On the Chemical Composition and Possible Origin of Na–Cr-Rich Clinopyroxene in Silicocarbonatites from Samalpatti, Tamil Nadu, South India
Abstract
:1. Introduction
2. Geological Setting
3. Methods
4. Results
4.1. Association and Crystal Shape
4.2. Mineral Chemistry
5. Discussion and Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zussman, J.; Aoki, K.; Gottardi, G. Nomenclature of pyroxenes. Miner. Petrol. 1988, 73, 1123–1133. [Google Scholar]
- Reznitsky, L.Z.; Sklyarov, E.; Galuskin, E. Complete isomorphic join diopside–kosmochlor CaMgSi2O6–NaCrSi2O6 in metamorphic rocks of the Sludyanka complex (southern Baikal region). Russ. Geol. Geophys. 2011, 52, 40–51. [Google Scholar] [CrossRef]
- Laspeyres, H. Die steinigen Gemengtheile im Meteoreisen von Toluca in Mexico. Z. für Kryst. Mineral. 1897, 27, 586–600. [Google Scholar]
- Frondel, C.; Klein, C., Jr. Ureyite, NaCr2Si2O6, a new meteoritic pyroxene. Science 1965, 149, 742–744. [Google Scholar] [CrossRef] [PubMed]
- Couper, A.G.; Hey, M.H.; Hutchison, R. Cosmochlore: A new examination. Mineral. Mag. 1981, 44, 265–267. [Google Scholar] [CrossRef]
- Zinovieva, N.G.; Mitreikina, O.B.; Granovsky, L.B. Matrix Material of the Yamato-74417 Ordinary Chondrite (L3). In Proceedings of the 30th Annual Lunar and Planetary Science Conference, Houston, TX, USA, 15–29 March 1999. Abstract No. 1019. [Google Scholar]
- Joswiak, D.J.; Brownlee, D.E.; Matrajt, G.; Westphal, A.J.; Snead, C.J. Kosmochloric Ca-rich pyroxenes and FeO-rich olivines (Kool grains) and associated phases in Stardust tracks and chondritic porous interplanetary dust particles: Possible precursors to FeO-rich type II chondrules in ordinary chondrites. Meteorit. Planet. Sci. 2009, 44, 1561–1588. [Google Scholar] [CrossRef]
- Gainsforth, Z.; Butterworth, A.L.; Stodolna, J.; Westphal, A.J.; Huss, G.R.; Nagashima, K.; Ogliore, R.; Brownlee, D.E.; Joswiak, D.; Tyliszczak, T.; et al. Constraints on the formation environment of two chondrule-like igneous particles from comet 81P/Wild 2. Meteorit. Planet. Sci. 2015, 50, 976–1004. [Google Scholar] [CrossRef]
- Wooden, D.H.; Ishii, H.A.; Zolensky, M.E. Cometary dust: The diversity of primitive refractory grains. Philos. Trans. R. Soc. A 2017, 375. [Google Scholar] [CrossRef] [PubMed]
- Mével, C.; Kiénastr, J.R. Chromian jadeite, phengite, pumpellyite and lawsonite in high-pressure metamorphosed gabbro from the French Alps. Mineral. Mag. 1980, 43, 979–984. [Google Scholar] [CrossRef]
- Yang, C.M.O. A terrestrial source of ureyite. Am. Mineral. 1984, 69, 1180–1183. [Google Scholar]
- Liu, X.C.; Zhou, H.Y.; Ma, Z.S.; Chang, L.H. Chrome-rich clinopyroxene in orthopyroxenite from Maowu, Dabie Mountains, central China: A second record and its implications for petrogenesis. Isl. Arc 1998, 7, 135–141. [Google Scholar] [CrossRef]
- Sobolev, V.N.; Taylor, L.A.; Snyder, G.A.; Sobolev, N.V.; Pokhilenko, N.P.; Kharkiv, A.D. A unique metasomatized peridotite xenolith from the Mir kimberlite pipe (Yakutia). Geol. Geofiz. 1997, 38, 206–215. [Google Scholar]
- Reznitskij, L.Z.; Sklyarov, E.V.; Karmanov, N.S. The first occurrence of kosmochlor (ureyite) in metasediments. Proc. USSR Acad. Sci. 1999, 364, 523–526. [Google Scholar]
- Sobolev, V.S.; Sobolev, N.V.; Lavarnt’eva, U.Y.G. Chrome-rich clinopyroxenes from the kimberlities of Yakutia. Neues Jahrbuch für Mineralogie 1975, 123, 213–218. [Google Scholar]
- Ackerman, L.; Magna, T.; Rapprich, V.; Upadhyay, D.; Krátký, O.; Čejková, O.; Erban, V.; Kochergina, Y.V.; Hrstka, T. Contrasting petrogenesis of temporally related carbonatites from Samalpatti and Sevattur, Tamil Nadu, India. Lithos 2017, 284–285, 257–275. [Google Scholar] [CrossRef]
- Moralev, V.M.; Voronovski, S.N.; Borodin, L.S. New findings about the age of carbonatites and syenites from southern India. USSR Acad. Sci. 1975, 222, 46–48. [Google Scholar]
- Udas, G.R.; Krishnamurthy, P. Carbonatites of Sevathur and Jokipatti, Madras State, India. Proc. Indian Natl. Sci. Acad. 1970, 36, 331–343. [Google Scholar]
- Viladkar, S.G.; Subramanian, V. Mineralogy and geochemistry of the carbonatites of the Sevathur and Samalpatti complexes, Tamil Nadu. J. Geol. Soc. India 1995, 45, 505–517. [Google Scholar]
- Grady, C. Deep main faults in south India. J. Geol. Soc. India 1971, 12, 52–62. [Google Scholar]
- Srivastava, R.K. Petrology of the Proterozoic alkaline carbonatite complex of Samalpatti, district Dharmapuri, Tamil Nadu. J. Geol. Soc. India 1998, 51, 233–244. [Google Scholar]
- Subramanian, V.; Viladkar, S.G.; Upendran, R. Carbonatite alkali complex of Samalpatti, Dharmapuri district, Tamil Nadu. J. Geol. Soc. India 1978, 19, 206–216. [Google Scholar]
- Schleicher, H.; Kramm, U.; Pernicka, E.; Schidlowski, M.; Schmidt, F.; Subramanian, V.; Todt, W.; Viladkar, S.G. Enriched subcontinental upper mantle beneath southern India; evidence from Pb, Nd, Sr and C-O isotopic studies on Tamil Nadu Carbonatites. J. Petrol. 1998, 39, 1765–1785. [Google Scholar] [CrossRef]
- Vieten, K.; Hamm, H.M. Additional notes on the calculation of the crystal chemical formula of clinopyroxenes and their contents of Fe3+ from microprobe analyses. Neues Jahrbuch für Mineralogie 1978, 2, 71–83. [Google Scholar]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Sakamoto, S.; Takasu, A. Kosmochlor from the Osayama ultramafic body in the Sangun metamorphic belt, southwest Japan. J. Geol. Soc. Jpn 1996, 102, 49–52. [Google Scholar] [CrossRef]
- Ikehata, K.; Arai, S. Metasomatic formation of kosmochlor-bearing diopside in peridotite xenoliths from North Island, New Zealand. Am. Mineral. 2004, 89, 1396–1404. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of the elements: Meteoric and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Fu, Y.; Sun, X.M.; Zhou, H.Y.; Lin, H.; Yang, T.J. In-situ LA-ICP-MS U–Pb geochronology and trace elements analysis of polygenetic titanite from the giant Beiya gold–polymetallic deposit in Yunnan Province, Southwest China. Ore Geol. Rev. 2016, 77, 43–56. [Google Scholar] [CrossRef]
- Maruskova, K.; Had, J.; Maryska, M.; Sanda, L.; Hlavac, J. High-temperature reactions of sodium chromate with silica. Ceram. Silik. 1997, 41, 105–111. [Google Scholar]
- Vasil’ev, E.P.; Reznitsky, L.Z.; Vishnyakov, V.N.; Nekrasova, E.A. The Sludyanka Metamorphic Complex; Nauka: Novosibirsk, Russia, 1981. (In Russian) [Google Scholar]
- Shi, G.H.; Stockhert, B.; Cui, W.Y. Kosmochlor and chromian jadeite aggregates from the Myanmar jadeitite area. Mineral. Mag. 2005, 69, 1059–1075. [Google Scholar] [CrossRef]
- Rosenthal, A.; Yaxley, G.M.; Green, D.H.; Hermann, J.; Kovacs, I.; Spandler, C. Continuous eclogite melting and variable refertilisation in upwelling heterogeneous mantle. Sci. Rep. 2014, 4, 6099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gittins, J. The origin and evolution of carbonatite magmas. In Carbonatites: Genesis and Evolution; Bell, K., Ed.; Unwin Hyman Ltd.: London, UK, 1989; pp. 580–600. [Google Scholar]
- Lian, D.; Yang, J.; Dilek, Y.; Wu, W.; Zhang, Z.; Xiong, F.; Liu, F.; Zhou, W. Deep mantle origin and ultra-reducing conditions in podiform chromitite: Diamond, moissanite, and other unusual minerals in podiform chromitites from the Pozanti-Karsanti ophiolite, southern Turkey. Am. Mineral. 2017, 102, 1101–1113. [Google Scholar]
- Rapprich, V.; Pécskay, Z.; Magna, T.; Míková, J. Age disparity for spatially related Sevattur and Samalpatti carbonatite complexes. In Proceedings of the Goldschmidt 2017 Conference #3280, Paris, France, 13–18 August 2017. [Google Scholar]
- Maibam, B.; Foley, S.; Luguet, A.; Jacob, D.E.; Singh, T.B.; Ray, D.; Panda, D.K.; Keppler, R. Characterisation of chromites, chromite hosted inclusions of silicates and metal alloys in chromitites from the Indo-Myanmar ophiolite belt of Northeastern India. Ore Geol. Rev. 2017, 90, 260–273. [Google Scholar] [CrossRef]
- Latypov, R.; Costin, G.; Chistyakova, S.; Hunt, E.J.; Mukherjee, R.; Naldrett, T. Platinum-bearing chromite layers are caused by pressure reduction during magma ascent. Nat. Commun. 2018, 9, 462. [Google Scholar] [CrossRef] [PubMed]
- Na, L.; Nimis, P.; Zanetti, A.; Sobolev, N.V.; Marzoli, A. Geochemistry of garnets and clinopyroxenes in microxenoliths from the Zagadochnaya kimberlite (Yakutia, Russia). Plinius 2010, 36, 311. [Google Scholar]
- Seyler, M.; Brunelli, D. Sodium chromium covariation in residual clinopyroxenes from abyssal peridotites sampled in the 43°–46° E region of the Southwest Indian Ridge. Lithos 2018, 302, 142–157. [Google Scholar] [CrossRef]
Sample | IC03B | IC03C | IC03D | IC03E | IC03F | IC03G | IC04A | |
---|---|---|---|---|---|---|---|---|
Mineral Phase | Na–Cr–Px | Na–Cr–Px | Na–Cr–Px | Na–Cr–Px | Na–Cr–Px | Na–Cr–Px | Na–Cr–Px | |
SiO2 | 53.69 | 52.56 | 53.53 | 52.72 | 53.44 | 54.15 | 53.75 | |
TiO2 | 0.41 | 0.40 | 4.61 | 0.20 | 0.30 | 0.21 | 0.26 | |
Al2O3 | 0.8 | 0.89 | 1.05 | 1.03 | 1.09 | 1.02 | 0.82 | |
Cr2O3 | 12.38 | 9.09 | 14.43 | 8.83 | 7.15 | 2.20 | 14.61 | |
FeO | 7.38 | 15.24 | 6.49 | 12.46 | 9.21 | 9.72 | 6.02 | |
MnO | 0.02 | 0.06 | 0.04 | 0.02 | 0.07 | 0.04 | 0.04 | |
MgO | 6.16 | 3.12 | 2.84 | 4.71 | 7.69 | 9.35 | 5.62 | |
CaO | 9.38 | 5.50 | 2.41 | 8.19 | 11.46 | 16.17 | 8.57 | |
Na2O | 8.77 | 10.06 | 11.86 | 8.87 | 7.03 | 5.18 | 9.13 | |
K2O | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Total | 98.99 | 96.94 | 97.26 | 97.03 | 97.44 | 98.04 | 98.82 | |
T | Si | 2.00 | 2.02 | 2.04 | 2.02 | 2.02 | 2.03 | 2.01 |
M1 | Al | 0.04 | 0.04 | 0.05 | 0.05 | 0.05 | 0.05 | 0.04 |
Ti | 0.01 | 0.01 | 0.13 | 0.01 | 0.01 | 0.01 | 0.01 | |
Cr | 0.37 | 0.28 | 0.44 | 0.27 | 0.21 | 0.07 | 0.43 | |
Fe3+ | 0.20 | 0.37 | 0.05 | 0.30 | 0.19 | 0.20 | 0.15 | |
Mg | 0.34 | 0.18 | 0.16 | 0.27 | 0.43 | 0.52 | 0.31 | |
Fe2+ | 0.03 | 0.13 | 0.16 | 0.10 | 0.10 | 0.11 | 0.04 | |
M2 | Mn | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ca | 0.38 | 0.23 | 0.10 | 0.34 | 0.46 | 0.65 | 0.34 | |
Na | 0.63 | 0.75 | 0.88 | 0.66 | 0.52 | 0.38 | 0.66 |
Na–Cr-Rich Pyroxene | Titanite | Titanite | Titanite | Titanite | Amphibole | Amphibole | Amphibole | |
---|---|---|---|---|---|---|---|---|
Li | 12.0 | 8.91 | bdl | bdl | bdl | bdl | 8.80 | bdl |
Be | 4.31 | bdl | bdl | 0.46 | bdl | 1.32 | 0.94 | 0.97 |
Sc | 20.6 | 3.79 | 1.20 | 1.75 | 17.0 | 50.6 | 41.3 | 33.0 |
Ti | 6134 | 155,064 | 151,645 | 154,576 | 243,407 | 434 | 731 | 489 |
V | 239 | 112 | 53.1 | 20.6 | 303 | 92.5 | 52.6 | 48.4 |
Cr | 118,478 | 832 | 847 | 837 | 14,510 | 3508 | 1703 | 2204 |
Co | 52.4 | 3.89 | 0.85 | 2.27 | 15.6 | 55.0 | 38.3 | 28.8 |
Ni | 48.0 | 26.8 | 5.38 | 10.7 | 86.0 | 284 | 178 | 151 |
Cu | 1.43 | 1.53 | 0.85 | 0.54 | 1.95 | 2.10 | 2.28 | 2.36 |
Zn | 2193 | 6.88 | 3.45 | 4.45 | 80.0 | 55.5 | 39.9 | 29.6 |
Ga | 5.02 | 2.13 | 1.99 | 1.62 | 4.96 | 2.11 | 1.69 | 1.22 |
Rb | 0.26 | 0.18 | 0.15 | bdl | 0.33 | 0.46 | 0.42 | 0.30 |
Sr | 2.96 | 294 | 249 | 164 | 128 | 13.1 | 27.8 | 70.3 |
Y | 0.70 | 50.7 | 41.1 | 35.1 | 78.6 | 0.45 | 0.59 | 2.53 |
Zr | 23.6 | 25.8 | 10.6 | 10.6 | 57.1 | 2.51 | 4.36 | 2.47 |
Nb | 6.02 | 1214 | 1261 | 1385 | 1137 | 0.43 | 1.23 | 0.68 |
Ba | 91.4 | 376 | 319 | 191 | 153 | 15.7 | 44.0 | 101 |
La | 1.70 | 83.7 | 41.1 | 27.6 | 126 | 0.16 | 0.58 | 1.19 |
Ce | 3.83 | 284 | 231 | 176 | 474 | 0.66 | 1.38 | 4.83 |
Pr | 0.42 | 48.7 | 51.8 | 41.6 | 90.6 | 0.085 | 0.17 | 0.75 |
Nd | 2.09 | 244 | 264 | 225 | 464 | 0.56 | 0.83 | 3.43 |
Sm | 0.39 | 62.3 | 75.3 | 61.9 | 128 | 0.19 | 0.50 | 0.68 |
Eu | 0.097 | 15.1 | 19.5 | 16.2 | 33.3 | 0.021 | 0.052 | 0.25 |
Gd | 0.26 | 35.5 | 40.2 | 33.1 | 71.9 | 0.073 | 0.26 | 1.00 |
Tb | 0.046 | 4.02 | 4.43 | 3.80 | 7.77 | bdl | 0.035 | 0.10 |
Dy | 0.14 | 18.1 | 19.5 | 15.3 | 35.9 | bdl | 0.16 | 0.50 |
Ho | 0.027 | 2.49 | 2.11 | 1.65 | 4.00 | bdl | bdl | 0.097 |
Er | 0.086 | 4.44 | 3.69 | 2.60 | 7.53 | 0.06 | 0.083 | 0.24 |
Tm | 0.017 | 0.51 | 0.36 | 0.27 | 0.75 | bdl | bdl | 0.038 |
Yb | 0.085 | 2.54 | 1.38 | 1.05 | 3.20 | 0.096 | 0.19 | 0.13 |
Lu | bdl | 0.26 | 0.098 | 0.057 | 0.30 | 0.027 | 0.026 | 0.046 |
Hf | 0.85 | 0.75 | 0.43 | 0.76 | 2.93 | 0.080 | 0.17 | 0.10 |
Ta | 0.003 | 2.57 | 1.62 | 1.83 | 2.18 | 0.006 | bdl | bdl |
W | 0.12 | 0.40 | 0.50 | 0.046 | 0.72 | bdl | bdl | 0.032 |
Pb | 10.5 | 18.2 | 22.2 | 9.17 | 19.3 | 4.75 | 5.36 | 6.62 |
Th | 6.91 | 12.4 | 6.09 | 3.48 | 18.8 | 0.11 | 0.22 | 0.19 |
U | 0.26 | 1.95 | 1.31 | 0.50 | 2.08 | 0.067 | bdl | 0.056 |
ΣREE | 9.19 | 805 | 754 | 607 | 1448 | 1.93 | 4.26 | 13.3 |
Sample | IC03F | IC03F | IC03G | IC03G | IC03G | |
---|---|---|---|---|---|---|
Mineral Phase | Chromite | Chromite | Chromite | Chromite | Chromite | |
SiO2 | 1.17 | 2.38 | 0.30 | 0.09 | 4.76 | |
TiO2 | 0.56 | 0.21 | 0.76 | 0.59 | 0.63 | |
Al2O3 | 0.67 | 0.64 | 0.50 | 0.39 | 0.83 | |
Cr2O3 | 48.90 | 53.36 | 44.91 | 36.09 | 40.64 | |
FeO | 37.35 | 30.61 | 45.36 | 51.46 | 40.48 | |
MnO | 4.04 | 3.47 | 2.86 | 2.93 | 2.48 | |
MgO | 0.62 | 0.47 | 0.18 | 0.19 | 1.26 | |
CaO | 0.47 | 0.74 | 0.31 | 0.61 | 0.48 | |
Na2O | 0.00 | 0.19 | 0.00 | 0.00 | 0.02 | |
K2O | 0.04 | 0.07 | 0.02 | 0.00 | 0.07 | |
Total | 93.80 | 92.15 | 95.23 | 92.35 | 91.65 | |
XMg (mol %) | 3.23 | 2.80 | 0.68 | 0.58 | 5.63 | |
M1 | Fe2+ | 0.84 | 0.86 | 0.92 | 0.91 | 0.85 |
Mn | 0.14 | 0.12 | 0.09 | 0.10 | 0.09 | |
Mg | 0.04 | 0.03 | 0.01 | 0.01 | 0.08 | |
M2 | Fe3+ | 0.40 | 0.21 | 0.55 | 0.81 | 0.57 |
Cr | 1.54 | 1.75 | 1.38 | 1.14 | 1.35 | |
Ti | 0.02 | 0.01 | 0.02 | 0.02 | 0.02 | |
Al | 0.03 | 0.03 | 0.02 | 0.02 | 0.04 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krátký, O.; Rapprich, V.; Racek, M.; Míková, J.; Magna, T. On the Chemical Composition and Possible Origin of Na–Cr-Rich Clinopyroxene in Silicocarbonatites from Samalpatti, Tamil Nadu, South India. Minerals 2018, 8, 355. https://doi.org/10.3390/min8080355
Krátký O, Rapprich V, Racek M, Míková J, Magna T. On the Chemical Composition and Possible Origin of Na–Cr-Rich Clinopyroxene in Silicocarbonatites from Samalpatti, Tamil Nadu, South India. Minerals. 2018; 8(8):355. https://doi.org/10.3390/min8080355
Chicago/Turabian StyleKrátký, Ondřej, Vladislav Rapprich, Martin Racek, Jitka Míková, and Tomáš Magna. 2018. "On the Chemical Composition and Possible Origin of Na–Cr-Rich Clinopyroxene in Silicocarbonatites from Samalpatti, Tamil Nadu, South India" Minerals 8, no. 8: 355. https://doi.org/10.3390/min8080355
APA StyleKrátký, O., Rapprich, V., Racek, M., Míková, J., & Magna, T. (2018). On the Chemical Composition and Possible Origin of Na–Cr-Rich Clinopyroxene in Silicocarbonatites from Samalpatti, Tamil Nadu, South India. Minerals, 8(8), 355. https://doi.org/10.3390/min8080355