Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,007)

Search Parameters:
Keywords = film removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2041 KiB  
Article
Tuning Corn Zein-Chitosan Biocomposites via Mild Alkaline Treatment: Structural and Physicochemical Property Insights
by Nagireddy Poluri, Creston Singer, David Salas-de la Cruz and Xiao Hu
Polymers 2025, 17(15), 2161; https://doi.org/10.3390/polym17152161 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning [...] Read more.
This study investigates the structural and functional enhancement of corn zein–chitosan composites via mild alkaline treatment to develop biodegradable protein-polysaccharide materials for diverse applications. Films with varying zein-to-chitosan ratios were fabricated and characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Both untreated and sodium hydroxide (NaOH)-treated films were evaluated to assess changes in physicochemical properties. FTIR analysis revealed that NaOH treatment promoted deprotonation of chitosan’s amine groups, partial removal of ionic residues, and increased deacetylation, collectively enhancing hydrogen bonding and resulting in a denser molecular network. Simultaneously, partial unfolding of zein’s α-helical structures improved conformational flexibility and strengthened interactions with chitosan. These molecular-level changes led to improved thermal stability, reduced degradation, and the development of porous microstructures. Controlled NaOH treatment thus provides an effective strategy to tailor the physicochemical properties of zein–chitosan composite films, supporting their potential in sustainable food packaging, wound healing, and drug delivery applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
26 pages, 3368 KiB  
Article
Effective Ciprofloxacin Removal from Deionized and Salt Water by Sulfonated Pentablock Copolymer (NexarTM)
by Simona Filice, Simona Crispi, Viviana Scuderi, Daniela Iannazzo, Consuelo Celesti and Silvia Scalese
Molecules 2025, 30(15), 3275; https://doi.org/10.3390/molecules30153275 - 5 Aug 2025
Abstract
The presence of ciprofloxacin antibiotic in water is a threat to humans and aquatic life since antibiotics are currently regarded as emerging contaminants of major concern. This work reported the use of NexarTM film, a sulfonated pentablock copolymer, to effectively remove ciprofloxacin [...] Read more.
The presence of ciprofloxacin antibiotic in water is a threat to humans and aquatic life since antibiotics are currently regarded as emerging contaminants of major concern. This work reported the use of NexarTM film, a sulfonated pentablock copolymer, to effectively remove ciprofloxacin antibiotic from water in a sustainable approach. The removal efficiency of Nexar film was evaluated in aqueous or salty (NaCl 0.5 M) ciprofloxacin solutions as a function of contact time and the initial ciprofloxacin concentration. In the investigated conditions, the polymeric film totally removed ciprofloxacin in MilliQ solution while its removal efficiency in salty solution was approximately 73%. This lower value is due to the presence of Na+ ions that compete with antibiotic molecules for adsorption on active surface sites of the polymeric film. No further release of adsorbed antibiotic molecules occurred. The kinetic studies, conducted for ciprofloxacin adsorption on Nexar film in both MilliQ and salty solutions, revealed that the overall sorption process is controlled by the rate of surface reaction between ciprofloxacin molecules and active sites on Nexar surface. Furthermore, at equilibrium conditions, the isotherm model that best fits experimental parameters was not linear. This indicates that the competition between the solute and the solvent for binding sites on the adsorbent should be considered to describe adsorption processes in both MilliQ and salty solutions. Full article
(This article belongs to the Special Issue Materials for Environmental Remediation and Catalysis)
Show Figures

Figure 1

19 pages, 4765 KiB  
Article
Dehydration-Driven Changes in Solid Polymer Electrolytes: Implications for Titanium Anodizing Efficiency
by Andrea Valencia-Cadena, Maria Belén García-Blanco, Pablo Santamaría and Joan Josep Roa
Materials 2025, 18(15), 3645; https://doi.org/10.3390/ma18153645 - 3 Aug 2025
Viewed by 217
Abstract
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and [...] Read more.
This study investigates the thermal stability and microstructural evolution of the solid electrolyte medium used in DLyte® dry electropolishing and dry anodizing processes. Samples were thermally aged between 30 °C and 45 °C to simulate Joule heating during industrial operation. Visual and SEM analyses revealed shape deformation and microcrack formation at temperatures above 40 °C, potentially reducing particle packing efficiency and electrolyte performance. Particle size distribution shifted from bimodal to trimodal upon aging, with an overall size reduction of up to 39.5% due to dehydration effects, impacting ionic transport properties. Weight-loss measurements indicated a diffusion-limited dehydration mechanism, stabilizing at 15–16% mass loss. Fourier transform infrared analysis confirmed water removal while maintaining the essential sulfonic acid groups responsible for ionic conductivity. In dry anodizing tests on titanium, aged electrolytes enhanced process efficiency, producing TiO2 films with improved optical properties—color and brightness—while preserving thickness and uniformity (~70 nm). The results highlight the need to carefully control thermal exposure to maintain electrolyte integrity and ensure consistent process performance. Full article
(This article belongs to the Special Issue Novel Materials and Techniques for Dental Implants)
Show Figures

Figure 1

19 pages, 1681 KiB  
Article
Decolorization of Corn Fiber Arabinoxylan Extract with (MN102) Resin: Adsorption Performance and Film-Forming Capacity
by Verónica Weng, Diana Gago, Carla Brazinha, Vítor D. Alves and Isabel M. Coelhoso
Polymers 2025, 17(15), 2128; https://doi.org/10.3390/polym17152128 - 1 Aug 2025
Viewed by 253
Abstract
Arabinoxylan is a polysaccharide with film-forming properties, present in corn fiber, and a low-value by-product. The extract has a deep brown color, producing films of the same shade, which may not be appealing. This study addresses, for the first time, the adsorption of [...] Read more.
Arabinoxylan is a polysaccharide with film-forming properties, present in corn fiber, and a low-value by-product. The extract has a deep brown color, producing films of the same shade, which may not be appealing. This study addresses, for the first time, the adsorption of colored compounds present in an arabinoxylan extract using resin MN102. The resin successfully adsorbed the colored compounds from the arabinoxylan extract. After four consecutive adsorption/desorption cycles, the efficiency of the resin was similar, only decreasing from 63.3% to 52.9%. Langmuir and Freundlich models were fitted to the results of adsorption isotherm experiments, with the Freundlich model demonstrating the best fit to the experimental results. A fixed-bed column loaded with the resin was used for the removal of the colored compounds from the arabinoxylan extract, and the effect of the volumetric flow rate was investigated. The Yan and log-Gompertz models showed the best fit to the experimental breakthrough curves. This study systematically evaluated the adsorption conditions, providing a comprehensive analysis of the performance of the resin in the removal of the colored compounds. Additionally, the ability of the extract to maintain its film-forming properties after decolorization was evaluated, and some of the film’s key characteristics were evaluated, namely its color, solubility in water and mechanical properties. Full article
Show Figures

Figure 1

15 pages, 2424 KiB  
Article
Cyanuric Chloride with the s-Triazine Ring Fabricated by Interfacial Polymerization for Acid-Resistant Nanofiltration
by Zhuangzhuang Tian, Yun Yin, Jiandong Wang, Xiuling Ao, Daijun Liu, Yang Jin, Jun Li and Jianjun Chen
Membranes 2025, 15(8), 231; https://doi.org/10.3390/membranes15080231 - 1 Aug 2025
Viewed by 262
Abstract
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane [...] Read more.
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane technologies for impurity removal under harsh conditions are still immature. In this work, we develop a novel strategy of acid-resistant nanofiltration membranes based on interfacial polymerization (IP) of polyethyleneimine (PEI) and cyanuric chloride (CC) with the s-triazine ring. The IP process was optimized by orthogonal experiments to obtain positively charged PEI-CC membranes with a molecular weight cut-off (MWCO) of 337 Da. We further applied it to the approximate industrial phosphoric acid purification condition. In the tests using a mixed solution containing 20 wt% P2O5, 2 g/L Fe3+, 2 g/L Al3+, and 2 g/L Mg2+ at 0.7 MPa and 25 °C, the NF membrane achieved 56% rejection of Fe, Al, and Mg and over 97% permeation of phosphorus. In addition, the PEI-CC membrane exhibited excellent acid resistance in the 48 h dynamic acid permeation experiment. The simple fabrication procedure of PEI-CC membrane has excellent acid resistance and great potential for industrial applications. Full article
(This article belongs to the Special Issue Nanofiltration Membranes for Precise Separation)
Show Figures

Figure 1

16 pages, 1981 KiB  
Article
Computational Design of Mineral-Based Materials: Iron Oxide Nanoparticle-Functionalized Polymeric Films for Enhanced Public Water Purification
by Iustina Popescu, Alina Ruxandra Caramitu, Adriana Mariana Borș, Mihaela-Amalia Diminescu and Liliana Irina Stoian
Polymers 2025, 17(15), 2106; https://doi.org/10.3390/polym17152106 - 31 Jul 2025
Viewed by 285
Abstract
Heavy metal contamination in natural waters and soils poses a significant environmental challenge, necessitating efficient and sustainable water treatment solutions. This study presents the computational design of low-density polyethylene (LDPE) films functionalized with iron oxide (Fe3O4) nanoparticles (NPs) for [...] Read more.
Heavy metal contamination in natural waters and soils poses a significant environmental challenge, necessitating efficient and sustainable water treatment solutions. This study presents the computational design of low-density polyethylene (LDPE) films functionalized with iron oxide (Fe3O4) nanoparticles (NPs) for enhanced water purification applications. Composite materials containing 5%, 10%, and 15% were synthesized and characterized in terms of adsorption efficiency, surface morphology, and reusability. Advanced molecular modeling using BIOVIA Pipeline was employed to investigate charge distribution, functional group behaviour, and atomic-scale interactions between polymer chains and metal ions. The computational results revealed structure–property relationships crucial for optimizing adsorption performance and understanding geochemically driven interaction mechanisms. The LDPE/Fe3O4 composites demonstrated significant removal efficiency of Cu2+ and Ni2+ ions, along with favourable mechanical properties and regeneration potential. These findings highlight the synergistic role of mineral–polymer interfaces in water remediation, presenting a scalable approach to designing multifunctional polymeric materials for environmental applications. This study contributes to the growing field of polymer-based adsorbents, reinforcing their value in sustainable water treatment technologies and environmental protection efforts. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Graphical abstract

11 pages, 2733 KiB  
Article
Laser Texturing of Tungsten Carbide (WC-Co): Effects on Adhesion and Stress Relief in CVD Diamond Films
by Argemiro Pentian Junior, José Vieira da Silva Neto, Javier Sierra Gómez, Evaldo José Corat and Vladimir Jesus Trava-Airoldi
Surfaces 2025, 8(3), 54; https://doi.org/10.3390/surfaces8030054 - 30 Jul 2025
Viewed by 238
Abstract
This study proposes a laser texturing method to optimize adhesion and minimize residual stresses in CVD diamond films deposited on tungsten carbide (WC-Co). WC-5.8 wt% Co substrates were textured with quadrangular pyramidal patterns (35 µm) using a 1064 nm nanosecond-pulsed laser, followed by [...] Read more.
This study proposes a laser texturing method to optimize adhesion and minimize residual stresses in CVD diamond films deposited on tungsten carbide (WC-Co). WC-5.8 wt% Co substrates were textured with quadrangular pyramidal patterns (35 µm) using a 1064 nm nanosecond-pulsed laser, followed by chemical treatment (Murakami’s solution + aqua regia) to remove surface cobalt. Diamond films were grown via HFCVD and characterized by Raman spectroscopy, EDS, and Rockwell indentation. The results demonstrate that pyramidal texturing increased the surface area by a factor of 58, promoting effective mechanical interlocking and reducing compressive stresses to −1.4 GPa. Indentation tests revealed suppression of interfacial cracks, with propagation paths deflected toward textured regions. The pyramidal geometry exhibited superior cutting post-deposition cooling time for stress relief from 3 to 1 h. These findings highlight the potential of laser texturing for high-performance machining tool applications. Full article
Show Figures

Figure 1

21 pages, 6272 KiB  
Article
Numerical Study of Gas Dynamics and Condensate Removal in Energy-Efficient Recirculation Modes in Train Cabins
by Ivan Panfilov, Alexey N. Beskopylny, Besarion Meskhi and Sergei F. Podust
Fluids 2025, 10(8), 197; https://doi.org/10.3390/fluids10080197 - 29 Jul 2025
Viewed by 184
Abstract
Maintaining the required relative humidity values in the vehicle cabin is an important HVAC task, along with considerations related to the temperature, velocity, air pressure and noise. Deviation from the optimal values worsens the psycho-physiological state of the driver and affects the energy [...] Read more.
Maintaining the required relative humidity values in the vehicle cabin is an important HVAC task, along with considerations related to the temperature, velocity, air pressure and noise. Deviation from the optimal values worsens the psycho-physiological state of the driver and affects the energy efficiency of the train. In this study, a model of liquid film formation on and removal from various cabin surfaces was constructed using the fundamental Navier–Stokes hydrodynamic equations. A special transport model based on the liquid vapor diffusion equation was used to simulate the air environment inside the cabin. The evaporation and condensation of surface films were simulated using the Euler film model, which directly considers liquid–gas and gas–liquid transitions. Numerical results were obtained using the RANS equations and a turbulence model by means of the finite volume method in Ansys CFD. Conjugate fields of temperature, velocity and moisture concentration were constructed for various time intervals, and the dependence values for the film thicknesses on various surfaces relative to time were determined. The verification was conducted in comparison with the experimental data, based on the protocol for measuring the microclimate indicators in workplaces, as applied to the train cabin: the average ranges encompassed temperature changes from 11% to 18%, and relative humidity ranges from 16% to 26%. Comparison with the results of other studies, without considering the phase transition and condensation, shows that, for the warm mode, the average air temperature in the cabin with condensation is 12.5% lower than without condensation, which is related to the process of liquid evaporation from the heated walls. The difference in temperature values for the model with and without condensation ranged from −12.5% to +4.9%. We demonstrate that, with an effective mode of removing condensate film from the window surface, including recirculation modes, the energy consumption of the climate control system improves significantly, but this requires a more accurate consideration of thermodynamic parameters and relative humidity. Thus, considering the moisture condensation model reveals that this variable can significantly affect other parameters of the microclimate in cabins: in particular, the temperature. This means that it should be considered in the numerical modeling, along with the basic heat transfer equations. Full article
Show Figures

Figure 1

22 pages, 9343 KiB  
Article
Effect of Polymer Molecular Weight on the Structure and Properties of Ultra-High-Molecular-Weight Polyethylene Membranes Prepared via Controlled Swelling
by Andrey V. Basko, Konstantin V. Pochivalov, Tatyana N. Lebedeva, Mikhail Y. Yurov, Alexander S. Zabolotnov, Sergey S. Gostev, Alexey A. Yushkin, Alexey V. Volkov and Sergei V. Bronnikov
Polymers 2025, 17(15), 2044; https://doi.org/10.3390/polym17152044 - 26 Jul 2025
Viewed by 350
Abstract
A recently proposed method called “controlled swelling of monolithic films” was implemented to prepare ultra-high-molecular-weight polyethylene (UHMWPE) ultrafiltration membranes. For the first time, the effect of UHMWPE molecular weight (MW) on the structure and properties of the membranes prepared via this special case [...] Read more.
A recently proposed method called “controlled swelling of monolithic films” was implemented to prepare ultra-high-molecular-weight polyethylene (UHMWPE) ultrafiltration membranes. For the first time, the effect of UHMWPE molecular weight (MW) on the structure and properties of the membranes prepared via this special case of thermally induced phase separation was studied in detail. The morphology and properties of the membranes were studied using SEM, DSC, liquid–liquid displacement porometry, and standard methods for the evaluation of mechanical properties, permeance, rejection, and abrasion resistance. High-quality membranes with a tensile strength of 5.0–17.8 MPa, a mean pore size of 25–50 nm, permeance of 17–107 L m−2 h−1 bar−1, rejection of model contaminant (blue dextran) of 72–98%, and great abrasion resistance can be prepared only if the MW of the polymer in the initial monolithic film is sufficiently high. The properties of the membranes can effectively be controlled by changing the MW of the polymer and the mass fraction of the latter in the swollen film. Shrinkage is responsible for the variation in the membrane properties. The membranes prepared from a higher-MW polymer are more prone to shrinking after the removal of the solvent. Shrinkage decreases before rising again and minimizes with an increase in the polymer content in the swollen film. Full article
Show Figures

Graphical abstract

19 pages, 6502 KiB  
Article
Facile Synthesis of β-C3N4 and Its Novel MnTeO3 Nanohybrids for Remediating Water Contaminated by Pharmaceuticals
by Mohamed R. Elamin, Nuha Y. Elamin, Tarig G. Ibrahim, Mutaz Salih, Abuzar Albadri, Rasha Ramadan and Babiker Y. Abdulkhair
Processes 2025, 13(8), 2357; https://doi.org/10.3390/pr13082357 - 24 Jul 2025
Viewed by 325
Abstract
A facile method was adopted to fabricate β-C3N4, and it was then doped with manganese and tellurium to obtain novel 10%MnTeO3@β-C3N4 (10%MnTe@β) and 20%MnTeO3@β-C3N4 (20%MnTe@β) nanohybrids. The β-C3 [...] Read more.
A facile method was adopted to fabricate β-C3N4, and it was then doped with manganese and tellurium to obtain novel 10%MnTeO3@β-C3N4 (10%MnTe@β) and 20%MnTeO3@β-C3N4 (20%MnTe@β) nanohybrids. The β-C3N4, 10%MnTe@β, and 20%MnTe@β showed surface areas of 85.86, 97.40, and 109.54 m2 g−1, respectively. Using ciprofloxacin (CIP) as a pollutant example, 10%MnTe@β and 20%MnTe@β attained equilibrium at 60 and 45 min with qt values of 48.88 and 77.41 mg g−1, respectively, and both performed better at pH = 6.0. The kinetic studies revealed a better agreement with the pseudo-second-order model for CIP sorption on 10%MnTe@β and 20%MnTe@β, indicating that the sorption was controlled by a liquid film mechanism, which suggests a high affinity of CIP toward 10%MnTe@β and 20%MnTe@β. The sorption equilibria outputs indicated better alignment with the Freundlich and Langmuir models for CIP removal by 10%MnTe@β and 20%MnTe@β, respectively. The thermodynamic analysis revealed that CIP removal by 10%MnTe@β and 20%MnTe@β was exothermic, which turned more spontaneous as the temperature decreased. Applying 20%MnTe@β as the best sorbent to groundwater and seawater spiked with CIP resulted in average efficiencies of 94.8% and 91.08%, respectively. The 20%MnTe@β regeneration–reusability average efficiency was 95.14% within four cycles, which might nominate 20%MnTe@β as an efficient and economically viable sorbent for remediating CIP-contaminated water. Full article
Show Figures

Figure 1

37 pages, 3892 KiB  
Review
Sustainable Remediation Strategies and Technologies of Per- and Polyfluoroalkyl Substances (PFAS)-Contaminated Soils: A Critical Review
by Rosario Napoli, Filippo Fazzino, Federico G. A. Vagliasindi and Pietro P. Falciglia
Sustainability 2025, 17(14), 6635; https://doi.org/10.3390/su17146635 - 21 Jul 2025
Viewed by 696
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been reported to contaminate soil as a result of improper management of waste, wastewater, landfill leachate, biosolids, and a large and indiscriminate use of aqueous film-forming foams (AFFF), posing potential risks to human health. However, their high [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) have been reported to contaminate soil as a result of improper management of waste, wastewater, landfill leachate, biosolids, and a large and indiscriminate use of aqueous film-forming foams (AFFF), posing potential risks to human health. However, their high chemical and thermal stability pose a great challenge for remediation. As a result, there is an increasing interest in identifying and optimizing very effective and sustainable technologies for PFAS removal. This review summarizes both traditional and innovative remediation strategies and technologies for PFAS-contaminated soils. Unlike existing literature, which primarily focuses on the effectiveness of PFAS remediation, this review critically discusses several techniques (based on PFAS immobilization, mobilization and extraction, and destruction) with a deep focus on their sustainability and scalability. PFAS destruction technologies demonstrate the highest removal efficiencies; however, thermal treatments face sustainability challenges due to high energy demands and potential formation of harmful by-products, while mechanical treatments have rarely been explored at full scale. PFAS immobilization techniques are less costly than destruction methods, but issues related to the regeneration/disposal of spent sorbents should be still addressed and more long-term studies conducted. PFAS mobilization techniques such as soil washing/flushing are hindered by the generation of PFAS-laden wastewater requiring further treatments, while phytoremediation is limited to small- or medium-scale experiments. Finally, bioremediation would be the cheapest and least impactful alternative, though its efficacy remains uncertain and demonstrated under simplified lab-scale conditions. Future research should prioritize pilot- and full-scale studies under realistic conditions, alongside comprehensive assessments of environmental impacts and economic feasibility. Full article
Show Figures

Figure 1

21 pages, 1390 KiB  
Review
Singlet Oxygen in Food: A Review on Its Formation, Oxidative Damages, Quenchers, and Applications in Preservation
by Limei Xiao, Shoujing Zheng, Zhengrong Lin, Chunyan Zhang, Hua Zhang, Jiebo Chen and Lu Wang
Antioxidants 2025, 14(7), 865; https://doi.org/10.3390/antiox14070865 - 15 Jul 2025
Viewed by 436
Abstract
Singlet oxygen (1O2) has been proven to simultaneously cause oxidative damage to food and the death of microorganisms. In order to enhance the utilization of 1O2 in food systems, this review presents an overview of recent studies [...] Read more.
Singlet oxygen (1O2) has been proven to simultaneously cause oxidative damage to food and the death of microorganisms. In order to enhance the utilization of 1O2 in food systems, this review presents an overview of recent studies on the formation mechanisms of 1O2, the damage mechanisms of 1O2 on food, the self-protective mechanisms in food against 1O2, and the applications of 1O2 in food preservation based on the narrative review guidelines. Studies have shown that in vegetable and meat systems, 1O2 is mainly produced through photochemical reactions. It has been suggested that proteins and lipids are the main target compounds for oxygen in food. Natural antioxidants in food (such as vitamin E and carotenoids) can remove 1O2 through physical or chemical quenching mechanisms. Novel preservation techniques featuring a thin film technology coupled with photosensitizers have been employed on the surface of food to prolong the shelf life. However, how to balance the bactericidal effect of 1O2 and its oxidative effects on food still requires further research. It could be feasible that 1O2 will play an increasingly important role in the future food industry on the premise of strengthening supervision over food safety risks induced by 1O2. Full article
Show Figures

Figure 1

22 pages, 1267 KiB  
Review
Beauty’s Blind Spot: Unmasking the Ocular Side Effects and Concerns of Eye Cosmetics
by Kasra Cheraqpour
Cosmetics 2025, 12(4), 149; https://doi.org/10.3390/cosmetics12040149 - 14 Jul 2025
Viewed by 887
Abstract
Nowadays, a significant portion of the population uses eye cosmetics, a trend that is not limited to women, as men increasingly adopt stylish makeup techniques. Eye cosmetics, often termed eye makeup, include a diverse array of products such as eyelash enhancers (mascara, false [...] Read more.
Nowadays, a significant portion of the population uses eye cosmetics, a trend that is not limited to women, as men increasingly adopt stylish makeup techniques. Eye cosmetics, often termed eye makeup, include a diverse array of products such as eyelash enhancers (mascara, false eyelashes, growth serums, and dyes), eyelid products (eyeliner, kohl, eye contour cream, and eyeshadow), and eye makeup removers. There is a persistent interest among dermatologists in the influence of eye cosmetics on the skin surrounding the eye. The formulation of these cosmetics typically consists of various ingredients, some of which may present potential health risks to users. The application of eye cosmetics is linked to a range of adverse effects on the ocular surface, which may manifest as mechanical injury, tear film instability, toxicity, inflammation, and infections. Therefore, the use of cosmetics in this sensitive area is of paramount importance, necessitating a cooperative approach among eyecare professionals, dermatologists, and beauty experts. Despite the widespread use of eye makeup, its possible ocular side effects have not been sufficiently addressed. This report aims to elucidate how the use of eye cosmetics represents a lifestyle challenge that may exacerbate or initiate ocular surface and adnexal disorders. Full article
Show Figures

Figure 1

18 pages, 3259 KiB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 448
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

12 pages, 3006 KiB  
Article
A Comparative Study on Synthesizing SiC via Carbonization of Si (001) and Si (111) Substrates by Chemical Vapor Deposition
by Teodor Milenov, Ivalina Avramova, Vladimir Mehandziev, Ivan Zahariev, Georgi Avdeev, Daniela Karashanova, Biliana Georgieva, Blagoy Blagoev, Kiril Kirilov, Peter Rafailov, Stefan Kolev, Dimitar Dimov, Desislava Karaivanova, Dobromir Kalchevski, Dimitar Trifonov, Ivan Grozev and Valentin Popov
Materials 2025, 18(14), 3239; https://doi.org/10.3390/ma18143239 - 9 Jul 2025
Viewed by 271
Abstract
This work presents a comparative analysis of the results of silicon carbide synthesis through the carbonization of Si (001) and Si (111) substrates in the temperature range 1130–1140 °C. The synthesis involved chemical vapor deposition utilizing thermally stimulated methane reduction in a hydrogen [...] Read more.
This work presents a comparative analysis of the results of silicon carbide synthesis through the carbonization of Si (001) and Si (111) substrates in the temperature range 1130–1140 °C. The synthesis involved chemical vapor deposition utilizing thermally stimulated methane reduction in a hydrogen gas stream. The experiments employed an Oxford Nanofab Plasmalab System 100 apparatus on substrates from which the native oxide was removed according to established protocols. To minimize random experimental variations (e.g., deviations from set parameters), short synthesis durations of 3 and 5 min were analyzed. The resultant thin films underwent evaluations through several techniques, including X-ray photoelectron spectroscopy, X-ray diffractometry, optical emission spectroscopy with glow discharge, and transmission electron microscopy. A comparison and analysis were conducted between the results from both substrate orientations. Full article
Show Figures

Figure 1

Back to TopTop