Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = fenites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5039 KiB  
Article
Occurrences of the Rare, REE Minerals Daqingshanite, Törnebohmite, Biraite, Sahamalite, and Ferriperbøeite from the Sheep Creek Area, Montana, USA
by Christopher H. Gammons, Sarah Risedorf, Gary Wyss and Heather Lowers
Minerals 2024, 14(10), 1047; https://doi.org/10.3390/min14101047 - 18 Oct 2024
Viewed by 1110
Abstract
Over 30 small, discontinuous, tabular carbonatite bodies are located in the Sheep Creek area, Ravalli County, southwest Montana. The age and origin of these REE-Nb-rich deposits are currently being investigated. The purpose of this paper is to document the occurrence of several rare [...] Read more.
Over 30 small, discontinuous, tabular carbonatite bodies are located in the Sheep Creek area, Ravalli County, southwest Montana. The age and origin of these REE-Nb-rich deposits are currently being investigated. The purpose of this paper is to document the occurrence of several rare minerals, including daqingshanite, törnebohmite, biraite, sahamalite, and ferriperbøeite, in two of the carbonatite bodies. These minerals are found in association with monazite, hydroxylbastnäsite, ferriallanite, calcite, dolomite, baryte, quartz, actinolite, apatite, celsian, and Sr-rich aragonite. Automated SEM-EDS was used to target the areas of interest in polished specimens for more detailed spot SEM-EDS and electron probe microanalysis. Raman spectra were also acquired for each of the rare minerals. The complex mineralogy of the Sheep Creek carbonatites is most likely due to several overlapping thermal events, including primary magmatic, overprinting hydrothermal, and supergene weathering stages. The rare minerals described in this study are believed to be hydrothermal and/or carbothermal in origin, although no estimates of temperature are available at this time. Full article
Show Figures

Figure 1

19 pages, 6522 KiB  
Article
Neoproterozoic Lysan Alkaline–Ultramafic Complex in the Eastern Sayan, Southern Siberia, Russia: Mineralogical Constraints of Carbonate Rocks and Albitite for Petrogenesis
by Tatiana B. Kolotilina, Aleksey S. Mekhonoshin and Yuri D. Shcherbakov
Minerals 2024, 14(3), 290; https://doi.org/10.3390/min14030290 - 10 Mar 2024
Cited by 1 | Viewed by 1614
Abstract
The Lysan alkaline–ultramafic complex is located in the Sisim shear zone at the contact of the two largest tectonic structures of the accretion–collisional belt in the southwestern frame of the Siberian craton. Intrusions of the complex consist of ore-bearing olivinites, kaersutite clinopyroxenites, and [...] Read more.
The Lysan alkaline–ultramafic complex is located in the Sisim shear zone at the contact of the two largest tectonic structures of the accretion–collisional belt in the southwestern frame of the Siberian craton. Intrusions of the complex consist of ore-bearing olivinites, kaersutite clinopyroxenites, and banded kaersutite gabbro, which have been «cut» by albitite dykes and veins. The veins and veinlets of the carbonate rocks are mainly associated with the albitites. The present paper represents the first detailed mineralogical study of carbonate rocks and albitites in the Podlysansky Massif of the Neoproterozoic Lysan alkaline–ultramafic complex. The mineral composition was determined in situ in a polished section by scanning electron microscopy, energy dispersive spectrometry, and electron probe microanalysis. The carbonate rocks of the Podlysan Massif have been found to contain minerals that are typical of siderite–carbonatites (senso stricto), including calcite, siderite, phengitic muscovite, apatite, monazite, REE fluorocarbonates, pyrite, and sphalerite. These rocks are enriched in light rare earth elements due to the presence of monazite-(Ce), bastnäsite-(Ce), parisite-(Ce), and synchysite-(Ce). The albitites were formed as a result of the fenitization of leucocratic gabbro by alkali-rich carbo-hydrothermal fluids in zones of intense development of tectonic fractures. Infiltration was the dominant mechanism of fenitization. The obtained data significantly enhance the current understanding of the geochemical and ore specialization of rocks in the Lysan Complex. Full article
Show Figures

Figure 1

24 pages, 14022 KiB  
Article
Fenitization at the Lovozero Alkaline Massif, NW Russia: Composition and Evolution of Fluids
by Olga D. Mokrushina, Julia A. Mikhailova and Yakov A. Pakhomovsky
Geosciences 2023, 13(10), 305; https://doi.org/10.3390/geosciences13100305 - 13 Oct 2023
Cited by 2 | Viewed by 2197
Abstract
The 360–370 Ma old Lovozero massif (NW Russia) is a layered nepheline syenitic-foidolitic pluton. Despite its huge size (650 km2), the massif is surrounded by a narrow fenite aureole, and the most intensive fenitization is associated with pegmatites and hydrothermal veins [...] Read more.
The 360–370 Ma old Lovozero massif (NW Russia) is a layered nepheline syenitic-foidolitic pluton. Despite its huge size (650 km2), the massif is surrounded by a narrow fenite aureole, and the most intensive fenitization is associated with pegmatites and hydrothermal veins that have intruded into the wall rocks. We studied petrography, petrochemistry, mineralogy and fluid inclusions along a profile crossing the direct contact of the Lovozero massif with country Archean gneiss. We found that the fluid responsible for fenitization was a heterogeneous mixture of two coexisting phases, an aqueous fluid with salinity 8.6–15.1 eq. wt.% NaCl and a methane fluid. The coexistence of these two fluids indicates immiscibility conditions at (or below) CH4–H2O solvus. The aqueous fluid affected both the endocontact alkaline rocks and country gneiss. In the endocontact, intense autometasomatic alterations of the early crystallized minerals occurred, for example, the natrolitization of nepheline and sodalite. Besides, the aqueous fluid transported Na2O, K2O, as well as P2O5, TiO2, H2O, F, Cl and S into the exocontact. These components were precipitated in the immediate vicinity of the massif contact, and the salinity of the aqueous fluid decreased to 0.53–3.06 eq. wt.% NaCl. We assume that there are two reasons for a narrow fenite aureole in the Lovozero massif: intense autometasomatic alterations and a decrease in the permeability of country rocks due to fluid immiscibility. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

23 pages, 18906 KiB  
Article
The Evolution of the REE-Bearing Özvatan Nepheline Syenite-Carbonatite Complex, Central Turkey: Mineralogical, Geochemical, and Stable Isotopic Approaches
by Ali Tugcan Unluer, Murat Budakoglu, Zeynep Doner and Amr Abdelnasser
Minerals 2023, 13(5), 667; https://doi.org/10.3390/min13050667 - 12 May 2023
Cited by 5 | Viewed by 3237
Abstract
Carbonatite complexes and associated fenite zones are famous for their high-grade rare metal ores. The carbonatite–fenite complexes generally contain high concentrations of light rare earth elements (LREE), thorium (Th), and uranium (U). While most carbonatites are closely related to continental rift zones, some [...] Read more.
Carbonatite complexes and associated fenite zones are famous for their high-grade rare metal ores. The carbonatite–fenite complexes generally contain high concentrations of light rare earth elements (LREE), thorium (Th), and uranium (U). While most carbonatites are closely related to continental rift zones, some complexes can be observed in post-collisional tectonic environments. The Özvatan nepheline syenite–carbonatite complex is an example of post-collisional carbonatitic magmatism in Central Anatolia, Turkey. The magmatic suite is generally composed of silica-undersaturated ultra-alkaline rocks and carbonatite dikes accompanied by high-intensity fenite zones. The carbonatites of the complex are generally dominated by coarse-grained calcite minerals accompanied by fluorite phenocrysts and may also contain minor amounts of rock-forming silicate minerals. The metasomatic aureole zones (fenites) are mainly composed of euhedral nephelines, K-feldspars, aegirines, augites, and garnets. Carbonatites of the Özvatan complex show enrichments in Ca and F with depletion of alkaline (K and Na) elements. Carbonatites and fenite zones of the Özvatan complex host a variety of incompatible elements, including La, Ce, Nd, Th, U, and Nb. The isotopic composition and general geochemical properties of carbonatites in the study area represent mantle-derived carbonatites rather than crustal limestones/skarns. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

32 pages, 8845 KiB  
Article
Petrology of Granites of the Tommot Rare-Earth Ore Field (Verkhoyansk–Kolyma Orogenic Belt)
by Vera A. Trunilina and Andrei V. Prokopiev
Minerals 2022, 12(11), 1347; https://doi.org/10.3390/min12111347 - 24 Oct 2022
Cited by 3 | Viewed by 2155
Abstract
The article presents the results of studying the aegirine–arfvedsonite granites of the Somnitelnyi massif within the Tommot ore field located in the Verkhoyansk–Kolyma orogenic belt (NE Asia). Along with the crustal signatures, the rocks display features of mantle contamination at their origin. Their [...] Read more.
The article presents the results of studying the aegirine–arfvedsonite granites of the Somnitelnyi massif within the Tommot ore field located in the Verkhoyansk–Kolyma orogenic belt (NE Asia). Along with the crustal signatures, the rocks display features of mantle contamination at their origin. Their affinity for A-type granites characteristic of continental rifts and hot spots is shown. The associated Tommot REE deposit is the only one discovered in NE Russia. New data are presented for the previously studied Tommot massif within the same ore field, with a wide compositional range from alkaline-ultrabasic rocks to alkaline syenites. It is established that despite a common geochemical enrichment of both massifs’ rocks with REEs, the Somnitelnyi massif granites cannot be interpreted as the final phase of the Tommot massif emplacement. Specific REE mineralization and high crystallization temperatures (up to 1045 °C) of the Somnitelnyi granites may be explained by the existence within the study area of an undepleted mantle source (“hot spot”), whose maximum activity occurred during the granitic melt generation. The ore bodies of the Tommot deposit consist of fenitized albitites, granite gneisses, and, more rarely, the cross-cutting pegmatite veins. They are confined mostly to exocontacts of the Somnitelnyi massif, are less often in its endocontacts, and are not found in the host rocks and in the inner part of the massif away from the contacts. Principal ore minerals are chevkinite, yttrialite, gadolinite, and fergusonite. Based on the data obtained, the deposit is classified as a metasomatic complex Ce–Y–Nb–Zr deposit associated with the alkaline granites. Full article
Show Figures

Figure 1

27 pages, 12415 KiB  
Article
Nb and REE Distribution in the Monte Verde Carbonatite–Alkaline–Agpaitic Complex (Angola)
by Sandra Amores-Casals, Antonio Olimpio Gonçalves, Joan-Carles Melgarejo and Joan Martí Molist
Minerals 2020, 10(1), 5; https://doi.org/10.3390/min10010005 - 19 Dec 2019
Cited by 12 | Viewed by 5891
Abstract
The Angolan alkaline–carbonatite complex of Monte Verde has a semi-circular shape and is comprised of a central intrusion of foidolite rocks surrounded by concentrically arranged minor bodies of other alkaline rocks and carbonatite magmatic breccias. This rock association is hosted by fenitized Eburnean [...] Read more.
The Angolan alkaline–carbonatite complex of Monte Verde has a semi-circular shape and is comprised of a central intrusion of foidolite rocks surrounded by concentrically arranged minor bodies of other alkaline rocks and carbonatite magmatic breccias. This rock association is hosted by fenitized Eburnean granites. Concentric swarms of alkaline dykes of late formation, mostly of nepheline trachyte composition, crosscut the previous units. Most high-field strength elements (HFSE) and rare earth elements (REE) are concentrated in pyrochlore crystals in the carbonatite and alkaline breccias. Magmatic fluornatropyrochlore is replaced and overgrown by five secondary generations of pyrochlore formed during subsolidus stages and have higher Th, REE, Si, U, Sr, Ba, Zr, and Ti contents. The second, third, and fourth pyrochlore generations are associated with late fluids also producing quartz and REE rich minerals; whereas fifth and sixth pyrochlore generations are linked to the fenitization process. On the other hand, minerals of the rinkite, rosenbuschite, wöhlerite, eudialyte groups, as well as loparite-(Ce), occur in accessory amounts in nepheline trachyte, recording low to moderate agpaicity. In addition, minor REE-bearing carbonates, silicates, and phosphates crystallize as late minor secondary minerals into carbonatite breccia and alkaline dykes. In conclusion, the scarcity of HFSE and REE minerals at the Monte Verde carbonatite-alkaline-agpaitic complex suggests low metallogenetic interest and economic potential for the outcrops analysed in this study. However, the potential for buried resources should not be neglected. Full article
(This article belongs to the Special Issue Mineral Deposits of Critical Elements)
Show Figures

Figure 1

30 pages, 25812 KiB  
Article
Lamprophyre-Carbonatite Magma Mingling and Subsolidus Processes as Key Controls on Critical Element Concentration in Carbonatites—The Bonga Complex (Angola)
by Sandra Amores-Casals, Joan-Carles Melgarejo, Aurora Bambi, Antonio Olimpio Gonçalves, Eduardo Alves Morais, Jose Manuel, Andre Buta Neto, Alessandra Costanzo and Joan Martí Molist
Minerals 2019, 9(10), 601; https://doi.org/10.3390/min9100601 - 30 Sep 2019
Cited by 16 | Viewed by 6102
Abstract
The Bonga complex is composed of a central carbonatite plug (with a ferrocarbonatite core) surrounded by carbonatite cone sheets and igneous breccias of carbonatitic, fenitic, phoscoritic and lamprophyric xenoliths set in a carbonatitic, lamprophyric or mingled mesostase. To reconstruct the dynamics of the [...] Read more.
The Bonga complex is composed of a central carbonatite plug (with a ferrocarbonatite core) surrounded by carbonatite cone sheets and igneous breccias of carbonatitic, fenitic, phoscoritic and lamprophyric xenoliths set in a carbonatitic, lamprophyric or mingled mesostase. To reconstruct the dynamics of the complex, the pyrochlore composition and distribution have been used as a proxy of magmatic-hydrothermal evolution of the complex. An early Na-, F-rich pyrochlore is disseminated throughout the carbonatite plug and in some concentric dykes. Crystal accumulation led to enrichment of pyrochlore crystals in the plug margins, phoscoritic units producing high-grade concentric dykes. Degassing of the carbonatite magma and fenitization reduced F and Na activity, leading to the crystallization of magmatic Na-, F- poor pyrochlore but progressively enriched in LILE and HFSE. Mingling of lamprophyric and carbonatite magmas produced explosive processes and the formation of carbonatite breccia. Pyrochlore is the main Nb carrier in mingled carbonatites and phoscorites, whereas Nb is concentrated in perovskite within mingled lamprophyres. During subsolidus processes, hydrothermal fluids produced dolomitization, ankeritization and silicification. At least three pyrochlore generations are associated with late processes, progressively enriched in HFSE, LILE and REE. In the lamprophyric units, perovskite is replaced by secondary Nb-rich perovskite and Nb-rich rutile. REE-bearing carbonates and phosphates formed only in subsolidus stages, along with late quartz; they may have been deposited due to the release of the REE from magmatic carbonates during the hydrothermal processes. Full article
(This article belongs to the Special Issue Mineral Deposits of Critical Elements)
Show Figures

Figure 1

31 pages, 17635 KiB  
Article
Petrogenesis of the Eudialyte Complex of the Lovozero Alkaline Massif (Kola Peninsula, Russia)
by Julia A. Mikhailova, Gregory Yu. Ivanyuk, Andrey O. Kalashnikov, Yakov A. Pakhomovsky, Ayya V. Bazai and Victor N. Yakovenchuk
Minerals 2019, 9(10), 581; https://doi.org/10.3390/min9100581 - 25 Sep 2019
Cited by 22 | Viewed by 4646
Abstract
The Lovozero Alkaline Massif intruded through the Archaean granite-gneiss and Devonian volcaniclastic rocks about 360 million years ago, and formed a large (20 × 30 km) laccolith-type body, rhythmically layered in its lower part (the Layered Complex) and indistinctly layered and enriched in [...] Read more.
The Lovozero Alkaline Massif intruded through the Archaean granite-gneiss and Devonian volcaniclastic rocks about 360 million years ago, and formed a large (20 × 30 km) laccolith-type body, rhythmically layered in its lower part (the Layered Complex) and indistinctly layered and enriched in eudialyte-group minerals in its upper part (the Eudialyte Complex). The Eudialyte Complex is composed of two groups of rocks. Among the hypersolvus meso-melanocratic alkaline rocks (mainly malignite, as well as shonkinite, melteigite, and ijolite enriched with the eudialyte-group minerals, EGM), there are lenses of subsolvus leucocratic rocks (foyaite, fine-grained nepheline syenite, urtite with phosphorus mineralization, and primary lovozerite-group minerals). Leucocratic rocks were formed in the process of the fractional crystallization of melanocratic melt enriched in Fe, high field strength elements (HFSE), and halogens. The fractionation of the melanocratic melt proceeded in the direction of an enrichment in nepheline and a decrease in the aegirine content. A similar fractionation path occurs in the Na2O-Al2O3-Fe2O3-SiO2 system, where the melt of the “ijolite” type (approximately 50% of aegirine) evolves towards “phonolitic eutectic” (approximately 10% of aegirine). The temperature of the crystallization of subsolvus leucocratic rocks was about 550 °C. Hypersolvus meso-melanocratic rocks were formed at temperatures of 700–350 °C, with a gradual transition from an almost anhydrous HFSE-Fe-Cl/F-rich alkaline melt to a Na(Cl, F)-rich water solution. Devonian volcaniclastic rocks underwent metasomatic treatment of varying intensity and survived in the Eudialyte Complex, some remaining unchanged and some turning into nepheline syenites. In these rocks, there are signs of a gradual increase in the intensity of alkaline metasomatism, including a wide variety of zirconium phases. The relatively high fugacity of fluorine favored an early formation of zircon in apo-basalt metasomatites. The ensuing crystallization of aegirine in the metasomatites led to an increase in alkali content relative to silicon and parakeldyshite formation. After that, EGM was formed, under the influence of Ca-rich solutions produced by basalt fenitization. Full article
Show Figures

Figure 1

22 pages, 12867 KiB  
Article
Magmatic-Hydrothermal Processes Associated with Rare Earth Element Enrichment in the Kangankunde Carbonatite Complex, Malawi
by Frances Chikanda, Tsubasa Otake, Yoko Ohtomo, Akane Ito, Takaomi D. Yokoyama and Tsutomu Sato
Minerals 2019, 9(7), 442; https://doi.org/10.3390/min9070442 - 18 Jul 2019
Cited by 21 | Viewed by 9562
Abstract
Carbonatites undergo various magmatic-hydrothermal processes during their evolution that are important for the enrichment of rare earth elements (REE). This geochemical, petrographic, and multi-isotope study on the Kangankunde carbonatite, the largest light REE resource in the Chilwa Alkaline Province in Malawi, clarifies the [...] Read more.
Carbonatites undergo various magmatic-hydrothermal processes during their evolution that are important for the enrichment of rare earth elements (REE). This geochemical, petrographic, and multi-isotope study on the Kangankunde carbonatite, the largest light REE resource in the Chilwa Alkaline Province in Malawi, clarifies the critical stages of REE mineralization in this deposit. The δ56Fe values of most of the carbonatite lies within the magmatic field despite variations in the proportions of monazite, ankerite, and ferroan dolomite. Exsolution of a hydrothermal fluid from the carbonatite melts is evident based on the higher δ56Fe of the fenites, as well as the textural and compositional zoning in monazite. Field and petrographic observations, combined with geochemical data (REE patterns, and Fe, C, and O isotopes), suggest that the key stage of REE mineralization in the Kangankunde carbonatite was the late magmatic stage with an influence of carbothermal fluids i.e. magmatic–hydrothermal stage, when large (~200 µm), well-developed monazite crystals grew. The C and O isotope compositions of the carbonatite suggest a post-magmatic alteration by hydrothermal fluids, probably after the main REE mineralization stage, as the alteration occurs throughout the carbonatite but particularly in the dark carbonatites. Full article
Show Figures

Figure 1

16 pages, 6512 KiB  
Article
Microstructural Evolution of Reaction Layer of 1.5 GPa Boron Steel Hot-Dipped in Al-7wt%Ni-6wt%Si Alloy
by Jeong-Yong Lee, Hoejun Heo, Namhyun Kang and Chung-Yun Kang
Metals 2018, 8(12), 1069; https://doi.org/10.3390/met8121069 - 15 Dec 2018
Cited by 3 | Viewed by 3271
Abstract
The constituents, distribution, and characteristics of the phases formed on the coating layer of boron steel hot-dipped in Al-7wt%Ni-6wt%Si were evaluated in detail. In particular, the microstructure and phase constitution of the reaction layer were characterized. Moreover, the microstructural evolution mechanism of the [...] Read more.
The constituents, distribution, and characteristics of the phases formed on the coating layer of boron steel hot-dipped in Al-7wt%Ni-6wt%Si were evaluated in detail. In particular, the microstructure and phase constitution of the reaction layer were characterized. Moreover, the microstructural evolution mechanism of the phase was presented with reference to the (Al-7wt%Ni-6wt%Si)-xFe from the pseudo-binary phase diagram. The solidification layer consisted mainly of Al, Al3Ni, and Si phases. Reaction layers were formed in the order of Al9FeNi(Τ), Fe4Al13(θ), and Fe2Al5(η) from the solidification layer side. In addition, the κ (Fe3AlC) layer was formed at the Fe2Al5(η)/steel interface. From pseudo-binary phase diagram analysis, it was found that Fe4Al13(θ) can form when the Fe concentration is over 2.63 wt% in the 690 °C Al-7wt%Ni-6wt%Si molten metal. When the concentration of Fe increased to 10.0–29.0 wt%, isothermal solidification occurred in the Fe4Al13(θ) and Al9FeNi(Τ) phases simultaneously. Moreover, given that the T phase does not dissolve Si, it was discharged, and the Si phase was formed around the Al9FeNi(T) phase. The Fe2Al5(η) phase was formed by a diffusion reaction between Fe4Al13(θ) and steel, not a dissolution reaction. Moreover, Al2Fe3Si31) was formed at the Fe4Al13(θ)-Fe2Al5(η) interface by discharging Si from Fe4Al13(θ) without Si solubility. Furthermore, the Fe3AlC(κ) layer was formed by carbon accumulation that discharged in the Fe2Al5(η) region transformed from steel to Fe2Al5(η). The twin regions in the Fe4Al13(θ) and Fe2Al5(η) grain were due to the strains caused by the lattice transformation in the constrained state, wherein the phases are present between the Al9FeNi(Τ) layer and steel. Full article
Show Figures

Figure 1

14 pages, 3047 KiB  
Article
On the Chemical Composition and Possible Origin of Na–Cr-Rich Clinopyroxene in Silicocarbonatites from Samalpatti, Tamil Nadu, South India
by Ondřej Krátký, Vladislav Rapprich, Martin Racek, Jitka Míková and Tomáš Magna
Minerals 2018, 8(8), 355; https://doi.org/10.3390/min8080355 - 17 Aug 2018
Cited by 7 | Viewed by 5271
Abstract
Mineralogical and chemical data are presented for a suite of Na–Cr-rich clinopyroxenes associated with chromite, winchite (sodium-calcium amphibole), titanite and calcite in Mg-Cr-rich silicocarbonatites from the Samalpatti carbonatite complex, Tamil Nadu, South India. The Mg-Cr-rich silicocarbonatites occur as 10–30 cm large enclaves in [...] Read more.
Mineralogical and chemical data are presented for a suite of Na–Cr-rich clinopyroxenes associated with chromite, winchite (sodium-calcium amphibole), titanite and calcite in Mg-Cr-rich silicocarbonatites from the Samalpatti carbonatite complex, Tamil Nadu, South India. The Mg-Cr-rich silicocarbonatites occur as 10–30 cm large enclaves in pyroxenites. The chemical composition of the pyroxenes differs among individual enclaves, with variable proportions of diopside, kosmochlor and jadeite-aegirine end-members. These compositions fill a previously unoccupied space in the kosmochlor-diopside-jadeite+aegirine ternary plot, indicating a distinct origin of kosmochlor-rich pyroxene compared with previous findings from diverse settings. The Na–Cr-rich clinopyroxene has low ΣREE = 9.2 ppm, with slight enrichment in LREE (LaN = 7), coupled with low HREE (YbN = 0.6), and flat HREE, paralleled by a significant fractionation of Nb/Ta (2408) and Th/U (26.5). Sodic metasomatism (fenitization) associated with either carbonatite emplacement at shallow levels or during carbonatite ascent through the upper mantle most likely was the major process operating in the area. We suggest two scenarios of the formation of Na–Cr-rich pyroxene: (1) from mantle-derived chromian mineral phases (spinel and/or garnet) through fenitization, with subsequent corrosion by growing winchite due to volatile influx; (2) via metasomatic reaction of Cr-rich garnet in mantle peridotite due to reaction with Na-rich carbonatite melt. Collectively, the appearance of kosmochlor may play an important role in deconvolving metasomatic processes, and fenitization in particular. If combined with petrologic experiments, it could improve our understanding of the origin and subsequent history of chemical signatures of carbonate-rich materials in the mantle. Full article
Show Figures

Figure 1

20 pages, 4185 KiB  
Article
Remote Sensing Exploration of Nb-Ta-LREE-Enriched Carbonatite (Epembe/Namibia)
by Robert Zimmermann, Melanie Brandmeier, Louis Andreani, Kombada Mhopjeni and Richard Gloaguen
Remote Sens. 2016, 8(8), 620; https://doi.org/10.3390/rs8080620 - 28 Jul 2016
Cited by 41 | Viewed by 8441
Abstract
On the example of the Epembe carbonatite-hosted Nb-Ta-LREE deposit, we demonstrate the use of hyperspectral reflectance data and geomorphic indicators for improving the accuracy of remote sensing exploration data of structurally-controlled critical raw material deposits. The results further show how exploration can benefit [...] Read more.
On the example of the Epembe carbonatite-hosted Nb-Ta-LREE deposit, we demonstrate the use of hyperspectral reflectance data and geomorphic indicators for improving the accuracy of remote sensing exploration data of structurally-controlled critical raw material deposits. The results further show how exploration can benefit from a combination of expert knowledge and remotely-sensed relief, as well as imaging data. In the first stage, multi-source remote sensing data were used in lithological mapping based on Kohonen Self-Organizing Maps (SOM). We exemplify that morphological indices, such as Topographic Position Index (TPI), and spatial coordinates are crucial parameters to improve the accuracy of carbonate classification as much as 10%. The resulting lithological map shows the spatial distribution of the ridge forming carbonatite dyke, the fenitization zone, syenite plugs and mafic intrusions. In a second step, the internal zones of the carbonatite complex were identified using the Multi-Range Spectral Feature Fitting (MRSFF) algorithm and a specific decision tree. This approach allowed detecting potential enrichment zones characterized by an abundance of fluorapatite and pyroxene, as well as dolomite-carbonatite (beforsite). Cross-validation of the mineral map with field observations and radiometric data confirms the accuracy of the proposed method. Full article
Show Figures

Graphical abstract

Back to TopTop