Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (133)

Search Parameters:
Keywords = fiber reinforced plastic (FRP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 2504 KiB  
Article
Long-Term Durability of CFRP Strips Used in Infrastructure Rehabilitation
by Karunya Kanagavel and Vistasp M. Karbhari
Polymers 2025, 17(13), 1886; https://doi.org/10.3390/polym17131886 - 7 Jul 2025
Viewed by 487
Abstract
Prefabricated unidirectional carbon fiber reinforced polymer (CFRP) composite strips are extensively used as a means of infrastructure rehabilitation through adhesive bonding to the external surface of structural concrete elements. Most data to date are from laboratory tests ranging from a few months to [...] Read more.
Prefabricated unidirectional carbon fiber reinforced polymer (CFRP) composite strips are extensively used as a means of infrastructure rehabilitation through adhesive bonding to the external surface of structural concrete elements. Most data to date are from laboratory tests ranging from a few months to 1–2 years providing an insufficient dataset for prediction of long-term durability. This investigation focuses on the assessment of the response of three different prefabricated CFRP systems exposed to water, seawater, and alkaline solutions for 5 years of immersion in deionized water conducted at three temperatures of 23, 37.8 and 60 °C, all well below the glass transition temperature levels. Overall response is characterized through tensile and short beam shear (SBS) testing at periodic intervals. It is noted that while the three systems are similar, with the dominant mechanisms of deterioration being related to matrix plasticization followed by fiber–matrix debonding with levels of matrix and interface deterioration being accelerated at elevated temperatures, their baseline characteristics and distributions are different emphasizing the need for greater standardization. While tensile modulus does not degrade appreciably over the 5-year period of exposure with final levels of deterioration being between 7.3 and 11.9%, both tensile strength and SBS strength degrade substantially with increasing levels based on temperature and time of immersion. Levels of tensile strength retention can be as low as 61.8–66.6% when immersed in deionized water at 60 °C, those for SBS strength can be 38.4–48.7% at the same immersion condition for the three FRP systems. Differences due to solution type are wider in the short-term and start approaching asymptotic levels within FRP systems at longer periods of exposure. The very high levels of deterioration in SBS strength indicate the breakdown of the materials at the fiber–matrix bond and interfacial levels. It is shown that the level of deterioration exceeds that presumed through design thresholds set by specific codes/standards and that new safety factors are warranted in addition to expanding the set of characteristics studied to include SBS or similar interface-level tests. Alkali solutions are also shown to have the highest deteriorative effects with deionized water having the least. Simple equations are developed to enable extrapolation of test data to predict long term durability and to develop design thresholds based on expectations of service life with an environmental factor of between 0.56 and 0.69 for a 50-year expected service life. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

18 pages, 5650 KiB  
Article
Process Development for Hybrid Brake Pedals Using Compression Molding with Integrated In-Mold Assembly
by Deviprasad Chalicheemalapalli Jayasankar, Tim Stallmeister, Julian Lückenkötter, Thomas Tröster and Thorsten Marten
Polymers 2025, 17(12), 1644; https://doi.org/10.3390/polym17121644 - 13 Jun 2025
Viewed by 486
Abstract
Currently, the need for resource efficiency and CO2 reduction is growing in industrial production, particularly in the automotive sector. To address this, the industry is focusing on lightweight components that reduce weight without compromising mechanical properties, which are essential for passenger safety. [...] Read more.
Currently, the need for resource efficiency and CO2 reduction is growing in industrial production, particularly in the automotive sector. To address this, the industry is focusing on lightweight components that reduce weight without compromising mechanical properties, which are essential for passenger safety. Hybrid designs offer an effective solution by combining weight reduction with improved mechanical performance and functional integration. This study focuses on a one-step manufacturing process that integrates forming and bonding of hybrid systems using compression molding. This approach reduces production time and costs compared to traditional methods. Conventional Post-Mold Assembly (PMA) processes require two separate steps to combine fiber-reinforced plastic (FRP) structures with metal components. In contrast, the novel In-Mold Assembly (IMA) process developed in this study combines forming and bonding in a single step. In the IMA process, glass-mat-reinforced thermoplastic (GMT) is simultaneously formed and bonded between two metal belts during compression molding. The GMT core provides stiffening and load transmission between the metal belts, which handle tensile and compressive stresses. This method allows to produce hybrid structures with optimized material distribution for load-bearing and functional performance. The process was validated by producing a lightweight hybrid brake pedal. Demonstrating its potential for efficient and sustainable automotive production, the developed hybrid brake pedal achieved a 35% weight reduction compared to the steel reference while maintaining mechanical performance under quasi-static loading Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

16 pages, 5084 KiB  
Article
Novel Ductile Moment-Resisting Frame Compound of Steel Gusset Plate for Beam-to-Column Connections and I-Shaped FRP Profile Sections
by Ali Ghamari, Chanachai Thongchom, Adamantis G. Zapris and Violetta K. Kytinou
J. Compos. Sci. 2025, 9(6), 280; https://doi.org/10.3390/jcs9060280 - 30 May 2025
Viewed by 518
Abstract
Moment-resisting frames (MRFs) are characterized by high energy dissipation capacity relying on plastic hinge formation at the two ends of beams. Despite their numerous advantages, Fiber-Reinforced Polymer (FRP) profile sections used in MRF systems suffer from low ductility, which remains a dilemma. FRP [...] Read more.
Moment-resisting frames (MRFs) are characterized by high energy dissipation capacity relying on plastic hinge formation at the two ends of beams. Despite their numerous advantages, Fiber-Reinforced Polymer (FRP) profile sections used in MRF systems suffer from low ductility, which remains a dilemma. FRP profiles have emerged as a novel and valuable material with significant advancement in structural engineering. In this paper, an MRF system composed of novel gusset plate steel connections (to provide ductility) and FRP profile sections for beams and columns is proposed and investigated numerically and parametrically. The results indicate that up to a rotation of 0.04 rad, the proposed gusset plate dissipates energy, whereas the beam and columns remain essentially elastic. Accordingly, with an increase in the ratio of vertical length to thickness of the gusset plate, energy dissipation is reduced. Through an increase in the ratio of horizontal length to thickness of the gusset plate from 63.5 to 127 and 254, the ultimate strength of the connection is reduced by 4% to 10% and 3% to 7%, respectively. It is suggested that gusset plate thickness be selected in such a way that its slenderness is not less than 47. Subsequently, the required equation is proposed to achieve the optimum performance of the system. Full article
Show Figures

Figure 1

12 pages, 5334 KiB  
Article
Experimental Study on Damage Monitoring of FRP Plate Using FBG Sensors
by Zhe Zhang, Tongchun Qin, Yuping Bao, Ronggui Liu and Jianping He
Micromachines 2025, 16(6), 649; https://doi.org/10.3390/mi16060649 - 29 May 2025
Viewed by 440
Abstract
With the widespread application of FRP (Fiber Reinforced Plastics) materials in fields such as wind turbine blades and ships, the safety performance of these materials during their service life has garnered signification attention. This study employs the fiber Bragg grating (FBG) sensor to [...] Read more.
With the widespread application of FRP (Fiber Reinforced Plastics) materials in fields such as wind turbine blades and ships, the safety performance of these materials during their service life has garnered signification attention. This study employs the fiber Bragg grating (FBG) sensor to monitor damage of the FRP materials. An FRP plate embedded with six FBGs was fabricated, and different degrees of damage were induced in the FRP plate. The six FBGs measured the damage information of the FRP plate under impulse and continuous sinusoidal vibration loads. The results demonstrate that both the strain information and the frequency shift information measured by the FBG sensors can effectively and sensitively identify damage in the FRP plate. Full article
(This article belongs to the Special Issue Micro/Nano Sensors: Fabrication and Applications)
Show Figures

Figure 1

36 pages, 19667 KiB  
Review
State-of-the-Art and Practice Review in Concrete Sandwich Wall Panels: Materials, Design, and Construction Methods
by Fray F. Pozo-Lora, Taylor J. Sorensen, Salam Al-Rubaye and Marc Maguire
Sustainability 2025, 17(8), 3704; https://doi.org/10.3390/su17083704 - 19 Apr 2025
Cited by 1 | Viewed by 1113
Abstract
Concrete sandwich wall panels (CSWPs) have been constructed since the early 1900s using various wythe connectors, panel geometries, and construction methods to create a structurally and thermally efficient system. Initially, thermal bridging hindered thermal efficiency due to the concrete connections and steel bars [...] Read more.
Concrete sandwich wall panels (CSWPs) have been constructed since the early 1900s using various wythe connectors, panel geometries, and construction methods to create a structurally and thermally efficient system. Initially, thermal bridging hindered thermal efficiency due to the concrete connections and steel bars used to transfer interface forces between the concrete wythes. This issue was mitigated with the advent of polymer connectors, now widely used in the precast and tilt-up industries. As a result, CSWPs now offer buildings an efficient envelope, aiding in energy savings and reducing the need for additional construction materials and therefore contributing to the construction industry’s sustainability goals. This paper examines the current state of the practice in CSWP construction, focusing on CSWP’s construction methods, sustainability, material selection, and design processes. This manuscript delves into the history of CSWPs and showcases projects ranging from housing to industrial applications. Moreover, the materials and hardware popularly used in their construction are reviewed from the practicing engineer and researcher’s point of view and other aspects, such as environmental, architectural, and structural design, are presented. The most popular construction methods and approaches when precasting these panels on- or off-site and their associated challenges are also presented. Lastly, current deficiencies in CSWP design and construction are outlined and future directions for research and practice are suggested to advance this field further. Full article
Show Figures

Figure 1

27 pages, 8076 KiB  
Article
Micro-Modeling of Polymer–Masonry Wall Composites Under In-Plane Loading
by Houria Hernoune, Younes Ouldkhaoua, Benchaa Benabed, Rajab Abousnina, Vanissorn Vimonsatit, Ali Mohammed and Allan Manalo
J. Compos. Sci. 2025, 9(4), 179; https://doi.org/10.3390/jcs9040179 - 7 Apr 2025
Viewed by 764
Abstract
Fiber-reinforced polymers (FRPs) are effective for strengthening masonry walls. Debonding at the polymer–masonry interface is a major concern, requiring further investigation into interface behavior. This study utilizes detailed micro-modeling finite element (FE) analysis to predict failure mechanisms and analyze the behavior of brick [...] Read more.
Fiber-reinforced polymers (FRPs) are effective for strengthening masonry walls. Debonding at the polymer–masonry interface is a major concern, requiring further investigation into interface behavior. This study utilizes detailed micro-modeling finite element (FE) analysis to predict failure mechanisms and analyze the behavior of brick masonry walls strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) under in-plane loading. The research investigates three CFRP strengthening configurations (X, I, and H). The FE model incorporates the nonlinear behavior of brick masonry components using the Concrete Damage Plasticity (CDP) model and uses a cohesive interface approach to model unit–mortar interfaces and the bond joints between masonry and CFRPs. The results demonstrate that diagonal CFRP reinforcement enhances the ductility and capacity of masonry wall systems. The FE model accurately captures the crack propagation, fracture mechanisms, and shear strength of both unreinforced and reinforced walls. The study confirms that the model can reliably predict the structural behavior of these composite systems. Furthermore, the study compares predicted shear strengths with established design equations, highlighting the ACI 440.7R-10 and CNR-DT 200/2013 models as providing the most accurate predictions when compared to experimental results. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

18 pages, 6813 KiB  
Article
Effects of Matrix Properties on the Interfacial Shear Strength Between Carbon Fiber and Various Thermoplastic Polymers, and Their Influence on the Mechanical Properties of Composites
by Kazuto Tanaka and Ryota Sakakibara
J. Compos. Sci. 2025, 9(4), 174; https://doi.org/10.3390/jcs9040174 - 2 Apr 2025
Viewed by 659
Abstract
Although fiber–matrix interfacial strengths, which affect the mechanical properties of fiber-reinforced plastics (FRPs), are considered to be determined by complex factors, few studies have systematically evaluated the relationship between the matrix properties and the fiber–matrix interfacial shear strength. In this study, the properties [...] Read more.
Although fiber–matrix interfacial strengths, which affect the mechanical properties of fiber-reinforced plastics (FRPs), are considered to be determined by complex factors, few studies have systematically evaluated the relationship between the matrix properties and the fiber–matrix interfacial shear strength. In this study, the properties of various thermoplastics were measured, and the matrix tightening stress that constricts the fiber was simulated using finite element method (FEM) analysis. The relationships between the fiber–matrix interfacial shear strength and the matrix properties were clarified. The mechanical properties of carbon fiber reinforced thermoplastic (CFRTP) laminates were also evaluated, and the relationships between the fiber–matrix interfacial shear strength and the mechanical properties of CFRTP laminates were examined. The fiber–matrix interfacial shear strength showed a positive correlation with the matrix tightening stress tightening the fiber in the radial direction, as well as with matrix density, tensile strength, modulus, and melting temperature, while a negative correlation was found with the coefficient of linear expansion of the matrix. A higher fiber–matrix interfacial shear strength can be achieved by using a matrix with higher density, even without direct evaluation of the fiber–matrix interfacial strength, as the fiber–matrix interfacial shear strength showed a strong positive correlation with matrix density. Furthermore, the mechanical properties of CFRTP laminates were enhanced when matrices with higher fiber–matrix interfacial shear strength were used. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

15 pages, 4518 KiB  
Article
Model Tests of Concrete-Filled Fiber Reinforced Polymer Tube Composite Pile Under Cyclic Lateral Loading
by Chao Yang, Guoliang Dai, Weiming Gong, Yuxuan Wang, Mingxing Zhu and Shaolei Huo
Buildings 2025, 15(4), 563; https://doi.org/10.3390/buildings15040563 - 12 Feb 2025
Viewed by 925
Abstract
Concrete-filled FRP (Fiber Reinforced Polymer) tube composite piles offer superior corrosion resistance, making them a promising alternative to traditional piles in marine environments. However, their performance under cyclic lateral loads, such as those induced by waves and currents, requires further investigation. This study [...] Read more.
Concrete-filled FRP (Fiber Reinforced Polymer) tube composite piles offer superior corrosion resistance, making them a promising alternative to traditional piles in marine environments. However, their performance under cyclic lateral loads, such as those induced by waves and currents, requires further investigation. This study conducted model tests on 11 FRP composite piles embedded in sand to evaluate their behavior under cyclic lateral loading. Key parameters, including loading frequency, cycle count, loading mode, and embedment depth, were systematically analyzed. The results revealed that cyclic loading induces cumulative plastic deformation in the surrounding soil, leading to a progressive reduction in the lateral stiffness of the pile–soil system and redistribution of lateral loads among piles. Higher loading frequencies enhanced soil densification and temporarily improved bearing capacity, while increased cycle counts caused soil degradation and reduced ultimate capacity—evidenced by an 8.4% decrease (from 1.19 kN to 1.09 kN) after 700 cycles under a 13 s period, with degradation rates spanning 8.4–11.2% across frequencies. Deeper embedment depths significantly decreased the maximum bending moment (by ~50%) and lateral displacement, highlighting their critical role in optimizing performance. These findings directly inform the design of marine structures by optimizing embedment depth and load frequency to mitigate cyclic degradation, ensuring the long-term serviceability of FRP composite piles in corrosive, high-cycle marine environments. Full article
Show Figures

Figure 1

24 pages, 5004 KiB  
Article
Numerical Modelling and Damage Assessment Criteria for FRP-Retrofitted RC Columns
by Inês Sousa, Rita Peres, Rita Couto, Rita Bento and José Miguel Castro
Buildings 2025, 15(2), 188; https://doi.org/10.3390/buildings15020188 - 10 Jan 2025
Viewed by 721
Abstract
The numerical modelling procedures and damage criteria of both existing and retrofitted reinforced concrete (RC) elements are crucial for reliable seismic assessment and the retrofitting of existing RC buildings. A widely used retrofitting technique involves the application of fiber-reinforced polymers (FRPs) to vulnerable [...] Read more.
The numerical modelling procedures and damage criteria of both existing and retrofitted reinforced concrete (RC) elements are crucial for reliable seismic assessment and the retrofitting of existing RC buildings. A widely used retrofitting technique involves the application of fiber-reinforced polymers (FRPs) to vulnerable RC elements, enhancing their flexural and shear capacities. However, the current version of EC8-3 does not explicitly provide guidelines for numerical modelling, nor does it offer specific information on the assessment of retrofitting elements. This study focuses on developing a concentrated plasticity modelling approach and defining the damage state criteria for retrofitted RC columns with FRPs, based on experimental data from the literature. A database comprising 99 FRP-retrofitted RC columns was compiled, and regression analysis procedures were used to calibrate the peak load rotation, ultimate rotation, and post-capping rotation capacities. The modelling approach was validated through comparison with existing formulations using OpenSees, and the results indicate its adequacy for the seismic assessment of retrofitted buildings. This research advances the seismic assessment of FRP-retrofitted RC elements by introducing a novel trilinear moment–rotation model and refined damage criteria, which provide higher predictive accuracy in comparison to existing proposals. It also addresses critical gaps in seismic assessment practices by proposing the peak load rotation as a more reliable SD limit state threshold for retrofitted columns. Full article
Show Figures

Figure 1

19 pages, 6853 KiB  
Article
The Finite Element Method in Thermosetting Polymers’ and FRPs’ Supramolecular Structure and Thermomechanical Properties’ Modeling
by Alexander Korolev, Alexander Zadorin and Maxim Mishnev
Polymers 2024, 16(23), 3443; https://doi.org/10.3390/polym16233443 - 8 Dec 2024
Viewed by 1147
Abstract
The object of research is cured thermosetting epoxy polymer and FRP on the base of the same polymer matrix. The purpose of this research is to develop the finite element (FE) method in the modeling of cured thermosetting polymers and FRPs to predict [...] Read more.
The object of research is cured thermosetting epoxy polymer and FRP on the base of the same polymer matrix. The purpose of this research is to develop the finite element (FE) method in the modeling of cured thermosetting polymers and FRPs to predict their mechanical and thermal properties. The structural mathematical modeling with subsequent computer FE modeling was performed. The results of FE modeling were compared with the experimental data of cured polymer’s and FRP’s tensile strength and deformations under mechanical load at different temperatures. The design of the polymer’s FE model was based on the tetrahedral supramolecular structure and then transformed into FRP’s model by integrating glass fiber rods. Using the structural density as the structure model’s parameter, the relative size and disposition of the finite elements were determined. The viscoelastic properties are set in the model by regulating the structural density and compressive/tensile properties of joints. The long-term plastic deformation and stress relaxation were determined as the result of the supramolecular structure’s inner shearing with the decrease of its structural density. The FE models of the cured epoxy polymer and FRP were developed, making it possible to predict short-term and long-term deformations under load with high accuracy considering the temperature factor. Full article
(This article belongs to the Special Issue Computational and Experimental Approaches in Polymeric Materials)
Show Figures

Figure 1

22 pages, 5316 KiB  
Article
Vibration Characteristic Analysis of Sandwich Composite Plate Reinforced by Functionally Graded Carbon Nanotube-Reinforced Composite on Winkler/Pasternak Foundation
by Mengzhen Li, Xiaolong Liu, Mohammad Yazdi and Wei Chen
J. Mar. Sci. Eng. 2024, 12(12), 2157; https://doi.org/10.3390/jmse12122157 - 26 Nov 2024
Cited by 3 | Viewed by 1296
Abstract
This paper presents numerical investigations into the free vibration properties of a sandwich composite plate with two fiber-reinforced plastic (FRP) face sheets and a functionally graded carbon nanotube-reinforced composite (FG-CNTRC) core made of functionally graded carbon nanotube-reinforced composite resting on Winkler/Pasternak elastic foundation. [...] Read more.
This paper presents numerical investigations into the free vibration properties of a sandwich composite plate with two fiber-reinforced plastic (FRP) face sheets and a functionally graded carbon nanotube-reinforced composite (FG-CNTRC) core made of functionally graded carbon nanotube-reinforced composite resting on Winkler/Pasternak elastic foundation. The material properties of the FG-CNTRC core are gradient change along the thickness direction with four distinct carbon nanotubes reinforcement distribution patterns. The Hamilton energy concept is used to develop the equations of motion, which are based on the high-order shear deformation theory (HSDT). The Navier method is then used to obtain the free vibration solutions. By contrasting the acquired results with those using finite elements and with the previous literature, the accuracy of the present approach is confirmed. Moreover, the effects of the modulus of elasticity, the carbon nanotube (CNT) volume fractions, the CNT distribution patterns, the gradient index p, the geometric parameters and the dimensionless natural frequencies’ elastic basis characteristics are examined. The results show that the FG-CNTRC sandwich composite plate has higher dimensionless frequencies than the functionally graded material (FGM) plate or sandwich plate. And the volume fraction of carbon nanotubes and other geometric factors significantly affect the dimensionless frequency of the sandwich composite plate. Full article
Show Figures

Figure 1

19 pages, 22249 KiB  
Article
Experimental Investigation on Bending Properties of DP780 Dual-Phase Steel Strengthened by Hybrid Polymer Composite with Aramid and Carbon Fibers
by Jerzy Marszałek
Polymers 2024, 16(22), 3160; https://doi.org/10.3390/polym16223160 - 13 Nov 2024
Viewed by 1219
Abstract
Lowering passenger vehicle weight is a major contributor to improving fuel consumption and reducing greenhouse gas emissions. One fundamental method to achieving lighter cars is to replace heavy materials with lighter ones while still ensuring the required strength, durability, and ride comfort. Currently, [...] Read more.
Lowering passenger vehicle weight is a major contributor to improving fuel consumption and reducing greenhouse gas emissions. One fundamental method to achieving lighter cars is to replace heavy materials with lighter ones while still ensuring the required strength, durability, and ride comfort. Currently, there is increasing interest in hybrid structures obtained through adhesive bonding of high-performance fiber-reinforced polymers (FRPs) to high-strength steel sheets. The high weight reduction potential of steel/FRP hybrid structures is obtained by the thickness reduction of the steel sheet with the use of a lightweight FRP. The result is a lighter structure, but it is challenging to retain the stiffness and load-carrying capacity of an unreduced-thickness steel sheet. This work investigates the bending properties of a non-reinforced DP780 steel sheet that has a thickness of 1.45 mm (S1.45) and a hybrid structure (S1.15/ACFRP), and its mechanical properties are examined. The proposed hybrid structure is composed of a DP780 steel sheet with a thickness of 1.15 mm (S1.15) and a hybrid composite (ACFRP) made from two plies of woven hybrid fabric of aramid and carbon fibers and an epoxy resin matrix. The hybridization effect of S1.15 with ACFRP is investigated, and the results are compared with those available in the literature. S1.15/ACFRP is only 5.71% heavier than S1.15, but its bending properties, including bending stiffness, maximum bending load capacity, and absorbed energy, are higher by 29.7, 49.8, and 41.2%, respectively. The results show that debonding at the interface between S1.15 and ACFRP is the primary mode of fracture in S1.15/ACFRP. Importantly, S1.15 is permanently deformed because it reaches its peak plastic strain. It is found that the reinforcement layers of ACFRP remain undamaged during the entire loading process. In the case of S1.45, typical ductile behavior and a two-stage bending response are observed. S1.15/ACFRP and S1.45 are also compared in terms of their weight and bending properties. It is observed that S1.15/ACFRP is 16.47% lighter than S1.45. However, the bending stiffness, maximum bending load capacity, and absorbed energy of S1.15/ACFRP remain 34.4, 11.5, and 21.1% lower compared to S1.45, respectively. Therefore, several modifications to the hybrid structure are suggested to improve its mechanical properties. The results of this study provide valuable conclusions and useful data to continue further research on the application of S1.15/ACFRP in the design of lightweight and durable thin-walled structures. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 3763 KiB  
Article
Experimental Study on the Acceleration Amplification Ratio of Cable Terminations for Electric Power Facilities
by Bub-Gyu Jeon, Sung-Jin Chang, Sung-Wan Kim, Dong-Uk Park and Nakhyun Chun
Energies 2024, 17(22), 5641; https://doi.org/10.3390/en17225641 - 11 Nov 2024
Cited by 1 | Viewed by 951
Abstract
Among national infrastructure facilities, electric power facilities are very important sites that must maintain their functions properly even during a natural disaster or during social crises. Therefore, seismic design is required when necessary for major electric power facilities that have a significant impact [...] Read more.
Among national infrastructure facilities, electric power facilities are very important sites that must maintain their functions properly even during a natural disaster or during social crises. Therefore, seismic design is required when necessary for major electric power facilities that have a significant impact when damaged in the event of an earthquake. In electric power facilities, bushings are generally installed in devices or structures. Therefore, ground acceleration can be amplified through devices, such as transformers, or sub-structures. Among various electric power facilities, cable terminations are representative cantilever-type substation facilities consisting of a bushing, a sub-structure, and support insulators. The bushings of cable terminations are generally made of porcelain or fiber-reinforced plastic (FRP) materials, and they may have different dynamic characteristics. This study attempted to estimate the acceleration amplification ratio in the main positions of cable terminations considering the materials of bushings. For two cable terminations with different specifications and bushing materials, three-axis shake table tests were conducted in accordance with IEEE 693, which includes a seismic performance evaluation method for a power substation facility. The acceleration amplification ratios at the top of the bushing, mass center, and top of the support structure were estimated using the acceleration responses of each cable termination. They were then compared with the acceleration amplification factors presented in design standards. Consequently, the acceleration amplification ratio of cable termination with an FRP bushing was lower than that of the cable termination with a porcelain bushing. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

20 pages, 26664 KiB  
Article
Computational Analysis of the Micromechanical Stress Field in Undamaged and Damaged Unidirectional Fiber-Reinforced Plastics Using a Modified Principal Component Analysis
by Nicolas Rozo Lopez, Hakan Çelik and Christian Hopmann
Polymers 2024, 16(21), 3000; https://doi.org/10.3390/polym16213000 - 25 Oct 2024
Viewed by 9121
Abstract
This study investigated the internal stress distribution of unidirectional fiber-reinforced plastics (UD-FRP) at the micro level using principal component analysis (PCA). The composite material was simulated using a representative volume element model together with the embedded cell approach. Two fundamental quasi-static load cases, [...] Read more.
This study investigated the internal stress distribution of unidirectional fiber-reinforced plastics (UD-FRP) at the micro level using principal component analysis (PCA). The composite material was simulated using a representative volume element model together with the embedded cell approach. Two fundamental quasi-static load cases, transverse and longitudinal tensile deformation, were considered. The experimental results show that mechanical failure occurred at 2.15 ± 0.06% transverse tensile strain and at 1.52 ± 0.07% longitudinal tensile strain. Furthermore, the undamaged state and a combination of matrix and interface damage, as well as fiber breakage, were simulated. From the simulations, the octahedral shear stress and octahedral normal stress were computed at the integration points of the matrix elements, constituting what is known as the octahedral stress field. A modification on the PCA to obtain mesh-independent eigenvalues is presented and was used to investigate the effects of damage events on the octahedral stress field. The results indicate that each damage mechanism had a distinct signature in the redistribution of the stress field, characterized by specific changes in the eigenvalues and orientation of the principal component (θ1). Furthermore, the PCA suggests that the accumulation of matrix damage began to be relevant at the 1% strain, while fiber breakage began at an average longitudinal strain of 0.98 ± 0.12%. Additionally, it is shown that the first principal component served as an indicator of the predominant stress state of the stress field. This investigation suggests that the PCA can provide valuable insights regarding the complex damage mechanisms of UD-FRP that may not be captured by conventional mechanical analysis. Full article
(This article belongs to the Special Issue Epoxy Polymers and Composites)
Show Figures

Graphical abstract

13 pages, 9227 KiB  
Article
Effect of Preheating Parameters on Extrusion Welding of High-Density Polyethylene Materials
by Chungwoo Lee, Suseong Woo, Sooyeon Kwon and Jisun Kim
Polymers 2024, 16(21), 2992; https://doi.org/10.3390/polym16212992 - 25 Oct 2024
Viewed by 1394
Abstract
High-density polyethylene (HDPE) has emerged as a promising alternative to fiber-reinforced plastic (FRP) for small vessel manufacturing due to its durability, chemical resistance, lightweight properties, and recyclability. However, while thermoplastic polymers like HDPE have been extensively used in gas and water pipelines, their [...] Read more.
High-density polyethylene (HDPE) has emerged as a promising alternative to fiber-reinforced plastic (FRP) for small vessel manufacturing due to its durability, chemical resistance, lightweight properties, and recyclability. However, while thermoplastic polymers like HDPE have been extensively used in gas and water pipelines, their application in large, complex marine structures remains underexplored, particularly in terms of joining methods. Existing techniques, such as ultrasonic welding, laser welding, and friction stir welding, are unsuitable for large-scale HDPE components, where extrusion welding is more viable. This study focuses on evaluating the impact of key process parameters, such as the preheating temperature, hot air movement speed, and nozzle distance, on the welding performance of HDPE. By analyzing the influence of these variables on heat distribution during the extrusion welding process, we aim to conduct basic research to derive optimal conditions for achieving strong and reliable joints. The results highlight the critical importance of a uniform temperature distribution in preventing defects such as excessive melting or thermal degradation, which could compromise weld integrity. This research provides valuable insights into improving HDPE joining techniques, contributing to its broader adoption in the marine and manufacturing industries. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

Back to TopTop