured within 10-ha moving windows varied across a gradient from areas of high density, clustered in space, to sparsely populated neighborhoods that occurred in the background matrix. The scaling of these patterns was related to the underlying structure of topography measured by slope, aspect and potential soil wetness, and spatially varying climate. Using a nonmetric multidimensional scaling analysis of species cover data collected post-Las Conchas, we found that trees and forest associates were present across the refugial gradient, but communities also exhibited a range of species compositions and potential functions. Spatial patterns of refugia quantified for three previous burns (La Mesa 1977, Dome 1996, Cerro Grande 2000) were dynamic between fire events, but most refugia persisted through at least two fires. Efforts to maintain burn heterogeneity and its ecological functions can begin with identifying where refugia are likely to occur, using terrain-based microclimate models, burn severity models and available field data. Full article
(This article belongs to the Special Issue Wildland Fires)
Show Figures

Figure 1

18 pages, 10079 KB  
Article
Effects of Lakes on Wildfire Activity in the Boreal Forests of Saskatchewan, Canada
by Scott E. Nielsen, Evan R. DeLancey, Krista Reinhardt and Marc-André Parisien
Forests 2016, 7(11), 265; https://doi.org/10.3390/f7110265 - 5 Nov 2016
Cited by 39 | Viewed by 11601
Abstract
Large lakes can act as firebreaks resulting in distinct patterns in the forest mosaic. Although this is well acknowledged, much less is known about how wildfire is affected by different landscape measures of water and their interactions. Here we examine how these factors [...] Read more.
Large lakes can act as firebreaks resulting in distinct patterns in the forest mosaic. Although this is well acknowledged, much less is known about how wildfire is affected by different landscape measures of water and their interactions. Here we examine how these factors relate to historic patterns of wildfire over a 35-year period (1980–2014) for the boreal forest of Saskatchewan, Canada. This includes the amount of water in different-sized neighborhoods, the presence of islands, and the direction, distance, and shape of nearest lake of different sizes. All individual factors affected wildfire presence, with lake sizes ≥5000 ha and amount of water within a 1000-ha surrounding area the most supported spatial scales. Overall, wildfires were two-times less likely on islands, more likely further from lakes that were circular in shape, and in areas with less surrounding water. Interactive effects were common, including the effect of direction to lake as a function of distance from lakeshore and amount of surrounding water. Our results point to a strong, but complex, bottom-up control of local wildfire activity based on the configuration of natural firebreaks. In fact, fire rotation periods predicted for one area varied more than 15-fold (<47 to >700 years) depending on local patterns in lakes. Old-growth forests within this fire-prone ecosystem are therefore likely to depend on the surrounding configuration of larger lakes. Full article
Show Figures

Figure 1

Back to TopTop