Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = fetal neural stem cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4584 KiB  
Article
Three-Dimensional-Bioprinted Embedded-Based Cerebral Organoids: An Alternative Approach for Mini-Brain In Vitro Modeling Beyond Conventional Generation Methods
by Rosalba Monica Ferraro, Paola Serena Ginestra, Miriam Seiti, Mattia Bugatti, Gabriele Benini, Luana Ottelli, William Vermi, Pietro Luigi Poliani, Elisabetta Ceretti and Silvia Giliani
Gels 2025, 11(4), 284; https://doi.org/10.3390/gels11040284 - 11 Apr 2025
Viewed by 1254
Abstract
Cerebral organoids (cORGs) obtained from induced pluripotent stem cells (iPSCs) have become significant instruments for investigating human neurophysiology, with the possibility of simulating diseases and enhancing drug discovery. The current approaches require a strict process of manual inclusion in animal-derived matrix Matrigel® [...] Read more.
Cerebral organoids (cORGs) obtained from induced pluripotent stem cells (iPSCs) have become significant instruments for investigating human neurophysiology, with the possibility of simulating diseases and enhancing drug discovery. The current approaches require a strict process of manual inclusion in animal-derived matrix Matrigel® and are challenged by unpredictability, operators’ skill and expertise, elevated costs, and restricted scalability, impeding their extensive applicability and translational potential. In this study, we present a novel method to generate brain organoids that address these limitations. Our approach does not require a manual, operator-dependent embedding. Instead, it employs a chemically defined hydrogel in which the Matrigel® is diluted in a solution enriched with sodium alginate (SA) and sodium carboxymethylcellulose (CMC) and used as a bioink to print neural embryoid bodies (nEBs). Immunohistochemical, immunofluorescence, and gene expression analyses confirmed that SA-CMC-Matrigel® hydrogel can sustain the generation of iPSC-derived cortical cORGs as the conventional Matrigel®-based approach does. By day 40 of differentiation, hydrogel-based 3D-bioprinted cORGs showed heterogeneous and consistent masses, with a cytoarchitecture resembling an early-stage developmental fetal brain composed of neural progenitor cells PAX6+/Ki67+ organized into tubular structures, and densely packed cell somas with extensive neurites SYP+, suggestive of cortical tissue-like neuronal layer formation. Full article
(This article belongs to the Special Issue Hydrogel-Based Scaffolds with a Focus on Medical Use (3rd Edition))
Show Figures

Figure 1

17 pages, 5688 KiB  
Article
Positive Evolution of a Child Suffering from Caudal Regression Syndrome and Agenesia Sacra After Treatment with Growth Hormone and Rehabilitation
by Jesús Devesa, Carla Fresco, Ana Devesa, Ana Rodríguez and Diego de Souza
Int. J. Mol. Sci. 2025, 26(4), 1627; https://doi.org/10.3390/ijms26041627 - 14 Feb 2025
Viewed by 1195
Abstract
Caudal regression syndrome (CRS) is a malformation that occurs during the fetal period, and is mainly characterized by the incomplete development of the spinal cord (SC), which is often accompanied by other developmental abnormalities. The present study was performed in a 2-month-old boy [...] Read more.
Caudal regression syndrome (CRS) is a malformation that occurs during the fetal period, and is mainly characterized by the incomplete development of the spinal cord (SC), which is often accompanied by other developmental abnormalities. The present study was performed in a 2-month-old boy with CRS, born to a type I diabetic mother, who presented interruption of the SC at the L5–L4 level, pelvic dislocation, sacral agenesis, hypoplastic femurs, lack of innervation of the lower limbs (spastic paraplegia), and a neurogenic bladder and bowel. Given the positive results we obtained in a previous study in a similar case, this patient was treated with GH (0.04 mg/kg/day, 5 days/week), melatonin (20 mg/day), and rehabilitation. The treatment only lasted 18 months, due to family problems. Blood tests and physical examinations were performed every 3 months initially and then every 6 months. Interestingly, despite GH administration, the child presented low plasma glucose and IGF-I values, which did not increase throughout the treatment, although there was significant growth of the patient, also indicated by elevated plasma alkaline phosphatase values. At the end of treatment, the gross motor function test (GMFM)-88 score increased from 0.93 (on admission) to 47.94. Sensory responses appeared in the lower limbs, and the patient was able to move his leg muscles in all directions and control his sphincters. Ten months after discharge, the patient was able to walk only with the aid of a back walker. GH treatment did not produce any adverse effects. In summary, despite the short duration of treatment, GH plus rehabilitation has been useful in innervating distal areas below the level of the incomplete spinal cord in CRS. GH likely acted on ependymal neural stem cells, as the hormone does on neurogenic niches in the brain, and rehabilitation helped achieve near-full functionality. Full article
Show Figures

Figure 1

25 pages, 2207 KiB  
Review
Stem Cell Therapy for the Treatment of Amyotrophic Lateral Sclerosis: Comparison of the Efficacy of Mesenchymal Stem Cells, Neural Stem Cells, and Induced Pluripotent Stem Cells
by Lauren Frawley, Noam Tomer Taylor, Olivia Sivills, Ella McPhillamy, Timothy Duy To, Yibo Wu, Beek Yoke Chin and Chiew Yen Wong
Biomedicines 2025, 13(1), 35; https://doi.org/10.3390/biomedicines13010035 - 27 Dec 2024
Cited by 2 | Viewed by 4718
Abstract
Background/Objectives: Amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, is a debilitating, incurable neurodegenerative disorder characterised by motor neuron death in the spinal cord, brainstem, and motor cortex. With an incidence rate of about 4.42 cases per 100,000 people annually, ALS severely impacts [...] Read more.
Background/Objectives: Amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, is a debilitating, incurable neurodegenerative disorder characterised by motor neuron death in the spinal cord, brainstem, and motor cortex. With an incidence rate of about 4.42 cases per 100,000 people annually, ALS severely impacts motor function and quality of life, causing progressive muscle atrophy, spasticity, paralysis, and eventually death. The cause of ALS is largely unknown, with 90% of cases being sporadic and 10% familial. Current research targets molecular mechanisms of inflammation, excitotoxicity, aggregation-prone proteins, and proteinopathy. Methods: This review evaluates the efficacy of three stem cell types in ALS treatment: mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). Results: MSCs, derived from various tissues, show neuroprotective and regenerative qualities, with clinical trials suggesting potential benefits but limited by small sample sizes and non-randomised designs. NSCs, isolated from the fetal spinal cord or brain, demonstrate promise in animal models but face functional integration and ethical challenges. iPSCs, created by reprogramming patient-specific somatic cells, offer a novel approach by potentially replacing or supporting neurons. iPSC therapy addresses ethical issues related to embryonic stem cells but encounters challenges regarding genotoxicity and epigenetic irregularities, somatic cell sources, privacy concerns, the need for extensive clinical trials, and high reprogramming costs. Conclusions: This research is significant for advancing ALS treatment beyond symptomatic relief and modest survival extensions to actively modifying disease progression and improving patient outcomes. Successful stem cell therapies could lead to new ALS treatments, slowing motor function loss and reducing symptom severity. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Graphical abstract

23 pages, 15987 KiB  
Article
Small and Long Non-Coding RNA Analysis for Human Trophoblast-Derived Extracellular Vesicles and Their Effect on the Transcriptome Profile of Human Neural Progenitor Cells
by Jessica A. Kinkade, Pallav Singh, Mohit Verma, Teka Khan, Toshihiko Ezashi, Nathan J. Bivens, R. Michael Roberts, Trupti Joshi and Cheryl S. Rosenfeld
Cells 2024, 13(22), 1867; https://doi.org/10.3390/cells13221867 - 11 Nov 2024
Cited by 3 | Viewed by 1935
Abstract
In mice, the fetal brain is dependent upon the placenta for factors that guide its early development. This linkage between the two organs has given rise to the term, the placenta–brain axis. A similar interrelationship between the two organs may exist in humans. [...] Read more.
In mice, the fetal brain is dependent upon the placenta for factors that guide its early development. This linkage between the two organs has given rise to the term, the placenta–brain axis. A similar interrelationship between the two organs may exist in humans. We hypothesize that extracellular vesicles (EVs) released from placental trophoblast (TB) cells transport small RNA and other informational biomolecules from the placenta to the brain where their contents have pleiotropic effects. Here, EVs were isolated from the medium in which human trophoblasts (TBs) had been differentiated in vitro from induced pluripotent stem cells (iPSC) and from cultured iPSC themselves, and their small RNA content analyzed by bulk RNA-seq. EVs derived from human TB cells possess unique profiles of miRs, including hsa-miR-0149-3p, hsa-302a-5p, and many long non-coding RNAs (lncRNAs) relative to EVs isolated from parental iPSC. These miRs and their mRNA targets are enriched in neural tissue. Human neural progenitor cells (NPCs), generated from the same iPSC, were exposed to EVs from either TB or iPSC controls. Both sets of EVs were readily internalized. EVs from TB cells upregulate several transcripts in NPCs associated with forebrain formation and neurogenesis; those from control iPSC upregulated a transcriptional phenotype that resembled glial cells more closely than neurons. These results shed light on the possible workings of the placenta–brain axis. Understanding how the contents of small RNA within TB-derived EVs affect NPCs might yield new insights, possible biomarkers, and potential treatment strategies for neurobehavioral disorders that originate in utero, such as autism spectrum disorders (ASDs). Full article
(This article belongs to the Special Issue Human Placenta and Trophoblast Cells in Pregnancy Development)
Show Figures

Figure 1

11 pages, 4530 KiB  
Article
Investigation of Persistent Photoconductivity of Gallium Nitride Semiconductor and Differentiation of Primary Neural Stem Cells
by Yu Meng, Xiaowei Du, Shang Zhou, Jiangting Li, Rongrong Feng, Huaiwei Zhang, Qianhui Xu, Weidong Zhao, Zheng Liu and Haijian Zhong
Molecules 2024, 29(18), 4439; https://doi.org/10.3390/molecules29184439 - 19 Sep 2024
Viewed by 1716
Abstract
A gallium nitride (GaN) semiconductor is one of the most promising materials integrated into biomedical devices to play the roles of connecting, monitoring, and manipulating the activity of biological components, due to its excellent photoelectric properties, chemical stability, and biocompatibility. In this work, [...] Read more.
A gallium nitride (GaN) semiconductor is one of the most promising materials integrated into biomedical devices to play the roles of connecting, monitoring, and manipulating the activity of biological components, due to its excellent photoelectric properties, chemical stability, and biocompatibility. In this work, it was found that the photogenerated free charge carriers of the GaN substrate, as an exogenous stimulus, served to promote neural stem cells (NSCs) to differentiate into neurons. This was observed through the systematic investigation of the effect of the persistent photoconductivity (PPC) of GaN on the differentiation of primary NSCs from the embryonic rat cerebral cortex. NSCs were directly cultured on the GaN surface with and without ultraviolet (UV) irradiation, with a control sample consisting of tissue culture polystyrene (TCPS) in the presence of fetal bovine serum (FBS) medium. Through optical microscopy, the morphology showed a greater number of neurons with the branching structures of axons and dendrites on GaN with UV irradiation. The immunocytochemical results demonstrated that GaN with UV irradiation could promote the NSCs to differentiate into neurons. Western blot analysis showed that GaN with UV irradiation significantly upregulated the expression of two neuron-related markers, βIII-tubulin (Tuj-1) and microtubule-associated protein 2 (MAP-2), suggesting that neurite formation and the proliferation of NSCs during differentiation were enhanced by GaN with UV irradiation. Finally, the results of the Kelvin probe force microscope (KPFM) experiments showed that the NSCs cultured on GaN with UV irradiation displayed about 50 mV higher potential than those cultured on GaN without irradiation. The increase in cell membrane potential may have been due to the larger number of photogenerated free charges on the GaN surface with UV irradiation. These results could benefit topical research and the application of GaN as a biomedical material integrated into neural interface systems or other bioelectronic devices. Full article
Show Figures

Graphical abstract

21 pages, 2700 KiB  
Article
Alcohol Exposure Induces Nucleolar Stress and Apoptosis in Mouse Neural Stem Cells and Late-Term Fetal Brain
by Yanping Huang, George R. Flentke, Olivia C. Rivera, Nipun Saini, Sandra M. Mooney and Susan M. Smith
Cells 2024, 13(5), 440; https://doi.org/10.3390/cells13050440 - 2 Mar 2024
Cited by 3 | Viewed by 2946
Abstract
Prenatal alcohol exposure (PAE) is a leading cause of neurodevelopmental disability through its induction of neuronal growth dysfunction through incompletely understood mechanisms. Ribosome biogenesis regulates cell cycle progression through p53 and the nucleolar cell stress response. Whether those processes are targeted by alcohol [...] Read more.
Prenatal alcohol exposure (PAE) is a leading cause of neurodevelopmental disability through its induction of neuronal growth dysfunction through incompletely understood mechanisms. Ribosome biogenesis regulates cell cycle progression through p53 and the nucleolar cell stress response. Whether those processes are targeted by alcohol is unknown. Pregnant C57BL/6J mice received 3 g alcohol/kg daily at E8.5–E17.5. Transcriptome sequencing was performed on the E17.5 fetal cortex. Additionally, primary neural stem cells (NSCs) were isolated from the E14.5 cerebral cortex and exposed to alcohol to evaluate nucleolar stress and p53/MDM2 signaling. Alcohol suppressed KEGG pathways involving ribosome biogenesis (rRNA synthesis/processing and ribosomal proteins) and genes that are mechanistic in ribosomopathies (Polr1d, Rpl11; Rpl35; Nhp2); this was accompanied by nucleolar dissolution and p53 stabilization. In primary NSCs, alcohol reduced rRNA synthesis, caused nucleolar loss, suppressed proliferation, stabilized nuclear p53, and caused apoptosis that was prevented by dominant-negative p53 and MDM2 overexpression. Alcohol’s actions were dose-dependent and rapid, and rRNA synthesis was suppressed between 30 and 60 min following alcohol exposure. The alcohol-mediated deficits in ribosomal protein expression were correlated with fetal brain weight reductions. This is the first report describing that pharmacologically relevant alcohol levels suppress ribosome biogenesis, induce nucleolar stress in neuronal populations, and involve the ribosomal/MDM2/p53 pathway to cause growth arrest and apoptosis. This represents a novel mechanism of alcohol-mediated neuronal damage. Full article
Show Figures

Figure 1

16 pages, 13881 KiB  
Article
Single-Cell Transcriptomics and In Vitro Lineage Tracing Reveals Differential Susceptibility of Human iPSC-Derived Midbrain Dopaminergic Neurons in a Cellular Model of Parkinson’s Disease
by Lucia F. Cardo, Jimena Monzón-Sandoval, Zongze Li, Caleb Webber and Meng Li
Cells 2023, 12(24), 2860; https://doi.org/10.3390/cells12242860 - 18 Dec 2023
Cited by 5 | Viewed by 3720
Abstract
Advances in stem cell technologies open up new avenues for modelling development and diseases. The success of these pursuits, however, relies on the use of cells most relevant to those targeted by the disease of interest, for example, midbrain dopaminergic neurons for Parkinson’s [...] Read more.
Advances in stem cell technologies open up new avenues for modelling development and diseases. The success of these pursuits, however, relies on the use of cells most relevant to those targeted by the disease of interest, for example, midbrain dopaminergic neurons for Parkinson’s disease. In the present study, we report the generation of a human induced pluripotent stem cell (iPSC) line capable of purifying and tracing nascent midbrain dopaminergic progenitors and their differentiated progeny via the expression of a Blue Fluorescent Protein (BFP). This was achieved by CRISPR/Cas9-assisted knock-in of BFP and Cre into the safe harbour locus AAVS1 and an early midbrain dopaminergic lineage marker gene LMX1A, respectively. Immunocytochemical analysis and single-cell RNA sequencing of iPSC-derived neural cultures confirm developmental recapitulation of the human fetal midbrain and high-quality midbrain cells. By modelling Parkinson’s disease-related drug toxicity using 1-Methyl-4-phenylpyridinium (MPP+), we showed a preferential reduction of BFP+ cells, a finding demonstrated independently by cell death assays and single-cell transcriptomic analysis of MPP+ treated neural cultures. Together, these results highlight the importance of disease-relevant cell types in stem cell modelling. Full article
Show Figures

Figure 1

23 pages, 1642 KiB  
Review
Cell Replacement Therapy for Brain Repair: Recent Progress and Remaining Challenges for Treating Parkinson’s Disease and Cortical Injury
by Paul M. Harary, Dennis Jgamadze, Jaeha Kim, John A. Wolf, Hongjun Song, Guo-li Ming, D. Kacy Cullen and H. Isaac Chen
Brain Sci. 2023, 13(12), 1654; https://doi.org/10.3390/brainsci13121654 - 29 Nov 2023
Cited by 4 | Viewed by 4532
Abstract
Neural transplantation represents a promising approach to repairing damaged brain circuitry. Cellular grafts have been shown to promote functional recovery through “bystander effects” and other indirect mechanisms. However, extensive brain lesions may require direct neuronal replacement to achieve meaningful restoration of function. While [...] Read more.
Neural transplantation represents a promising approach to repairing damaged brain circuitry. Cellular grafts have been shown to promote functional recovery through “bystander effects” and other indirect mechanisms. However, extensive brain lesions may require direct neuronal replacement to achieve meaningful restoration of function. While fetal cortical grafts have been shown to integrate with the host brain and appear to develop appropriate functional attributes, the significant ethical concerns and limited availability of this tissue severely hamper clinical translation. Induced pluripotent stem cell-derived cells and tissues represent a more readily scalable alternative. Significant progress has recently been made in developing protocols for generating a wide range of neural cell types in vitro. Here, we discuss recent progress in neural transplantation approaches for two conditions with distinct design needs: Parkinson’s disease and cortical injury. We discuss the current status and future application of injections of dopaminergic cells for the treatment of Parkinson’s disease as well as the use of structured grafts such as brain organoids for cortical repair. Full article
(This article belongs to the Special Issue Advances in Restorative Neurotherapeutic Technologies)
Show Figures

Figure 1

20 pages, 16170 KiB  
Article
Effect of Fetal Bovine Serum or Basic Fibroblast Growth Factor on Cell Survival and the Proliferation of Neural Stem Cells: The Influence of Homocysteine Treatment
by Dražen Juraj Petrović, Denis Jagečić, Jure Krasić, Nino Sinčić and Dinko Mitrečić
Int. J. Mol. Sci. 2023, 24(18), 14161; https://doi.org/10.3390/ijms241814161 - 15 Sep 2023
Cited by 4 | Viewed by 3386
Abstract
In vitro cell culture is a routinely used method which is also applied for in vitro modeling of various neurological diseases. On the other hand, media used for cell culture are often not strictly standardized between laboratories, which hinders the comparison of the [...] Read more.
In vitro cell culture is a routinely used method which is also applied for in vitro modeling of various neurological diseases. On the other hand, media used for cell culture are often not strictly standardized between laboratories, which hinders the comparison of the obtained results. Here, we compared the effects of homocysteine (Hcy), a molecule involved in neurodegeneration, on immature cells of the nervous system cultivated in basal medium or media supplemented by either fetal bovine serum or basic fibroblast growth factor. The number of cells in basal media supplemented with basic fibroblast growth factor (bFGF) was 2.5 times higher in comparison to the number of cells in basal media supplemented with fetal bovine serum (FBS). We also found that the neuron-specific β-3-tubulin protein expression dose dependently decreased with increasing Hcy exposure. Interestingly, bFGF exerts a protective effect on β-3-tubulin protein expression at a concentration of 1000 µM Hcy compared to FBS-treated neural stem cells on Day 7. Supplementation with bFGF increased SOX2 protein expression two-fold compared to FBS supplementation. GFAP protein expression increased five-fold on Day 3 in FBS-treated neural stem cells, whereas on Day 7, bFGF increased GFAP expression two-fold compared to FBS-treated neural stem cells. Here, we have clearly shown that the selection of culturing media significantly influences various cellular parameters, which, in turn, can lead to different conclusions in experiments based on in vitro models of pathological conditions. Full article
Show Figures

Figure 1

17 pages, 3138 KiB  
Article
Anti-Cancer Effect of Neural Stem Cells Transfected with Carboxylesterase and sTRAIL Genes in Animals with Brain Lesions of Lung Cancer
by Jung Hak Kim, Jae Sung Ahn, Dong-Seok Lee, Seok Ho Hong and Hong J. Lee
Pharmaceuticals 2023, 16(8), 1156; https://doi.org/10.3390/ph16081156 - 15 Aug 2023
Cited by 2 | Viewed by 1822
Abstract
A metastatic brain tumor is the most common type of malignancy in the central nervous system, which is one of the leading causes of death in patients with lung cancer. The purpose of this study is to evaluate the efficacy of a novel [...] Read more.
A metastatic brain tumor is the most common type of malignancy in the central nervous system, which is one of the leading causes of death in patients with lung cancer. The purpose of this study is to evaluate the efficacy of a novel treatment for metastatic brain tumors with lung cancer using neural stem cells (NSCs), which encode rabbit carboxylesterase (rCE) and the secretion form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL). rCE and/or sTRAIL were transduced in immortalized human fetal NSCs, HB1.F3. The cytotoxic effects of the therapeutic cells on human lung cancer cells were evaluated in vitro with the ligands and decoy receptor expression for sTRAIL in the presence of CPT-11. Human NSCs encoding rCE (F3.CE and F3.CE.sTRAIL) significantly inhibited the growth of lung cancer cells in the presence of CPT-11 in vitro. Lung cancer cells were inoculated in immune-deficient mice, and therapeutic cells were transplanted systematically through intracardiac arterial injection and then treated with CPT-11. In resting state, DR4 expression in lung cancer cells and DcR1 in NSCs increased to 70% and 90% after CPT-11 addition, respectively. The volumes of the tumors in immune-deficient mice were reduced significantly in mice with F3.CE.sTRAIL transplantation and CPT-11 treatment. The survival was also significantly prolonged with treatment with F3.sTRAIL and F3.CE plus CPT-11 as well as F3.CE.sTRAIL plus CPT-11. NSCs transduced with rCE and sTRAIL genes showed a significant anti-cancer effect on brain metastatic lung cancer in vivo and in vitro, and the effect may be synergistic when rCE/CPT-11 and sTRAIL are combined. This stem-cell-based study using two therapeutic genes of different biological effects can be translatable to clinical application. Full article
(This article belongs to the Topic Advances in Anti-Cancer Drugs)
Show Figures

Figure 1

15 pages, 4206 KiB  
Article
Parental Folate Deficiency Inhibits Proliferation and Increases Apoptosis of Neural Stem Cells in Rat Offspring: Aggravating Telomere Attrition as a Potential Mechanism
by Qinghan Ren, Guoquan Zhang, Cuixia Dong, Zhenshu Li, Dezheng Zhou, Li Huang, Wen Li, Guowei Huang and Jing Yan
Nutrients 2023, 15(13), 2843; https://doi.org/10.3390/nu15132843 - 22 Jun 2023
Cited by 5 | Viewed by 2069
Abstract
The effect of maternal folate status on the fetal central nervous system (CNS) is well recognized, while evidence is emerging that such an association also exists between fathers and offspring. The biological functions of telomeres and telomerase are also related to neural cell [...] Read more.
The effect of maternal folate status on the fetal central nervous system (CNS) is well recognized, while evidence is emerging that such an association also exists between fathers and offspring. The biological functions of telomeres and telomerase are also related to neural cell proliferation and apoptosis. The study aimed to investigate the effect of parental folate deficiency on the proliferation and apoptosis of neural stem cells (NSCs) in neonatal offspring and the role of telomeres in this effect. In this study, rats were divided into four groups: maternal folate-deficient and paternal folate-deficient diet (D-D) group; maternal folate-deficient and paternal folate-normal diet (D-N) group; maternal folate-normal and paternal folate-deficient diet (N-D) group; and the maternal folate-normal and paternal folate-normal diet (N-N) group. The offspring were sacrificed at postnatal day 0 (PND0), and NSCs were cultured from the hippocampus and striatum tissues of offspring for future assay. The results revealed that parental folate deficiency decreased folate levels, increased homocysteine (Hcy) levels of the offspring’s brain tissue, inhibited proliferation, increased apoptosis, shortened telomere length, and aggravated telomere attrition of offspring NSCs in vivo and in vitro. In vitro experiments further showed that offspring NSCs telomerase activity was inhibited due to parental folate deficiency. In conclusion, parental folate deficiency inhibited the proliferation and increased apoptosis of offspring NSCs, maternal folate deficiency had more adverse effects than paternal, and the mechanisms may involve the telomere attrition of NSCs. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

14 pages, 2990 KiB  
Article
Phenotypic and Biomechanical Characteristics of Human Fetal Neural Progenitor Cells Exposed to Pesticide Compounds
by Marissa C. Sarsfield, Jennifer Vasu, Sabreen M. Abuoun, Nischal Allena and Chandrasekhar R. Kothapalli
Biophysica 2023, 3(2), 348-361; https://doi.org/10.3390/biophysica3020023 - 18 May 2023
Viewed by 2094
Abstract
Various forms of pesticides have been reported to be among the environmental toxicants, which are detrimental to human health. The active ingredients of these formulations can enter the human body through air, food, or water. Epidemiological studies suggest that these compounds strongly affect [...] Read more.
Various forms of pesticides have been reported to be among the environmental toxicants, which are detrimental to human health. The active ingredients of these formulations can enter the human body through air, food, or water. Epidemiological studies suggest that these compounds strongly affect the developing brain in fetal and infant stages due to their ability to breach the underdeveloped blood–brain barrier. Since neural progenitor stem cells (NPCs) in the developing brain are the most vulnerable to these compounds, the mechanisms by which NPCs experience toxicity upon exposure to these chemicals must be investigated. Here, we assessed the viability of human fetal NPCs in 2D cultures in the presence of the active ingredients of six widely used pesticides using Live/Dead® and Hoechst staining. The IC50 values ranged from 4.1–201 μM. A significant drop in cell viability with increasing toxicant concentration (p < 0.01) was noted, with the order of toxicity being malathion < 4-aminopyridine < methoprene < prallethrin < temephos < pyriproxyfen. Changes in cellular biomechanical characteristics (Young’s modulus, tether force, membrane tension, and tether radius) were quantified using atomic force microscopy, whereas cell migration was elucidated over 48 h using a customized wound-healing assay. The Young’s modulus of fetal NPCs exposed to IC50/2 doses of these compounds was reduced by 38–70% and that of those exposed to IC50 doses was reduced by 71–80% (p < 0.001 vs. controls for both; p < 0.01 for IC50 vs. IC50/2 for each compound). Similar patterns were noted for tether forces and membrane tension in fetal NPCs. NPC migration was found to be compound type- and dose-dependent. These results attest to the significant detrimental effects of these compounds on various aspects of the human fetal NPC phenotype, and the utility of cell mechanics as a marker to assess developmental neurotoxicity. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

16 pages, 3054 KiB  
Article
A Novel Multicellular Placental Barrier Model to Investigate the Effect of Maternal Aflatoxin B1 Exposure on Fetal-Side Neural Stem Cells
by Zhiwei Zhou, Dongmei Luo, Mengxue Li, Guangjie Lao, Zhiqiang Zhou, András Dinnyés, Wenming Xu and Qun Sun
Toxins 2023, 15(5), 312; https://doi.org/10.3390/toxins15050312 - 27 Apr 2023
Cited by 9 | Viewed by 3463
Abstract
Ingestion of food toxins such as aflatoxin B1 (AFB1) during pregnancy may impair fetal neurodevelopment. However, animal model results may not be accurate due to the species’ differences, and testing on humans is ethically impermissible. Here, we developed an in [...] Read more.
Ingestion of food toxins such as aflatoxin B1 (AFB1) during pregnancy may impair fetal neurodevelopment. However, animal model results may not be accurate due to the species’ differences, and testing on humans is ethically impermissible. Here, we developed an in vitro human maternal–fetal multicellular model composed of a human hepatic compartment, a bilayer placental barrier, and a human fetal central nervous system compartment using neural stem cells (NSCs) to investigate the effect of AFB1 on fetal-side NSCs. AFB1 passed through the HepG2 hepatocellular carcinoma cells to mimic the maternal metabolic effects. Importantly, even at the limited concentration (0.0641 ± 0.0046 μM) of AFB1, close to the national safety level standard of China (GB-2761-2011), the mixture of AFB1 crossing the placental barrier induced NSC apoptosis. The level of reactive oxygen species in NSCs was significantly elevated and the cell membrane was damaged, causing the release of intracellular lactate dehydrogenase (p < 0.05). The comet experiment and γ-H2AX immunofluorescence assay showed that AFB1 caused significant DNA damage to NSCs (p < 0.05). This study provided a new model for the toxicological evaluation of the effect of food mycotoxin exposure during pregnancy on fetal neurodevelopment. Full article
(This article belongs to the Collection Aflatoxins)
Show Figures

Graphical abstract

15 pages, 6010 KiB  
Article
Noncoding RNA of Zika Virus Affects Interplay between Wnt-Signaling and Pro-Apoptotic Pathways in the Developing Brain Tissue
by Andrii Slonchak, Harman Chaggar, Julio Aguado, Ernst Wolvetang and Alexander A. Khromykh
Viruses 2023, 15(5), 1062; https://doi.org/10.3390/v15051062 - 26 Apr 2023
Cited by 8 | Viewed by 3223
Abstract
Zika virus (ZIKV) has a unique ability among flaviviruses to cross the placental barrier and infect the fetal brain causing severe abnormalities of neurodevelopment known collectively as congenital Zika syndrome. In our recent study, we demonstrated that the viral noncoding RNA (subgenomic flaviviral [...] Read more.
Zika virus (ZIKV) has a unique ability among flaviviruses to cross the placental barrier and infect the fetal brain causing severe abnormalities of neurodevelopment known collectively as congenital Zika syndrome. In our recent study, we demonstrated that the viral noncoding RNA (subgenomic flaviviral RNA, sfRNA) of the Zika virus induces apoptosis of neural progenitors and is required for ZIKV pathogenesis in the developing brain. Herein, we expanded on our initial findings and identified biological processes and signaling pathways affected by the production of ZIKV sfRNA in the developing brain tissue. We employed 3D brain organoids generated from induced human pluripotent stem cells (ihPSC) as an ex vivo model of viral infection in the developing brain and utilized wild type (WT) ZIKV (producing sfRNA) and mutant ZIKV (deficient in the production of sfRNA). Global transcriptome profiling by RNA-Seq revealed that the production of sfRNA affects the expression of >1000 genes. We uncovered that in addition to the activation of pro-apoptotic pathways, organoids infected with sfRNA-producing WT, but not sfRNA-deficient mutant ZIKV, which exhibited a strong down-regulation of genes involved in signaling pathways that control neuron differentiation and brain development, indicating the requirement of sfRNA for the suppression of neurodevelopment associated with the ZIKV infection. Using gene set enrichment analysis and gene network reconstruction, we demonstrated that the effect of sfRNA on pathways that control brain development occurs via crosstalk between Wnt-signaling and proapoptotic pathways. Full article
(This article belongs to the Special Issue Molecular Biology of RNA Viruses)
Show Figures

Figure 1

17 pages, 2660 KiB  
Article
Interactions between Major Bioactive Polyphenols of Sugarcane Top: Effects on Human Neural Stem Cell Differentiation and Astrocytic Maturation
by Kengo Iwata, Farhana Ferdousi, Yoshinobu Arai and Hiroko Isoda
Int. J. Mol. Sci. 2022, 23(23), 15120; https://doi.org/10.3390/ijms232315120 - 1 Dec 2022
Cited by 4 | Viewed by 2246
Abstract
Sugarcane (Saccharum officinarum L.) is a tropical plant grown for sugar production. We recently showed that sugarcane top (ST) ameliorates cognitive decline in a mouse model of accelerated aging via promoting neuronal differentiation and neuronal energy metabolism and extending the length of [...] Read more.
Sugarcane (Saccharum officinarum L.) is a tropical plant grown for sugar production. We recently showed that sugarcane top (ST) ameliorates cognitive decline in a mouse model of accelerated aging via promoting neuronal differentiation and neuronal energy metabolism and extending the length of the astrocytic process in vitro. Since the crude extract consists of multicomponent mixtures, it is crucial to identify bioactive compounds of interest and the affected molecular targets. In the present study, we investigated the bioactivities of major polyphenols of ST, namely 3-O-caffeoylquinic acid (3CQA), 5-O-caffeoylquinic acid (5CQA), 3-O-feruloylquinic acid (3FQA), and Isoorientin (ISO), in human fetal neural stem cells (hNSCs)- an in vitro model system for studying neural development. We found that multiple polyphenols of ST contributed synergistically to stimulate neuronal differentiation of hNSCs and induce mitochondrial activity in immature astrocytes. Mono-CQAs (3CQA and 5CQA) regulated the expression of cyclins related to G1 cell cycle arrest, whereas ISO regulated basic helix-loop-helix transcription factors related to cell fate determination. Additionally, mono-CQAs activated p38 and ISO inactivated GSK3β. In hNSC-derived immature astrocytes, the compounds upregulated mRNA expression of PGC-1α, a master regulator of astrocytic mitochondrial biogenesis. Altogether, our findings suggest that synergistic interactions between major polyphenols of ST contribute to its potential for neuronal differentiation and astrocytic maturation. Full article
(This article belongs to the Special Issue Polyphenols and Neurodegenerative Disorders)
Show Figures

Figure 1

Back to TopTop