Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = female heterogamety

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2448 KB  
Article
Differentiation of Dmrt1 Z and W Homologs Occurred Independently in Two Gekko hokouensis Populations
by Momoka Senga, Nao Kaneko, Yoichi Matsuda and Kazumi Matsubara
Biomolecules 2025, 15(9), 1293; https://doi.org/10.3390/biom15091293 - 8 Sep 2025
Viewed by 856
Abstract
Gekko hokouensis is a gecko species widely distributed across East Asia. Although most of the Japanese populations possess ZW sex chromosomes (female heterogamety), the degree of sex chromosome differentiation varies among populations. The gene encoding for Dmrt1, a transcription factor involved in testis [...] Read more.
Gekko hokouensis is a gecko species widely distributed across East Asia. Although most of the Japanese populations possess ZW sex chromosomes (female heterogamety), the degree of sex chromosome differentiation varies among populations. The gene encoding for Dmrt1, a transcription factor involved in testis development in vertebrates, is located on the Z and W sex chromosomes of this species and is therefore a candidate of the sex-determining gene. In this study, we investigated the gene structure of the Z and W homologs of Dmrt1 in two populations of Gekko hokouensis from the Ishigaki Island and Okinawa Island. In the Ishigaki population, the ZW chromosome pair is morphologically undifferentiated, whereas in the Okinawa population the ZW pair is heteromorphic. In the Okinawa population, promoter and exon sequences were nearly identical between the Z and W homologs, and no non-synonymous substitution was detected. In contrast, the W homolog in the Ishigaki population exhibited 42 bp and 12 bp deletions in exon 2. The predicted three-dimensional protein structure revealed a rearrangement of the C-terminal region in the W homolog that may interfere with target site binding. These results indicate that differentiation between Z and W homologs of Dmrt1 has occurred independently in each population. Our findings highlight the diversity of sex chromosome evolution and sex-determining mechanisms even within a single species. Full article
(This article belongs to the Special Issue Molecular Insights into Sex and Evolution)
Show Figures

Figure 1

19 pages, 619 KB  
Review
Sex Chromosome Dosage Compensation in Insects
by Xingcheng Xie, Yakun Zhang, Heyuan Peng and Zhongyuan Deng
Insects 2025, 16(2), 160; https://doi.org/10.3390/insects16020160 - 4 Feb 2025
Cited by 1 | Viewed by 2986
Abstract
Dosage compensation (DC) is of crucial importance in balancing the sex-linked gene expression between males and females. It serves to guarantee that the proteins or other enzymatic products encoded by the sex chromosome exhibit quantitative parity between the two genders. During the evolutionary [...] Read more.
Dosage compensation (DC) is of crucial importance in balancing the sex-linked gene expression between males and females. It serves to guarantee that the proteins or other enzymatic products encoded by the sex chromosome exhibit quantitative parity between the two genders. During the evolutionary process of achieving dose compensation, insects have developed a wide variety of mechanisms. There exist two primary modes of dosage compensation mechanisms, including the up-regulation of heterogametic sex chromosomes in the heterogamety and down-regulation of homogametic sex chromosomes in the homogamety. Although extensive investigations have been conducted on dosage compensation in model insects, many questions still remain unresolved. Meanwhile, research on non-model insects is attracting increasing attention. This paper systematically summarizes the current advances in the field of insect dosage compensation with respect to its types and mechanisms. The principal insects involved in this study include the Drosophila melanogaster, Tribolium castaneum, Bombyx mori, and other lepidopteran insects. This paper analyzes the controversial issues about insect dosage compensation and also provides prospects for future research. Full article
(This article belongs to the Special Issue Research on Insect Molecular Biology)
Show Figures

Figure 1

16 pages, 7244 KB  
Article
Disruption of Sex-Linked Sox3 Causes ZW Female-to-Male Sex Reversal in the Japanese Frog Glandirana rugosa
by Ikuo Miura, Yoshinori Hasegawa, Michihiko Ito, Tariq Ezaz and Mitsuaki Ogata
Biomolecules 2024, 14(12), 1566; https://doi.org/10.3390/biom14121566 - 9 Dec 2024
Cited by 1 | Viewed by 7627
Abstract
Sox3 is an ancestral homologous gene of the male-determining Sry in eutherian mammals and determines maleness in medaka fish. In the Japanese frog, Glandirana rugosa, Sox3 is located on the Z and W chromosomes. To assess the sex-determining function of Sox3 in [...] Read more.
Sox3 is an ancestral homologous gene of the male-determining Sry in eutherian mammals and determines maleness in medaka fish. In the Japanese frog, Glandirana rugosa, Sox3 is located on the Z and W chromosomes. To assess the sex-determining function of Sox3 in this frog, we investigated its expression in gonads during early tadpole development and conducted genome-editing experiments. We found that the Sox3 mRNA levels in the gonads/mesonephroi were much higher in ZW females than that in ZZ males, and that the W-borne allele was dominantly expressed. A higher expression in ZW females preceded the onset of the sexually dimorphic expression of other autosomal sex differentiation genes. The Sox3 protein was detected by immunostaining in the somatic cells of early tadpole gonads around the boundary between the medulla and cortex in ZW females, whereas it was outside the gonads in ZZ males. Disrupting Sox3 using TALEN, which targets two distinct sites, generated sex-reversed ZW males and hermaphrodites, whereas no sex reversal was observed in ZZ males. These results suggest that the sex-linked Sox3 is involved in female determination in the ZZ-ZW sex-determining system of the frog, an exact opposite function to the male determination of medaka Sox3y and eutherian Sry. Full article
(This article belongs to the Special Issue Molecular Insights into Sex and Evolution)
Show Figures

Graphical abstract

11 pages, 2314 KB  
Article
New Insights on Chromosome Diversification in Malagasy Chameleons
by Marcello Mezzasalma, Gaetano Odierna, Rachele Macirella and Elvira Brunelli
Animals 2024, 14(19), 2818; https://doi.org/10.3390/ani14192818 - 30 Sep 2024
Cited by 1 | Viewed by 1368
Abstract
In this work, we performed a preliminary molecular analysis and a comparative cytogenetic study on 5 different species of Malagasy chameleons of the genus Brookesia (B. superciliaris) and Furcifer (F. balteautus, F. petteri, F. major and F. minor [...] Read more.
In this work, we performed a preliminary molecular analysis and a comparative cytogenetic study on 5 different species of Malagasy chameleons of the genus Brookesia (B. superciliaris) and Furcifer (F. balteautus, F. petteri, F. major and F. minor). A DNA barcoding analysis was first carried out on the study samples using a fragment of the mitochondrial gene coding for the cytochrome oxidase subunit 1 (COI) in order to assess the taxonomic identity of the available biological material. Subsequently, we performed on the studied individuals a chromosome analysis with standard karyotyping (5% Giemsa solution at pH 7) and sequential C-banding + Giemsa, + CMA3, and + DAPI. The results obtained indicate that the studied species are characterized by a different chromosome number and a variable heterochromatin content and distribution, with or without differentiated sex chromosomes. In particular, B. superciliaris (2n = 36) and F. balteatus (2n = 34) showed a similar karyotype with 6 macro- and 12–11 microchromosome pairs, without differentiated sex chromosomes. In turn, F. petteri, F. major, and F. minor showed a karyotype with a reduced chromosome number (2n = 22–24) and a differentiated sex chromosome system with female heterogamety (ZZ/ZW). Adding our newly generated data to those available from the literature, we highlight that the remarkable chromosomal diversification of the genus Furcifer was likely driven by non-homologous chromosome fusions, including autosome–autosome, Z–autosome, and W–autosome fusions. The results of this process resulted in a progressive reduction in the chromosome number and partially homologous sex chromosomes of different shapes and sizes. Full article
(This article belongs to the Section Herpetology)
Show Figures

Figure 1

15 pages, 1627 KB  
Review
Karyotype Diversification and Chromosome Rearrangements in Squamate Reptiles
by Marcello Mezzasalma, Rachele Macirella, Gaetano Odierna and Elvira Brunelli
Genes 2024, 15(3), 371; https://doi.org/10.3390/genes15030371 - 18 Mar 2024
Cited by 10 | Viewed by 4044
Abstract
Karyotype diversification represents an important, yet poorly understood, driver of evolution. Squamate reptiles are characterized by a high taxonomic diversity which is reflected at the karyotype level in terms of general structure, chromosome number and morphology, and insurgence of differentiated simple or multiple-sex-chromosome [...] Read more.
Karyotype diversification represents an important, yet poorly understood, driver of evolution. Squamate reptiles are characterized by a high taxonomic diversity which is reflected at the karyotype level in terms of general structure, chromosome number and morphology, and insurgence of differentiated simple or multiple-sex-chromosome systems with either male or female heterogamety. The potential of squamate reptiles as unique model organisms in evolutionary cytogenetics has been recognised in recent years in several studies, which have provided novel insights into the chromosome evolutionary dynamics of different taxonomic groups. Here, we review and summarize the resulting complex, but promising, general picture from a systematic perspective, mapping some of the main squamate karyological characteristics onto their phylogenetic relationships. We highlight how all the major categories of balanced chromosome rearrangements contributed to the karyotype evolution in different taxonomic groups. We show that distinct karyotype evolutionary trends may occur, and coexist, with different frequencies in different clades. Finally, in light of the known squamate chromosome diversity and recent research advances, we discuss traditional and novel hypotheses on karyotype evolution and propose a scenario of circular karyotype evolution. Full article
(This article belongs to the Section Cytogenomics)
Show Figures

Figure 1

12 pages, 1773 KB  
Article
Sex-Linked Loci on the W Chromosome in the Multi-Ocellated Racerunner (Eremias multiocellata) Confirm Genetic Sex-Determination Stability in Lacertid Lizards
by Zhangqing Chu, Ziwen Wang, Yuchi Zheng, Yun Xia and Xianguang Guo
Animals 2023, 13(13), 2180; https://doi.org/10.3390/ani13132180 - 3 Jul 2023
Cited by 1 | Viewed by 2228
Abstract
The multi-ocellated racerunner, Eremias multiocellata, was considered to have temperature-dependent sex determination (TSD), as its sex ratio can be influenced at different temperatures. However, such an observation contrasts with recent findings that suggest TSD is less common than previously thought. Here, a [...] Read more.
The multi-ocellated racerunner, Eremias multiocellata, was considered to have temperature-dependent sex determination (TSD), as its sex ratio can be influenced at different temperatures. However, such an observation contrasts with recent findings that suggest TSD is less common than previously thought. Here, a genotyping-by-sequencing (GBS) approach was employed to identify sex-linked markers in the E. multiocellata, for which the mechanism choice of TSD or GSD is still controversial. We preliminarily identified 119 sex-linked markers based on sex-associated sex-specific sequences, 97% of which indicated female heterogamety. After eliminating the false positives, 38 sex-linked markers were recognized, all of which showed the ZW/ZZ system. Then, eight of the novel markers were verified by PCR amplification from 15 populations of E. multiocellata, which support the GSD in E. multiocellata without geographic variation. To test the conservation of sex chromosome in Eremias, the eight markers were further cross-tested by PCR amplification in 10 individuals of the Mongolian racerunner (Eremias argus), two of which exhibited cross-utility. The novel sex-linked markers could be mapped on the W chromosome of the sand lizard (Lacerta agilis). Our finding that the sex-linked markers are shared in closely related species, along with a conserved synteny of the W chromosome, further supports the homology and conservation of sex chromosomes in the lacertid lizards. Full article
(This article belongs to the Special Issue Evolution, Diversity, and Conservation of Herpetofauna)
Show Figures

Figure 1

17 pages, 3668 KB  
Article
Parallel Evolution of Sex-Linked Genes across XX/XY and ZZ/ZW Sex Chromosome Systems in the Frog Glandirana rugosa
by Shuuji Mawaribuchi, Michihiko Ito, Mitsuaki Ogata, Yuri Yoshimura and Ikuo Miura
Genes 2023, 14(2), 257; https://doi.org/10.3390/genes14020257 - 18 Jan 2023
Cited by 7 | Viewed by 8992
Abstract
Genetic sex-determination features male (XX/XY) or female heterogamety (ZZ/ZW). To identify similarities and differences in the molecular evolution of sex-linked genes between these systems, we directly compared the sex chromosome systems existing in the frog Glandirana rugosa. The heteromorphic X/Y and Z/W [...] Read more.
Genetic sex-determination features male (XX/XY) or female heterogamety (ZZ/ZW). To identify similarities and differences in the molecular evolution of sex-linked genes between these systems, we directly compared the sex chromosome systems existing in the frog Glandirana rugosa. The heteromorphic X/Y and Z/W sex chromosomes were derived from chromosomes 7 (2n = 26). RNA-Seq, de novo assembly, and BLASTP analyses identified 766 sex-linked genes. These genes were classified into three different clusters (XW/YZ, XY/ZW, and XZ/YW) based on sequence identities between the chromosomes, probably reflecting each step of the sex chromosome evolutionary history. The nucleotide substitution per site was significantly higher in the Y- and Z-genes than in the X- and W- genes, indicating male-driven mutation. The ratio of nonsynonymous to synonymous nucleotide substitution rates was higher in the X- and W-genes than in the Y- and Z-genes, with a female bias. Allelic expression in gonad, brain, and muscle was significantly higher in the Y- and W-genes than in the X- and Z-genes, favoring heterogametic sex. The same set of sex-linked genes showed parallel evolution across the two distinct systems. In contrast, the unique genomic region of the sex chromosomes demonstrated a difference between the two systems, with even and extremely high expression ratios of W/Z and Y/X, respectively. Full article
(This article belongs to the Special Issue Chromosome Evolution and Karyotype Analysis)
Show Figures

Graphical abstract

9 pages, 649 KB  
Article
ZZ/ZW Sex Chromosomes in the Madagascar Girdled Lizard, Zonosaurus madagascariensis (Squamata: Gerrhosauridae)
by Alexander Kostmann, Lukáš Kratochvíl and Michail Rovatsos
Genes 2023, 14(1), 99; https://doi.org/10.3390/genes14010099 - 29 Dec 2022
Cited by 1 | Viewed by 3413
Abstract
Scincoidea, the reptilian clade that includes girdled lizards, night lizards, plated lizards and skinks, are considered as a lineage with diversity in sex-determining systems. Recently, the hypothesis on the variability in sex determination in skinks and even more the absence of sex chromosomes [...] Read more.
Scincoidea, the reptilian clade that includes girdled lizards, night lizards, plated lizards and skinks, are considered as a lineage with diversity in sex-determining systems. Recently, the hypothesis on the variability in sex determination in skinks and even more the absence of sex chromosomes in some of them has been rivalling. Homologous, evolutionary stable XX/XY sex chromosomes were documented to be widespread across skinks. However, sex determination in the other scincoidean families is highly understudied. ZZ/ZW sex chromosomes have been identified only in night lizards and a single species of plated lizards. It seems that although there are different sex chromosome systems among scincoidean lineages, they share one common trait: they are mostly poorly differentiated and often undetectable by cytogenetic methods. Here, we report one of the exceptions, demonstrating for the first time ZZ/ZW sex chromosomes in the plated lizard Zonosaurus madagascariensis. Its sex chromosomes are morphologically similar, but the W is clearly detectable by comparative genomic hybridization (CGH), suggesting that the Z and W chromosomes highly differ in sequence content. Our findings confirm the presence of female heterogamety in plated lizards and provides novel insights to expand our understanding of sex chromosome evolution in scincoidean lizards. Full article
(This article belongs to the Special Issue Chromosome Evolution and Karyotype Analysis)
Show Figures

Figure 1

10 pages, 1389 KB  
Review
A Brief Review of Meiotic Chromosomes in Early Spermatogenesis and Oogenesis and Mitotic Chromosomes in the Viviparous Lizard Zootoca vivipara (Squamata: Lacertidae) with Multiple Sex Chromosomes
by Larissa Kupriyanova and Larissa Safronova
Animals 2023, 13(1), 19; https://doi.org/10.3390/ani13010019 - 20 Dec 2022
Cited by 4 | Viewed by 2794
Abstract
This brief review is focused on the viviparous lizard Zootoca vivipara (Lichtenstein, 1823), of the family Lacertidae, which possesses female heterogamety and multiple sex chromosomes (male 2n = 36, Z1Z1Z2Z2/Z1Z2W, [...] Read more.
This brief review is focused on the viviparous lizard Zootoca vivipara (Lichtenstein, 1823), of the family Lacertidae, which possesses female heterogamety and multiple sex chromosomes (male 2n = 36, Z1Z1Z2Z2/Z1Z2W, female 2n = 35, with variable W sex chromosome). Multiple sex chromosomes and their changes may influence meiosis and the female meiotic drive, and they may play a role in reproductive isolation. In two cryptic taxa of Z. vivipara with different W sex chromosomes, meiosis during early spermatogenesis and oogenesis proceeds normally, without any disturbances, with the formation of haploid spermatocytes, and in female meiosis with the formation of synaptonemal complexes (SCs) and the lampbrush chromosomes. In females, the SC number was constantly equal to 19 (according to the SC length, 16 SC autosomal bivalents plus three presumed SC sex chromosome elements). No variability in the chromosomes at the early stages of meiotic prophase I, and no significant disturbances in the chromosome segregation at the anaphase–telophase I stage, have been discovered, and haploid oocytes (n = 17) at the metaphase II stage have been revealed. There should be a factor/factors that maintain the multiple sex chromosomes, their equal transmission, and the course of meiosis in these cryptic forms of Z. vivipara. Full article
Show Figures

Figure 1

13 pages, 14857 KB  
Article
Cytogenetic Analysis of the Members of the Snake Genera Cylindrophis, Eryx, Python, and Tropidophis
by Tomáš Charvát, Barbora Augstenová, Daniel Frynta, Lukáš Kratochvíl and Michail Rovatsos
Genes 2022, 13(7), 1185; https://doi.org/10.3390/genes13071185 - 1 Jul 2022
Cited by 4 | Viewed by 3229
Abstract
The recent discovery of two independently evolved XX/XY sex determination systems in the snake genera Python and Boa sparked a new drive to study the evolution of sex chromosomes in poorly studied lineages of snakes, where female heterogamety was previously assumed. Therefore, we [...] Read more.
The recent discovery of two independently evolved XX/XY sex determination systems in the snake genera Python and Boa sparked a new drive to study the evolution of sex chromosomes in poorly studied lineages of snakes, where female heterogamety was previously assumed. Therefore, we examined seven species from the genera Eryx, Cylindrophis, Python, and Tropidophis by conventional and molecular cytogenetic methods. Despite the fact that these species have similar karyotypes in terms of chromosome number and morphology, we detected variability in the distribution of heterochromatin, telomeric repeats, and rDNA loci. Heterochromatic blocks were mainly detected in the centromeric regions in all species, although accumulations were detected in pericentromeric and telomeric regions in a few macrochromosomes in several of the studied species. All species show the expected topology of telomeric repeats at the edge of all chromosomes, with the exception of Eryx muelleri, where additional accumulations were detected in the centromeres of three pairs of macrochromosomes. The rDNA loci accumulate in one pair of microchromosomes in all Eryx species and in Cylindrophis ruffus, in one macrochromosome pair in Tropidophis melanurus and in two pairs of microchromosomes in Python regius. Sex-specific differences were not detected, suggesting that these species likely have homomorphic, poorly differentiated sex chromosomes. Full article
(This article belongs to the Special Issue Chromosome Evolution and Karyotype Analysis)
Show Figures

Figure 1

20 pages, 2614 KB  
Review
Lizards as Model Organisms of Sex Chromosome Evolution: What We Really Know from a Systematic Distribution of Available Data?
by Marcello Mezzasalma, Fabio M. Guarino and Gaetano Odierna
Genes 2021, 12(9), 1341; https://doi.org/10.3390/genes12091341 - 28 Aug 2021
Cited by 30 | Viewed by 5959
Abstract
Lizards represent unique model organisms in the study of sex determination and sex chromosome evolution. Among tetrapods, they are characterized by an unparalleled diversity of sex determination systems, including temperature-dependent sex determination (TSD) and genetic sex determination (GSD) under either male or female [...] Read more.
Lizards represent unique model organisms in the study of sex determination and sex chromosome evolution. Among tetrapods, they are characterized by an unparalleled diversity of sex determination systems, including temperature-dependent sex determination (TSD) and genetic sex determination (GSD) under either male or female heterogamety. Sex chromosome systems are also extremely variable in lizards. They include simple (XY and ZW) and multiple (X1X2Y and Z1Z2W) sex chromosome systems and encompass all the different hypothesized stages of diversification of heterogametic chromosomes, from homomorphic to heteromorphic and completely heterochromatic sex chromosomes. The co-occurrence of TSD, GSD and different sex chromosome systems also characterizes different lizard taxa, which represent ideal models to study the emergence and the evolutionary drivers of sex reversal and sex chromosome turnover. In this review, we present a synthesis of general genome and karyotype features of non-snakes squamates and discuss the main theories and evidences on the evolution and diversification of their different sex determination and sex chromosome systems. We here provide a systematic assessment of the available data on lizard sex chromosome systems and an overview of the main cytogenetic and molecular methods used for their identification, using a qualitative and quantitative approach. Full article
(This article belongs to the Special Issue Sex Chromosome Evolution and Meiosis)
Show Figures

Figure 1

13 pages, 1532 KB  
Article
Assigning the Sex-Specific Markers via Genotyping-by-Sequencing onto the Y Chromosome for a Torrent Frog Amolops mantzorum
by Wei Luo, Yun Xia, Bisong Yue and Xiaomao Zeng
Genes 2020, 11(7), 727; https://doi.org/10.3390/genes11070727 - 30 Jun 2020
Cited by 11 | Viewed by 8883
Abstract
We used a genotyping-by-sequencing (GBS) approach to identify sex-linked markers in a torrent frog (Amolops mantzorum), using 21 male and 19 female wild-caught individuals from the same population. A total of 141 putatively sex-linked markers were screened from 1,015,964 GBS-tags via [...] Read more.
We used a genotyping-by-sequencing (GBS) approach to identify sex-linked markers in a torrent frog (Amolops mantzorum), using 21 male and 19 female wild-caught individuals from the same population. A total of 141 putatively sex-linked markers were screened from 1,015,964 GBS-tags via three approaches, respectively based on sex differences in allele frequencies, sex differences in heterozygosity, and sex-limited occurrence. With validations, 69 sex-linked markers were confirmed, all of which point to male heterogamety. The male specificity of eight sex markers was further verified by PCR amplifications, with a large number of additional individuals covering the whole geographic distribution of the species. Y chromosome (No. 5) was microdissected under a light microscope and amplified by whole-genome amplification, and a draft Y genome was assembled. Of the 69 sex-linked markers, 55 could be mapped to the Y chromosome assembly (i.e., 79.7%). Thus, chromosome 5 could be added as a candidate to the chromosomes that are particularly favored for recruitment in sex-determination in frogs. Three sex-linked markers that mapped onto the Y chromosome were aligned to three different promoter regions of the Rana rugosa CYP19A1 gene, which might be considered as a candidate gene for triggering sex-determination in A. mantzorum. Full article
Show Figures

Figure 1

14 pages, 4268 KB  
Article
ZZ/ZW Sex Determination with Multiple Neo-Sex Chromosomes is Common in Madagascan Chameleons of the Genus Furcifer (Reptilia: Chamaeleonidae)
by Michail Rovatsos, Marie Altmanová, Barbora Augstenová, Sofia Mazzoleni, Petr Velenský and Lukáš Kratochvíl
Genes 2019, 10(12), 1020; https://doi.org/10.3390/genes10121020 - 6 Dec 2019
Cited by 23 | Viewed by 10555
Abstract
Chameleons are well-known, highly distinctive lizards characterized by unique morphological and physiological traits, but their karyotypes and sex determination system have remained poorly studied. We studied karyotypes in six species of Madagascan chameleons of the genus Furcifer by classical (conventional stain, C-banding) and [...] Read more.
Chameleons are well-known, highly distinctive lizards characterized by unique morphological and physiological traits, but their karyotypes and sex determination system have remained poorly studied. We studied karyotypes in six species of Madagascan chameleons of the genus Furcifer by classical (conventional stain, C-banding) and molecular (comparative genomic hybridization, in situ hybridization with rDNA, microsatellite, and telomeric sequences) cytogenetic approaches. In contrast to most sauropsid lineages, the chameleons of the genus Furcifer show chromosomal variability even among closely related species, with diploid chromosome numbers varying from 2n = 22 to 2n = 28. We identified female heterogamety with cytogenetically distinct Z and W sex chromosomes in all studied species. Notably, multiple neo-sex chromosomes in the form Z1Z1Z2Z2/Z1Z2W were uncovered in four species of the genus (F. bifidus, F. verrucosus, F. willsii, and previously studied F. pardalis). Phylogenetic distribution and morphology of sex chromosomes suggest that multiple sex chromosomes, which are generally very rare among vertebrates with female heterogamety, possibly evolved several times within the genus Furcifer. Although acrodontan lizards (chameleons and dragon lizards) demonstrate otherwise notable variability in sex determination, it seems that female heterogamety with differentiated sex chromosomes remained stable in the chameleons of the genus Furcifer for about 30 million years. Full article
(This article belongs to the Special Issue Chromosome-Centric View of the Genome Organization and Evolution)
Show Figures

Figure 1

16 pages, 6809 KB  
Article
Sex Chromosomes of the Iconic Moth Abraxas grossulariata (Lepidoptera, Geometridae) and Its Congener A. sylvata
by Magda Zrzavá, Irena Hladová, Martina Dalíková, Jindra Šíchová, Erki Õunap, Svatava Kubíčková and František Marec
Genes 2018, 9(6), 279; https://doi.org/10.3390/genes9060279 - 31 May 2018
Cited by 23 | Viewed by 7176
Abstract
The magpie moth, Abraxas grossulariata, is an iconic species in which female heterogamety was discovered at the beginning of the 20th century. However, the sex chromosomes of this species have not yet been cytologically identified. We describe the sex chromosomes of A. [...] Read more.
The magpie moth, Abraxas grossulariata, is an iconic species in which female heterogamety was discovered at the beginning of the 20th century. However, the sex chromosomes of this species have not yet been cytologically identified. We describe the sex chromosomes of A. grossulariata and its congener, A. sylvata. Although these species split only around 9.5 million years ago, and both species have the expected WZ/ZZ chromosomal system of sex determination and their sex chromosomes share the major ribosomal DNA (rDNA) representing the nucleolar organizer region (NOR), we found major differences between their karyotypes, including between their sex chromosomes. The species differ in chromosome number, which is 2n = 56 in A. grossularita and 2n = 58 in A. sylvata. In addition, A. grossularita autosomes exhibit massive autosomal blocks of heterochromatin, which is a very rare phenomenon in Lepidoptera, whereas the autosomes of A. sylvata are completely devoid of distinct heterochromatin. Their W chromosomes differ greatly. Although they are largely composed of female-specific DNA sequences, as shown by comparative genomic hybridization, cross-species W-chromosome painting revealed considerable sequence differences between them. The results suggest a relatively rapid molecular divergence of Abraxas W chromosomes by the independent spreading of female-specific repetitive sequences. Full article
(This article belongs to the Special Issue The Evolutionary Life Cycle of Sex Chromosomes)
Show Figures

Graphical abstract

Back to TopTop